SCARE of the DES

(Side Channel Analysis for Reverse Engineering
of the Data Encryption Standard)

Rémy Daudigny, Hervé Ledig,
Frédéric Muller, and Frédéric Valette

DCSSI Crypto Lab 51, Boulevard de Latour-Maubourg
75700 Paris 07 SP France
{Remy.Daudigny,Frederic.Muller,Frederic.Valette}@sgdn.pm.gouv.fr

Abstract. Side-Channel Analysis for Reverse Engineering (SCARE) is
a new field of application for Side-Channel Attacks (SCA), that was re-
cently introduced, following initial results on the GSM A3/A8 algorithm.
The principle of SCARE is to use side-channel information (for instance,
power consumption) as a tool to reverse-engineer some secret parts of a
cryptographic implementation. SCARE has the advantage of being dis-
crete and non-intrusive, so it appears to be a promising new direction of
research.

In this paper, we apply the concepts of SCARE in the case of the block
cipher DES. We measure the power consumption of a software DES ex-
ecuted on a target smart card and propose new methods to exploit this
information. We manage to retrieve many details about the underlying
device, including some constants used by the algorithm (e.g. permutation
tables for the round function and for the key scheduling), but also inter-
esting implementation choices (e.g. registers where subkeys are loaded).
Of course some information was already known in our case, but situations
can be envisaged where the designer would like to keep it secret.

An application of these methods is to reverse-engineer a proprietary al-
gorithm, provided some information about its basic structure is know.
Hence it illustrates the power of SCARE and demonstrates yet again the
accuracy of Kerckhoff’s principle. In addition, a better understanding
of a cryptographic implementation can be a first step to mount more
sophisticated Side Channel Attacks.

1 Introduction

Side-Channel Attacks (SCA) have been developed since 10 years to analyse the
security of cryptographic functions in actual implementations. Compared to tra-
ditional attacks which exploit the standard input/output (i.e. plaintext and
ciphertext) of a cipher to recover some secret data, SCA uses an auxiliary source
of information to achieve the same goal. This side-channel information can orig-
inate from various types of leakage. The first example was due to Kocher [(]
and was based on using timing information. Furthermore it was shown that the

J. Toannidis, A. Keromytis, and M.Yung (Eds.): ACNS 2005, LNCS 3531, pp. 393-406, 2005.
© Springer-Verlag Berlin Heidelberg 2005

394 Rémy Daudigny et al.

power consumption of a cryptographic device could also reveal some useful in-
formation to an attacker [7]. Other attacks of the same vein use electro-magnetic
radiations [3, 5] or fault injection [1, 2]. Many variations of these techniques have
been studied in the recent years, and the general idea is always to recover some
secret keys used by the cipher.

More recently it was proposed to exploit side-channel leakage for reverse
engineering. This new idea consists in exploiting (for instance) the power con-
sumption of a device to recover some secret or non-trivial details about the way
cryptographic functions were implemented. This new technique is called SCARE
(Side-Channel Analysis for Reverse-Engineering) and has initially been applied
to the A3/A8 authentication and session key generation algorithm of the GSM
standard. An initial attack was proposed by Novak [9] and was later extended by
Clavier [1]. These results constitutes a new application of techniques developed
for SCA.

In our opinion, SCARE is a very promising direction for future research.
We believe it could be useful in two situations. First, there are cryptographic
functions where some part of the specification is voluntarily kept secret by the
designer. For instance, a proprietary cipher where the general structure is known,
but some constants are kept secret. Secondly, think of the implementation itself:
some information (although not of cryptographic nature) may need to remain
secret. For instance, the techniques used by the developers, the order and the
length of the instructions or even the registers in which the data are stored. This
information is sensible because a company may want to protect its technology,
but also because it can be useful for a side channel attack. In this last case,
SCARE is just a preliminary step towards more sophisticated attacks. For in-
stance, a thin understanding of the hardware is often useful to improve power
attacks (by focusing on relevant portions of the power traces or by applying a
dedicated attack depending on the hardware behaviour).

More generally, SCARE demonstrates once again the accuracy of Kerckhoffs’
principle that the security of a cryptosystem should rely on the secrecy of the
key and not the cryptosystem itself. It also demonstrates the difficulty to pro-
tect a cryptographic implementation in hostile environments. This new reverse-
engineering method is expected to have a broad range of applications since it
is efficient, discrete and non-intrusive. In the next section, we introduce some
background about SCA against DES. Then we describe our algorithmic meth-
ods for SCARE, and describe the experimental results we obtained by analysing
the behaviour of a target smart card. Finally, we discuss directions for further
research.

2 Side-Channel Attacks and the DES

DES (Data Encryption Standard) is a well-known encryption standard adopted
by the NBS in 1977 [10], and replaced since then by AES. DES is a 64-bit block
cipher with 56-bits key based on a Feistel structure. We skip details about the
algorithm specifications, which are very well known. The reader can refer to [10]
to find more information.

