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Abstract. This paper presents a first example of secure identity based
encryption scheme (IBE) without redundancy in the sense of Phan and
Pointcheval. This modification of the Boneh-Franklin IBE is an hybrid
construction that is proved to be secure (using proof techniques bor-
rowed from those for KEM-DEM constructions) in the random oracle
model under a slightly stronger assumption than the original IBE and
turns out to be more efficient at decryption than the latter. A second con-
tribution of this work is to show how to shorten ciphertexts in a recently
proposed multiple-recipient IBE scheme. Our modification of the latter
scheme spares about 1180 bits from a bandwidth point of view as, some-
what surprisingly, redundancies are not needed although all elements
of the ciphertext space are not reachable by the encryption mapping.
This shows that in public key encryption schemes, redundancies may be
useless even when the encryption mapping is not a surjection.
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1 Introduction

Identity based cryptosystems were introduced by Shamir in 1984 [35] in order
to simplify key management and avoid the use of digital certificates by letting
a public key be publicly derivable from a human-memorizable information on
its owner (e-mail address, IP address combined to a user name,...) while the
associated private keys must be computed by a trusted Private Key Generator
(PKG) thanks to a master secret. This paradigm avoids key management prob-
lems arising in traditional public key infrastructures: as long as a public key “is”
its owner’s identity, nothing must be certified except the PKG’s public key and
a single public key per domain is thus needed.

Finding a practical identity based encryption scheme (IBE) remained an
long-standing open challenge until two independent works of Boneh-Franklin
[10] and Cocks [14] which appeared in 2001. Among those solutions, Boneh and
Franklin’s one happens to be the most practical one.

In provable security purposes, motivated by the design of public key encryp-
tion schemes that provably reach the widely admitted required level of security
against adaptive chosen-ciphertext attacks [34] in the random oracle model [6],
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Bellare and Rogaway introduced the notion of plaintext-awareness [7] that cap-
tures the general idea to render a decryption oracle useless by making impossible
the creation of valid ciphertexts by the adversary. As mentioned in [21], several
works [2, 13, 20, 31, 33], gave (knowingly or not) evidence that chosen-ciphertext
security is achievable without plaintext-awareness in the random oracle model.
Among them, salient results of Phan and Pointcheval [31, 33] showed designs
of strongly secure [34] public key encryption schemes for which all ciphertexts
are valid and have a corresponding plaintext. Those results were very recently
extended by a work [13] exhibiting a ‘redundancy-optimal’ generic construction
of IND-CCA secure public key encryption.

Meanwhile, Kurosawa and Matsuo [28] showed how to turn the DHIES [1]
hybrid construction into a redundancy-free encryption scheme in the standard
model (but under the non-standard oracle Diffie-Hellman assumption that ac-
tually looks as strong as the random oracle model) by removing the message
authentication code (MAC) and replacing the IND-CPA symmetric encryp-
tion scheme with an IND-CCA one. Their approach is actually a KEM-DEM
[17, 18, 36] construction that can also be proved secure in the random oracle
model under a more standard assumption in the same way as the oracle Diffie-
Hellman assumption was shown [1] to imply the Gap Diffie-Hellman assumption
[30] in the random oracle model.

The contribution of the present paper is two-fold. We first extend the tech-
nique of Kurosawa and Matsuo to the identity based setting in the random
oracle model and show a hybrid variant of the Boneh-Franklin IBE [10] that
reaches the IND-ID-CCA2 security level (under a slightly stronger assumption)
without introducing redundancies in ciphertexts that are thus shorter than in
the FullIdent scheme of [10]. As a side effect, the decryption operation is more
efficient in the resulting scheme than its counterpart in the fully secure original
IBE [10]. We mention that an independent work [8] of ours recently considered
identity based and certificateless [3] extensions of KEMs. When combined to a
suitable symmetric encryption scheme, the first identity based KEM proposed
in [8] provides a hybrid IBE that is quite similar to ours. However, as explained
in section 3, our variant enjoys a better security reduction in the random oracle
model.

The second contribution of the paper is a method to shorten ciphertexts
produced by a recently proposed [5] multiple-receiver IBE by the size of an RSA
modulus. The modified scheme has the particulary that, although the encryption
function is not surjective, no validity checking must be performed at decryption
and the decryption algorithm never returns any error message.