SCARE of the DES 395

Today DES is still widely used especially in cryptographic hardware devices
thus it has been an important target for side-channel analysis, following the ini-
tial paper by Kocher [6]. Several attacks are known, the simplest of which is Sim-
ple Power Analysis (SPA), where the attacker observes directly one power trace
of a DES execution to retrieve the value of manipulated data. Power consump-
tion curves are typically not that easy to analyse, therefore advanced attacks are
needed.

An interesting and famous technique is Differential Power Analysis (DPA) [7].
DPA is a statistical attack, requiring to analyse several messages with their
corresponding power traces. More precisely, assume we obtain M power traces:
(71, ..., Ty) where the power consumption at time ¢ is given by 7;(t). We assume
this consumption is correlated with the data manipulated at time ¢. For instance
if a S-box is computed, 7;(t) is correlated with the output of this S-box. However
it is impossible to infer the data directly from one power trace, due to the noise
in the measurement. A statistical attack is therefore necessary.

We consider a known-plaintext attacker. He targets the output of Sbox S;
of round 1. We call this 4-bit output (a, b, ¢,d). It depends on 6 key bits and 6
plaintext bits. If the attacker guesses these 6 key bits, he can predict the value
of a for each message. The corresponding power traces can thus be sorted in two
groups Go and G according to the predicted value of a. Group G; corresponds
to the value a = i. The "differential curve" is computed as

1
D(t):mz 1‘ |G1 ZT

T:€Go T;€G1

This curve should present peaks, if we assumed the correct key bits and should
be close to 0 otherwise. Indeed, for the instants ¢ where the S-box Sy is com-
puted, the power consumption is correlated with a. Therefore, for the correct
key, there is an important difference between the consumption of groups Gy and
(1. Otherwise, there should be no significant difference between the two groups,
hence the differential curve D(t) should be close to 0. Of course, M needs to be
large enough to eliminate the noise in the experiments.

To summarize, the attacker learns 6 key bits by statistical treatment of the
power traces. There exists a similar attack that requires only knowledge of the
ciphertext. In practice DPA is often more complicated: countermeasures can be
implemented, so the analysis of power traces is rather subtle. Basically the attack
can be improved if we know more about:

— which portions of the traces correspond to the computation of S;. Then we
can restrict the analysis to significant data.

— the electrical behaviour of the cryptographic device. There may be better
ways to exploit the curves, assuming we understand well the correlation
between internal data and power consumption.

Therefore it may be useful, before applying this attack to spend some time to
understand better the target device. Then optimized versions of the attack can
be applied. This is an important motivation for SCARE.

396 Rémy Daudigny et al.

3 Methods and Goals of SCARE

3.1 Goals

In the context of SCARE, we no longer consider the point of view of an attacker
but the one of a reverse-engineer. The primary goal of this new adversary is
not to recover the secret key. He wants to know more about the implementation,
which englobes several possible goals:

— Learn secret constants
Sometimes, the general structure of an algorithm is known but some partial
information is kept secret. For instance if a company develops a proprietary
algorithm, it might prefer, for various reasons, to keep some constants se-
cret. This situation has been encountered with the GSM authentication and
session key generation algorithm A3/A8 [/, 9]. Some tables were kept secret,
but it was later demonstrated that SCARE could be used to retrieve them.

— Learn more about the algorithm
Consider a secret proprietary block cipher. Several reasonable assumptions
about its general structure (Feistel cipher, SP network) can be made. A
reverse-engineer expects to obtain more details using SCARE. For instance,
how many S-boxes are used, what is the size of these S-boxes, ...

— Learn information about the implementation techniques
The way an algorithm was implemented can sometimes be considered as a
secret by itself. It reveals secrets about the technology used by a company
or methods used by the developers of its products.

— Understand better the device
Knowing which instruction corresponds to which portion of the power trace
improves the efficiency of many attacks (like DPA). Moreover, it is helpful
to understand better the correlation between intermediate data and power
consumption (for instance, what consumption model should be used).

3.2 Methods

In [4, 9], dedicated methods have been proposed in the case of the A3/A8 algo-
rithm. They allowed to recover secret tables which were part of the algorithm
specifications but kept secret. In this section, we propose and apply new methods
to reverse-engineer a commercial smart card where a software DES implemen-
tation is available.

The first operation consists in monitoring the power consumption of a DES
encryption. We mention that similar attacks could be envisaged if we monitor
the electro-magnetic radiations. For each message, we obtain a trace which is
represented by a collection of values, each of them associated with a certain
time index t. The preliminary stage consists in synchronizing the curve in order
for a given time index ¢ to uniquely correspond to a given instruction. This pre-
processing is usually done prior to most Side Channel Attacks. Afterwards, we
denote by 7;(t) the power consumption of the i-th trace at time index number
t. Roughly, we can assume that each time index corresponds to one clock cycle.

SCARE of the DES 397

Next, the goal of the reverse-engineer is to determine when each data is
manipulated. If he knows nothing about the underlying algorithm, all he can
do is detect when the algorithm inputs (such as the plaintext or the key) are
manipulated. If he knows more, he can focus on any intermediate value, as long
as no unknown material is needed to predict it. For instance, if we replace the
DES permutation table by a random permutation, a reverse-engineer can predict
intermediate values of the first round, until the new permutation is performed.

To determine when each data is manipulated, the reverse-engineer applies a
statistical analysis to the power traces. For each intermediate bit he can predict,
he tries to determine the time index ¢ where it is manipulated. We call this result
the scheduling information of the considered implementation. Afterwards, the
reverse-engineer analyzes this information, hoping to learn the unknown material
about the target algorithm. This second phase is detailed in Section 4.

Method to obtain scheduling information. Pick an intermediate bit a. The
input consists in M messages and their corresponding power traces (7;), <j<M-
We want to determine the clock cycles where a is manipulated. If no information
about the cipher is initially known, we can start by choosing a to be a bit from
the plaintext.

— Build two groups Gy and G according to the value of a in each encryption
(G; corresponds to a =).
— For each clock cycle i compute the following value V;

1
V=g 2 TO - gy 3 %)

T;€Go T;€G1

— If |V;] > X for some appropriate threshold A we decide that the bit a is
manipulated at time 7. In our experimental settings, we fixed the threshold
afterwards, in order to keep only a short number of significant time index.

To summarize, the indicator V; just measures how much the consumption at
clock cycle i is affected by a. Hence large values of |V;| reveal when the bit a is
manipulated.

An example. We present some experimental results obtained on our target
smart card. Of course, we know the specification of DES. However, we first
worked as if the algorithm was secret, hence all we know is the plaintext. There-
fore we focused on obtaining the scheduling information of the plaintext
bits. The initial permutation of DES only modifies the order in which plaintext
bits are manipulated, so it does not really change the analysis.

We use M = 1000 power consumption traces. We pick a to be any plaintext
bit, say the first input bit of the first S-box .S; for instance. For each clock cycle i,
we determine if @ is manipulated or not by testing if |V;| > A. The unit of the V;
is arbitrary and has been normalized to range in the set [0,200]. The threshold
A has been set to 10, so that only a small number of clock cycles i verify

Vi > A

398 Rémy Daudigny et al.

Table 1. A sample of experimental results.

Cycle i|Value V; Decision
1074 7 Bit NOT manipulated at clock cycle 1074
1075 14 Bit manipulated at clock cycle 1075
1076 50 Bit manipulated at clock cycle 1076
1077 24 Bit manipulated at clock cycle 1077
1078 —8 |Bit NOT manipulated at clock cycle 1078
1079 14 Bit manipulated at clock cycle 1079
1080 76 Bit manipulated at clock cycle 1080
1081 41 Bit manipulated at clock cycle 1081
1082 8 Bit NOT manipulated at clock cycle 1082
1083 9 Bit NOT manipulated at clock cycle 1083

A significant portion of the results is represented in Table 1. For most of the
other time indexes, the outcome is that the considered bit was not manipulated.
Further analysis has revealed that the depicted interval corresponds to the com-
putation of S-box S7. A larger sample is represented in Appendix A. The sign
of V; may also reveal some partial information (for instance, a change of sign
probably means that 1 was XORed to the manipulated bit), however we do not
take into account this information.

4 Analysis of Our Results

In this section, we describe how to interpret the scheduling information obtained
in Section 3.2. We first work as if the DES specifications were unknown, so we
only exploit the scheduling information of the plaintext bits. This allows us to
determine the expansion table of DES. Next, we demonstrate similar methods
to retrieve other information about the algorithm.

4.1 Application to the Expansion Table

The round function of DES starts by expanding the input from 32 to 48 bits. The
DES specification contains a table describing this expansion [10] (see Table 2).
In this section, we show how to retrieve this table using SCARE. Of course a
similar analysis could be applied to a cipher using a secret expansion table.

Table 2. The DES Expansion Table.

321112345
4156|789
8191(10|11{12|13

12(13(14|15|16|17
16{17(18(19(20|21
20|21|22|23|24(25
24|25(26|27|28|29
28(29(30(31|32| 1

SCARE of the DES 399

Let us focus on scheduling information corresponding to plaintext bits (this
analysis can even be performed when nothing is initially known about the ci-
pher). Scheduling information tells us when each single bit is manipulated. But
we can also observe the groups of bits which are manipulated together.
Such groups are likely to correspond to S-box inputs.