2 Preliminaries

2.1 Admissible Bilinear Maps

Let k be a security parameter and q be a k−bit prime number. Let us consider
groups G1 and G2 of the same prime order q. For our purposes, we need a bilinear
map e : G1 ×G1 → G2 satisfying the following properties:
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1. Bilinearity: ∀ P, Q ∈ G1, ∀ a, b ∈ Z∗
q , we have e(aP, bQ) = e(P, Q)ab.

2. Non-degeneracy: ∀ P ∈ G1, e(P, Q) = 1 for all Q ∈ G1 iff P = O.
3. Computability: ∀ P, Q ∈ G1, e(P, Q) can be efficiently computed.

As shown in [10], such non-degenerate admissible maps over cyclic groups can
be obtained from the Weil or the Tate pairing over algebraic curves.

2.2 Underlying Hard Problems

This section recalls definitions of underlying hard problems on which the security
of our scheme is shown to rely.

Definition 1. Given groups G1 and G2 of prime order q, a bilinear map e :
G1 ×G1 → G2 and a generator P of G1,

– The Bilinear Diffie-Hellman Problem (BDH) in (G1, G2) is, given ele-
ments 〈P, aP, bP, cP 〉 for unknown a, b, c ∈ Zq, to compute e(P, P )abc ∈ G2.

– The Decision Bilinear Diffie-Hellman Problem (DBDH) is to distin-
guish the distributions D1 := {(P, aP, bP, cP, e(P, P )abc)|a, b, c R← Z∗

q} and
D2 := {(P, aP, bP, cP, h)|a, b, c R← Z∗

q , h R← G2}. Tuples from D1 are denoted
as “BDH tuples” in the sequel in contrast to those from D2 which will be
called “random tuples” .

– The Gap Bilinear Diffie-Hellman Problem (Gap-BDH) in (G1, G2)
consists of, given 〈P, aP, bP, cP 〉, to compute e(P, P )abc with the help of a
DBDH oracle.

The security of the schemes presented in this paper relies on the Gap-BDH
assumption which is the intractability of the latter problem.

2.3 Definition of IBE

We recall here the formalism introduced in [10] for identity based encryption.
Such a primitive consists of the following algorithms.

Setup: is a probabilistic algorithm run by a private key generator (PKG) that
takes as input a security parameter to output a public/private key pair
(Ppub, mk) for the PKG (Ppub is its public key and mk is its master key that
is kept secret).

Keygen: is a key generation algorithm run by the PKG on input of a master
key mk and a user’s identity ID to return the user’s private key dID.

Encrypt: this probabilistic algorithm takes as input a plaintext M, a recipient’s
identity ID and the PKG’s public key Ppub to output a ciphertext C.

Decrypt: is a deterministic decryption algorithm that takes as input a cipher-
text C and the private decryption key dID to return a plaintext M or a
distinguished symbol ⊥ if C is not a valid ciphertext.

In sections 3 and 4, we shall use the above definition with the restriction that
the decryption algorithm never outputs a rejection message.
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2.4 Security Notions

Definition 2. An identity based encryption scheme (IBE) is said to be adap-
tively chosen-ciphertext secure (IND-ID-CCA2) if no probabilistic polyno-
mial time (PPT) adversary has a non-negligible advantage in the following game.

1. The challenger runs the Setup algorithm on input of a security parameter k
and sends the domain-wide parameters to the cca-adversary A.

2. In a find stage, A starts probing the following oracles:
• Key extraction oracle: given an identity ID, it returns the extracted pri-

vate key associated to it.
• Decryption oracle: given an identity ID ∈ {0, 1}∗ and a ciphertext C,

it generates the private key dID associated to ID and returns a plaintext
M ∈ M or (optionally, in schemes where ciphertexts may be invalid) a
distinguished symbol ⊥ indicating an ill-formed ciphertext.

A can present her queries adaptively in the sense that each query may depend
on the answer to previous ones.

3. A produces two equal-length plaintexts M0, M1 ∈ M and a target identity
ID∗ for which she has not corrupted the private key in stage 2.

4. The challenger computes C = Encrypt(Mb, ID
∗), for a random hidden bit

b R← {0, 1}, which is sent to A.
5. In the guess stage, A asks new queries as in the find stage but is restricted

not to issue a key extraction request on the target identity ID∗ and cannot
submit C to the decryption/verification oracle for the identity ID∗.