Table 3. Scheduling information of the first round input.

Cycle First Round Input

Bit 1|Bit 2|Bit 3|Bit 4|Bit 5|Bit 6|...|Bit 31|Bit 32
1073 | - - - - - - - -
1074 | -
1075 Y
1076 | 'Y
1077 Y
1078 | -
1079 Y
1080 Y
1081 Y
1082 | -
1083 | -
1084 | -
1085 | -

<

M
R
M

<

As an illustration, Table 3 contains a relevant portion of the scheduling infor-
mation. For sake of simplicity, the exact values of the indicator V; are replaced
by Y’ (YES) when |V;| exceeds the threshold A = 10 and ‘-’ otherwise. In this
sample, input bits number 1, 2, 3, 4, 5 and 32 are clearly manipulated together
around clock cycles 1075, ...,1082. These 6 bits form the first line of the DES
expansion table.

We observe that the bit number 31 is also manipulated at cycles 1080 and
1081. This phenomenon can be due to noise in the experiment. Another possible
interpretation is that the bit 31 was stored in the same register than bit 32 and
is manipulated, while bit 32 is loaded.

A similar property could be observed for input bits number 4, 5, 6, 7, 8 and
9 in the following clock cycles. This group forms exactly the second line of the
DES expansion table. Similarly we can learn the rest of the expansion table.

More generally, the structure of the round function can be detected this
way. Indeed SCARE reveals which plaintext bits are manipulated together. This
reveals the S-box structure. For instance, an attacker knowing nothing about
DES could suspect that it uses 8 S-boxes, each of them applied to 6 input bits.

4.2 Application to the S-Box Tables

We have not implemented any attack to recover the DES S-boxes. However it is
likely that the methodology of SCARE could also be used here. It has already

400 Rémy Daudigny et al.

been verified experimentally in the case of the A3/A8 algorithm [1, 9]. Secret
substitution tables have been recovered in the case, using the power traces of
the cryptographic device.

4.3 Application to the S-Box Outputs

Now, we suppose that we know the expansion table and the DES S-box. Hence,
we can predict the 32 output bits of the S-box layer and analyze the scheduling
information concerning these bits. We observe several significant intervals, but
focus first on a particular interval which was already analyzed in Table 3. We
know it corresponds to the S-box computations. Other significant intervals are
further investigated later in the paper.

Table 4. Scheduling information of the S-box outputs.

Cycle First Round Output

Bit 1|Bit 2|Bit 3|Bit 4|Bit 5|Bit 6|Bit 7|Bit 8. ..
1074 | - - - - - - - -
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093

<
<
<
<

<
<
<
<

o
e
o
o

A sample of scheduling information is represented in Table 4. Focus on S-
box S; (the corresponding output bits are indexed 1,2, 3,4). The table confirms
that S is computed from clock cycle 1076 to 1091. Similarly Ss is computed
between clock cycle 1140 and 1160 (as indicated in Table 5). A surprising effect
appears: at the moment S5 is computed, the output bits of S; are manipulated
again. This phenomenon occurs especially between clock cycles 1154 and 1160.
We observe a similar behaviour for other pairs of S-box, (Ss,S4), (S5, S56) and
(57, 5s).

SCARE of the DES 401

Table 5. Scheduling information of the S-box outputs.

Cycle First Round Output

Bit 1|Bit 2|Bit 3|Bit 4|Bit 5|Bit 6|Bit 7|Bit 8. ..
1138 - - - - - - - -
1139 - - - -
1140 Y - Y | Y
1141 - - - -
1142 - - - -
1143 - - - -
1144 | - - - -
1145| - - - -
1146 | - - - -
1147 - - - -
1148 | - - - -
1149 - - - -
1150 - - - -
1151 - - - -
1152 - - - -
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162

e
LT
S O
e

KO
KKK
HKORR

o
o

T

o
o

o
o
o

Our interpretation is that the outputs of adjacent S-boxes are stored in
the same register. Therefore we are probably dealing with a 8-bit architecture
and the implementation choice is to store the output of adjacent S-boxes in the
same register.

4.4 Application to the Permutation Table

The last step of DES round function is a permutation of the 32 output bits.
This permutation is also described by a table in the DES specification [10] (see
Table 6).

The permutation of round 1 is computed just after the S-box layer. So we
focus on this time interval and on the manipulation of S-box output bits (i.e.
the input bits of the permutation). However the corresponding scheduling infor-
mation is rather long. So we provide only a summary in Table 7. We focus on
8 among the 32 target bits which are manipulated first, and an interval is given
where each of them is manipulated.

These 8 bits actually correspond to two lines (the 5-th and the 6-th) of
the permutation table. Our interpretation is that the permutation is performed

402 Rémy Daudigny et al.

Table 6. The DES Permutation Table.

16| 7 20|21
29|12|28|17
1115(23|26
5 [18(31(10
218|24(14
32127319
19(13(30| 6
22|111 4|25

Table 7. Summary of scheduling information for the permutation.

Output Bit number|Significant interval
2 1814 — 1817
3 1886 — 1890
8 1826 — 1832
9 1888 — 1892
14 1850 — 1856
24 1838 — 1841
27 1874 — 1877
32 1862 — 1865

in a byte-oriented way, i.e. the bits corresponding to two consecutive lines are
extracted and stored in the same register. Moreover look at the order in which
the bits of Table 7 are manipulated: 2 then 8, 24, 14, 32, 27, 3 and finally 9.
This is exactly the order of the bits in the two corresponding lines of the DES
permutation table. Our interpretation is that the corresponding byte is computed
from the most to the least significant bit.

To summarize, SCARE can retrieve the content of a permutation table, as
illustrated with the example of DES.

4.5 Application to the Key Scheduling

Inbetween rounds 1 and 2, there is a long time interval where the output bits
of the first round function are apparently manipulated. This effect is surprising
because these bits are not needed at this point. We think that this time in-
terval corresponds to the key scheduling and that power consumption
is correlated with S-box output bits because the registers where they
were previously stored are overridden by the round key. Indeed it is
well known that the power consumption is correlated with the new value written
in a register, but also with its previous content.

In Table 8, we represent a summary of the scheduling information. The byte
formed with bits 9,...,16 is manipulated starting from clock cycle 2698. Then
its bits successively disappear from the scheduling information, i.e. they stop
being manipulated. We believe it is because they are successively overridden

SCARE of the DES 403

Table 8. Sample of scheduling information for the key scheduling.

Output Bit number|Significant interval
1 2718 — 2985
2 2718 — 2985
3 2718 — 2837
4 2718 — 2796
5 2718 — 2873
6 2718 — 2724
7 2718 — 2985
8 2718 — 2941
9 2698 — 2952
10 2698 — 2952
11 2698 — 2737
12 2698 — 2776
13 2698 — 2860
14 2698 — 2952
15 2698 — 2709
16 2698 — 2904

by round key bits. Let us look at the order in which this phenomenon occurs.
This order is actually related to the permutated choice table PC-2 of DES (see
Table 9). This table is used to extract the bits forming the round key.

Table 9. The DES Permutated Choice PC-2 Table.

14|17|11|124] 1| 5
3 (28(16| 6 (21|10
23|19|12| 4 |26| 8
16| 7 |27|20|13| 2
41|52|31|37|47|55
30]40(51|45|33|48
44149(39|56|34|53
46|42|50|36|29|32

In Table 8, the first bit to be overridden (in our target byte) is the bit 15, then
11, 12, 13, 16, 14, etc This should be put into correspondence with the 3-rd
line of PC-2 (see Table 10). The order in which the bits disappear corresponds
to the order of extraction, assuming that high indexes are extracted first.

A similar behaviour is observed with 3 other lines from PC-2. Therefore
we learn 4 lines of PC-2 by just looking at the order in which the previous
data is overridden. Of course, this could be used to retrieve a secret extraction
table. Moreover we learn that the round key bits are stored in registers where
intermediate data were previously stored. This is an undesirable property and
could be used in other power attacks.

404 Rémy Daudigny et al.

Table 10. Correspondence between PC-2 and the Output bits.

Output bits 9|10|11{12|13|14|15|16
Order to disappear|-|-|2(3|4|6|1|5
3-rd line of PC2 |-| - |23|19(12]| 4 |26| 8
Order of extraction|-|- |23 [4|6|1|5

4.6 Application for Side Channel Attacks

All the information derived in previous sections allows the reverse-engineer to
know precisely when each instruction is executed on the device. For a power
attack, this is useful information. Indeed the data analysis can be restricted to
significant portions of the traces. For instance, to apply DPA on the S-box S of
the first round, we can isolate a small significant time interval for the analysis.
This has two advantages

— The size of the data to handle is smaller, which improves the speed of the
analysis

— Meaningless portions of the curves are not taken into account, which re-
duces the underlying noise. So the probability of success of DPA improves,
especially with a limited number of traces

As an example, from the previous analysis, we can deduce how DPA should be
applied on this device. Since S-box S outputs are combined with S-box Si’s
outputs, basic DPA on Sy’s outputs is likely to give noisy results. It should
be more efficient to apply DPA to the S-box S; or to the permutation. This
information may also be helpful to mount more sophisticated attacks, like the
recently proposed Davies-Murphy Power Attack [2]. In this last case, we know
that only the pairs of S-box (S1,S2), (Ss,S4), (S5, S6) or (S7,S8) can be valid
targets.