6. A eventually outputs a bit b′ and wins if b′ = b.

A’s advantage is defined as Adv(A) := |2× Pr[b′ = b]− 1|.
As the modification of DHIES presented in [28], our hybrid modification of the
Boneh-Franklin IBE [10] makes use of a symmetric cipher (i.e. a deterministic
length-preserving symmetric encryption scheme) that is chosen-ciphertext secure
in the find-then-guess sense instead of one that only withstands passive attacks
as required by the Fujisaki-Okamoto transform [23].

Recall that a symmetric encryption scheme is a triple of algorithms SE =
(K, E, D). The key generation algorithm K generates a key k R← {0, 1}λ for a
security parameter λ. The encryption algorithm E takes a key k and a plaintext
m to produce a ciphertext c = E(k, m) while the decryption algorithm takes
a key k and a ciphertext c to return m/reject = D(k, c). In the definition of
chosen-ciphertext security for symmetric encryption schemes, the adversary can
query a decryption oracle D(k, .) as well as an encryption oracle E(k, .). We
recall below a security notion for ciphers that is considered in [32] and [28].

Definition 3. A symmetric cipher (E, D) is secure in the IND-CCA sense if
no PPT adversary A has a non negligible advantage in the following game:

1. The challenger chooses a key k R← {0, 1}λ.
2. A queries the encryption oracle E(k, .) and the decryption oracle D(k, .).
2. A outputs (m0, m1) that were not submitted to E(k, .) (which is determinis-

tic) or obtained from D(k, .) and gets c∗ = E(k, mb) for b R← {0, 1}.
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3. A issues new queries1 as in step 2 but is disallowed to ask for the decryption
of c∗ and the encryptions of m0 and m1.

4. A eventually outputs a guess b′ for b.

As usual, her advantage is Advsym(A) := |2× Pr[b′ = b]− 1|.
The modes of operations CMC [25] and EME [26] are both length preserving
and they were shown to be secure in the sense of IND-CCA if the underlying
block cipher is a strong pseudo-random permutation.

3 A Modification of the Boneh-Franklin IBE

This section presents a secure modification of the Boneh-Franklin IBE that is
(almost) as efficient as its basic version (that is only secure against chosen-
plaintext attacks and was called BasicIdent in [10]) while the original fully secure
version of IBE (that was called FullIdent) has computational and bandwidth
overheads induced by the application of the Fujisaki-Okamoto transform [23].
The new scheme, that we call Hybrid-IBE, produces shorter ciphertexts than the
original FullIdent while it is slightly more efficient for the receiver who does not
have to compute a scalar multiplication in G1 upon decryption.

We have to mention that other transformations such as REACT [29] or GEM
[16] could be applied to BasicIdent or to some of its variants to turn them into
fully secure identity based encryption schemes without requiring the receiver to

Setup: given security parameters k and λ so that λ is polynomial in k, this algo-
rithm chooses a k-bit prime number q, groups G1, G2 of order q, a generator
P ∈ G1, a bilinear map e : G1 ×G1 → G2, hash functions H1 : {0, 1}∗ → G1,
H2 : G

2
1 ×G2 → {0, 1}λ, as well as a chosen-ciphertext secure cipher (E,D) of

keylength λ. It finally picks a master key mk := s R← Z
∗
q and the corresponding

public key Ppub := sP ∈ G1. The system-wide public key is

params := {q, G1, G2, P, Ppub, e, H1, H2, G, n, E, D, λ, l}
where n denotes a bound on the size of plaintexts.

Keygen: given an user’s identity ID ∈ {0, 1}∗, the PKG computes QID =
H1(ID) ∈ G1 and returns a private key dID = sQID ∈ G1.

Encrypt: to encrypt a message M using Ppub and an identity ID ∈ {0, 1}∗,
compute QID = H1(ID) ∈ G1, pick a random r R← Z

∗
q and output the ciphertext

C = 〈rP, ESK(M)〉
where SK = H2(QID, rP, e(Ppub, QID)r) ∈ {0, 1}λ

Decrypt: upon receiving a ciphertext C = 〈A, B〉 ∈ G1 × {0, 1}n, the recipient
returns M = DSK(B) where SK = H2(QID, A, e(A,dID)) ∈ {0, 1}λ.