5 Conclusion

SCARE (Side Channel Analysis for Reverse Engineering) is a new field of ap-
plication of Side Channel Attacks (SCA), where one tries to reverse-engineer
an implementation, based only on the power consumption of the cryptographic
device. We proposed new methods for SCARE and applied them to the famous
block cipher DES.

We managed to retrieve experimentally many information about a target
implementation, including constant tables used by the cipher, details of the
architecture, registers where data are stored or the order of execution of the
instructions. These results against DES suggest that it would be difficult to pro-
tect the secrecy of a proprietary algorithm regarding SCARE. We also consider
this analysis to be an interesting preliminary step before applying power attacks
to the device.

SCARE of the DES 405

References

1. E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosystems.
In B. Kaliski, editor, Advances in Cryptology — Crypto’97, volume 1294 of Lectures
Notes in Computer Science, pages 513-525. Springer, 1997.

2. D. Boneh, R. DeMillo, and R. Lipton. On the Importance of Checking Crypto-
graphic Protocols for Faults (Extended Abstract). In W. Fumy, editor, Advances
in Cryptology — Eurocrypt’97, volume 1233 of Lectures Notes in Computer Science,
pages 37-51. Springer, 1997.

3. V. Carlier, H. Chabanne, E. Dottax, and H. Pelletier. Electromagnetic Side Chan-
nels of an FPGA Implementation of AES. Cryptology ePrint Archive, Report
2004/145, 2004. http://eprint.iacr.org/.

4. Christophe Clavier. Side Channel Analysis for Reverse Engineering (SCARE) -
An Improved Attack Against a Secret A3/A8 GSM Algorithm. Cryptology ePrint
Archive, Report 2004/049, 2004. http://eprint.iacr.org/.

5. K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic Analysis: Concret Re-
sults. In C. Kog, D. Naccache, and C. Paar, editors, Cryptographic Hardware and
Embedded Systems (CHES) — 2001, volume 2162 of Lectures Notes in Computer
Science, pages 251-261. Springer, 2001.

6. P. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Others Systems. In N. Koblitz, editor, Advances in Cryptology — Crypto’96, volume
1109 of Lectures Notes in Computer Science, pages 104-113. Springer, 1996.

7. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. Wiener, editor,
Advances in Cryptology — Crypto’99, volume 1666 of Lectures Notes in Computer
Science, pages 388-397. Springer, 1999.

8. S. Kunz-Jacques, F. Muller, and F. Valette. The Davies-Murphy Power Attack. In
P.-J. Lee, editor, Advances in Cryptology — Asiacrypt’04, volume 3329 of Lectures
Notes in Computer Science, pages 451-467. Springer, 2004.

9. R. Novak. Side-Channel Attacks on Substitution Blocks. In J. Zhou, M. Yung, and
Y. Han, editors, Applied Cryptography and Network Security (ACNS) 2003, volume
2846 of Lectures Notes in Computer Science, pages 307-318. Springer, 2003.

10. National Institute of Standards and Technology (NIST). Data Encryp-
tion Standard (DES) FIPS Publication 46-3, October 1999. Available at
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf.

A A Larger Sample of Experimental Results

The sample represented in Figure 1 illustrates the scheduling information we
obtain in practice. It corresponds to the 32 input bits of the first round (i.e. 32
bits from the plaintext), and the corresponding information between clock cycles
1074 and 1116. We used coloured thresholds as a visual tool. Red corresponds
to high values of the indicator V;, and green to intermediate values. The content
of Table 1 is actually extracted from this larger sample.

Large values in the tables correspond to clock cycles where plaintext bits
are manipulated. One can observe that there are isolated signals probably cor-
responding to noise in the experiments. However some very significant portions
clearly appear. For instance, bits number 1,2,3,4,5 and 32 are clearly manip-
ulated between clock cycles 1076 and 1081. This is likely to correspond to the
computation of 7.

Rémy Daudigny et al.

406

‘symsal [ejuswiLiadxe Jjo sjdures a8re| y T 314

%9- [ws- [w¥- (%€ (%5 [xv- |xs- N6 (%6 [w¢ (%9 (%6 (&S %S %S (we- & |xs (%6~ |s¥ ixe |&€ |x¥- %6 |x¥- (& |w¥- (%l- |xy- k¥ (%€ [&¥

%S- |%¥- (%2 (g~ (%%~ (% (X~ (%€ %8 %y~ |%F- %% XC X¥ %% & %6 |X¥- (%S~ %G~ |x¥- %G X6~ %%~ %%~ w9~ (%6~ x- (%3~ |%- |x6 |ug-
%¥- %9 %E w2~ %5 %S X %€ % %F %9 RF X %S %9 % X e %g mg- ¥ - X§- m- Xl- wF % Xe x8- ml- npe nR-
L T R L L N T N a1 S S I L T N L S - T - e L T T T - T T T T E T T T

%0 %e |xF (w6 (%@ (xl- (ke %¢- e (%9 (%6 (%6 (%6l ke~ (%9 (xl- %0 (%@ %k~ (ab- fxe- %9- k- X0l %0L %o w0k %0 [xek (xe- L %0
%L (%9~ %9~ (& (%0b (%6~ (X6 {9~ %% (%6 (%P |8 G- X (w0 x¥ & |xy- X& |w§ {XG- (k@ %O X~ XOb ROb (%2 (x%0b |xOL (%@ %@ AL
%e- [%¥ (%5 (g [%e- (x&- (x¥ I%g- (xe (%F (% (%% % (k& (%%~ & x& |x¥- XS~ |w¥- ixe- (8% X3~ (X6~ (X (%60 (%6 %6 |x&k (x@ % (%6

%2 %9 %l B XP Xy e S X %@ %$- %@ X e %P xl- % xe X R§ e~ R§ X¥ X§- %G X %G %@ %e- ml- %a xe

%P %S %S (%S (%5 %F (%b- %S k¢ %L %L xl- xe- (k¢ (%9 %l (%8~ kJ- %e- k§ ixs- (X6 (S- %9 xe- (%€~ (x8- %0k x¥l- k0b (%6 |nok
%C %S %S wS %S %6 (xb- 1%0- %k %G~ %6 (% % x¢- % (%6 (%6 xe (% %9 dxl %6 (%0L %% %kl w0 %e- (%@ (k6 k0 [%0L |al-
K¢ wl- w6+ w9+ (%6 xv- (X6 @~ A% mM (R0L % % % %6~ O AW xab mSk k6 jxe x %6 w9~ [RIGNNNEENNxe. k90 KGN xv [REENINRES
xv- (%9 %l (g (6 (xd- (xS %@ (% (%l (% (%% %6~ (X9 (%5 %% %8l X % (ws ix@ xh x@ (%3 (X9 (- [x¢ x- |® [RF %5 (%9

%2 %a me kL % xl- e w9~ X¥ xl %0 (%9 e~ e~ % xe- ®ES ol xe wal @R m oxm 8l %9 m@- %@ %y m9 n@ %@

%9 %§ %b mE %90 Xb Xy I%e- %S % %€ % x9- xe- % xv xs %M. %9 %@ dxe xgl X8 %8 %l- %8 %e- %8 %y xp xF %9

Kb- %S %S (wl- (x9- Ix¢ (k6 RS %0 ab- (%P %k (% (kv- %b %% %80 %@ X6 (%9 jxob %G ke (k¢ (%0- %0~ [wp- %0- |x& k& %¢ (%

%P %0k %P ¢ % xe (X¢ 1% %6~ w6 (%P x- % (%9 %e %6 (%@~ (xe- %9~ [xp- ix- xl- (X9~ %F %6 %9 |x& %6 (%¢- (%P %G [wM-
xv- %2k %S (%9 %6 %9 (%1 IS (%S xg- (%L %6 (% (%00 (%% %6~ %W~ xel %W (%6 xM- |xe- (%- Rl- %6 %9+ %l (% x2 k8 %6 |sgh
xv- %S [wp- (w5 (% (%9 (%9~ % % (%@~ (%s %9~ (% (x5~ |x%¢ [x- |EYONMNRCCONRSSMNEEEMNize x. ke x0b %€ w5 |x9- (%0~ (%6~ |x8- |ml |ugl
%S %W b %9 X8 RS- xb- %S xL ox- o oxp xe- x5 oxv xr xo- [ERNNNEERNNEEE %88 QmIE k@ X020 %2 R %E %O XP- @ % w0l
E R N L N E L R T - o T L R - A E - L T T I T T I - T I e T S T T D - TS
L T R R T R i o I L S A E Lo L o o - E I E T T I R T i L S o L L E I L
%% (%9 %@ (g~ (%9~ (X6~ X%~ % e~ |%F- (%9 (% %%~ (X9 %%~ w&- %6- |xe- X6~ |w¥- [xe- (NS~ XE- X6~ |%6- (%G (8§ %9 |xy- xe me- (%@

xv- |%¥- (xg- [wg- (% (%8 (%%~ I%e- (%~ (%@ |%§ %0~ %6 %~ (% (%% %%~ Xy~ %o~ |xg- ixe |x3- |X¥- |xe x3- |w¥- |x& (% (%6 (X6 (%€ |u¥-
R - S o SRR R - BB I S SR T L -~ S-SR - L - - S SRS SE " SE TR SE - S B Y

R T o - Lo T £ I L L IO L - T N S o L - I I E T 2 - T T i LS A L ST SO T S = E 1

%e- wP- %St (W9 (- XF (X~ I%¢- %G (%6 %P % (X~ - (%6 (% (%6 X6~ |Ng- %+ ixe- X6 |XP- % %0~ wg- x¥- 3% (%9~ (%@ (%9 |up-
%e- |wg- %S [wg (%9~ %6~ k¢~ %€ %6 %@ |%® %6 |6~ Xy~ |Ng- & %6~ |%6 %6 |%§+ |X& %~ |%6- %Xy~ |%6- |%e- (w6~ %9~ |ml- |x§ %@ %%

%9- [%¥- %@~ (%2 (%% (xl- (%6 1%9- (k& (x¥ (%S (% %@~ % (% % (%€ |xe- %9~ |xs ixe |x¥ X3 (g~ (%% (%@~ |zl %9 X6l (%6 %Ok [%9-
%2 %a msl- mg- %o xl- e iwe- xl- %@ %@ ¥ e~ ¥ %@~ %L % M- x@- %@ fws mF xml x8 Rl %9 ng mN- U ElE@mal s

%6 %S %& (RC %5 xF X6 %€ %k %P %6 %9 %- % % 3% (%p- k2 %k k¢ dxe- %9 k¢ k¢ (xl- wob xd- (Sociisess I ROT N kol
EE I T S R L I T i - I L T SO E T I L S S T SO E T 1 O T - I I SO E T 1 S I T T ™

Kv %S %G w9+ (%9- %8 (%)= IN§ G- %P |6 (%9 %6~ XS~ |N® ww- %6~ |%6 Xp- |w¥r ixge- |xg- |XE- X6~ |x¥- %€ w¥- 6. |md- x& %L %§

%S- %S~ %3 (g~ (%~ (xy- |xe- Ixg (xe x¥ (%% (% (%6~ k¢ %o~ xl- (%6- |xs (X%~ |%g- ixe- (%6~ |X&- |XF- (X6- %% (%G~ (%e- %6 k@ %@ (%L

R S S S L S L B s ST S TR ™ L L L TS T S SR T " SE T S SRS L L T - {RE G (O

%6 %% %& w2 (%5 - (kb %8 xk- &b %F- % X5 % %€ 38 %¢- ke ¢ k2 % k6 (%6 8- % wg- xb- REENEN- kM %6 lug-
%9- %z %e- (RC (%0 (%9~ (k- %0k (1. (%6 (%9 (%0 %6 ke Rl 6 (kv k¢ %0 [x9- 1k x0L k6 (xp- %6 ww (xl

REGINERENN %o w0 w0b (%6 (xel- iweh- ww (%9 %0k (a2 an @Rl e sl ke xel mi- dxs [EIExe xe- lxe aw [xo-

%0b- |%g- %S (w9~ %9~ %% (X6~ %€ %% (%9 |%&- (% X%~ X9~ (%9~ & (%6 ke~ %2~ %6~ (%~ |X6- (X6 g~ (%O~ (W% |x¥- %8l- xo- X0l ROSRM%¥
%L %e- w¥- ®2- X X Xe %@ % %@ %€ %S X6 X8 %P - % X¥ %G x9- ¥~ - X§- me- X wF xy- %@ EEE 0L e e
BRSNS ne ws- R0 (%o (x0l- %5 %9 mM- %0 %5 kb (%6~ %g- %y (%9 ke~ %9 kg %o (k6 k- %y (%0 ak kb 2
[T R O O R T B T T R T T R N A T T TS)

xv- (%S (%6 (WS (%b- (x%- (X6~ %€ G- (%6 (X9 (¥ A¥ X6~ (RS (%G |A¢- X6 |N§- |®§ {x6- | XE- X6~ ¥ %8 Wk (X6 %0 % |%6- |x8- |u¥W
xv- (%S~ (wp- (g~ (% %% (x5 %o~ %6 %%~ (%% (%6~ (A%~ |x¢ (%o~ (x& %6 |xe (% |sg- ixe- |xc- X6 (xe- |x¢- (%G~ |xp %6~ |xs %6 xp- (%l

¢ £ 0z ez ez 1@ |9 |s¢ ve |g¢ @& e oz e @ L 8 & %@ d@ ok . 2 L a5 " B E v

	SCARE of the DES
	1 Introduction
	2 Side-Channel Attacks and the DES
	3 Methods and Goals of SCARE
	3.1 Goals
	3.2 Methods
	Method to obtain scheduling information.
	An example.

	4 Analysis of Our Results
	4.1 Application to the Expansion Table
	4.2 Application to the S-Box Tables
	4.3 Application to the S-Box Outputs
	4.4 Application to the Permutation Table
	4.5 Application to the Key Scheduling
	4.6 Application for Side Channel Attacks

	5 Conclusion
	References
	A A Larger Sample of Experimental Results