Fig. 1. Hybrid-IBE

1 Phan and Pointcheval showed in [32] that post-challenge queries are not of a signif-
icant additional help to adversaries.
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perform a re-encryption in validity checking concerns. Unfortunately, these trans-
formations should be applied to a OW-PCA2 variant of BasicIdent for which a
part of the ciphertext is obtained by multiplying the message with a G2 element.
As those elements have a representation of at least 1024 bits for recommended
parameters (see [10] or [11] for details), ciphertexts would be significantly longer
than in our scheme. On the other hand, redundancy-free IBE schemes may also
be obtained with the OAEP 3-round generic construction [33] but the security
could only be proved in a relaxation of the security model of definition 2 and
ciphertexts would also be longer than those of Hybrid-IBE. The security of the
latter is claimed by the theorem below.

Theorem 1. Let us assume that an IND-ID-CCA2 adversary A has an advan-
tage ε against Hybrid-IBE when running in a time τ , asking qhi queries to oracles
hi (i = 1, 2), qD decryption queries and qKE key extraction queries. Then, for
any 0 ≤ ν ≤ ε, there either exists

– a PPT algorithm B to solve the Gap-BDH problem with an advantage

ε′ ≥ 1
e(qKE + 1)

(
ε− qD

2k
− ν

)

within time τ ′ ≤ τ + (qh1 + qKE)τmult + qDτsym + qh2Φ
– an attacker that breaks the IND-CCA security of the symmetric encryption

scheme (E, D) with advantage ν within a time τ ′

where e is the base of the natural logarithm, τmult is the cost of a multiplication in
G1 while τsym and Φ respectively denote the complexity of a symmetric decryption
and the one of a call to the decision oracle.

Proof. Let (aP, bP, cP,ODBDH) be an instance of the Gap-BDH problem where
ODBDH(.) is a decision3 oracle that, on input (P, aP, bP, cP, ω), answers 1 if
ω = e(P, P )abc and 0 otherwise. We describe an algorithm B using A and the
latter oracle to compute e(P, P )abc.

Algorithm B initializes A with the system-wide public key Ppub = aP and
simulates the adversary’s view as explained below. Wlog, we assume that H1

queries on identities are distinct (otherwise, a list may be used to store inputs
and responses) and that any key extraction, decryption or H2 query involving
an identity is preceded by a H1 query on the same identity.

– H1 queries: for such a query on an identity ID, B flips a bit coin ∈ {0, 1}
taking the value 0 with probability ξ and the value 1 with probability 1− ξ.
If coin = 0, B returns uP ∈ G1 for some u R← Z

∗
q and it answers u(bP ) ∈ G1

if coin = 1. In both cases, a triple (ID, u, coin) is stored in a list L1.
2 More precisely, this notion would be an identity based flavored extension of the One-

Wayness against Plaintext-Checking Attacks characterizing schemes that remain
computationally one-way even in the presence of an oracle deciding whether a given
ciphertext encrypts a given message. See [29] for a more formal definition.

3 In fact, it is a restricted decision oracle as some of its inputs (namely P and aP ∈ G1)
do not change between all queries. The actual assumption is thus slightly weaker than
the Gap-BDH one for which additional degrees of freedom are enabled in queries to
the DBDH oracle.
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– Private key queries: when the private key associated to an identity ID ∈
{0, 1}∗ is requested, B recovers the entry (ID, u, coin) from L1. If coin = 1,
B aborts since it is unable to coherently answer the query. Otherwise, it
returns uPpub as a private key.

– Queries to H2(.): according to a proof technique already used in [17, 18, 36]
for KEMs, these queries are processed using three lists L2,a, L2,b and L2,c

which are initially empty:
• L2,a contains triples (QIDi , Ai, ωi) to which a hash value was previously

assigned and the corresponding digest h2,i ∈ {0, 1}λ.
• L2,b contains triples (QIDi

, Ai, ωi) such that (QIDi
, Ai, ωi, h2,i) exists in

L2,a for h2,i ∈R {0, 1}λ and ODBDH(P, QIDi
, Ai, Ppub, ωi) = 1.

• L2,c will contain triples (QIDi
, Ai, h2,i) for which B has implicitly assigned

a value h2,i
R← {0, 1}λ to H2(QIDi

, Ai, ωi) although the value ωi such that
ODBDH(P, QIDi

, Ai, Ppub, ωi) = 1 is unknown.
More precisely, when A submits a triple (QID, A, ω) to H2(.),
• B first checks if L2,a contains a tuple (QID, A, ω, h2) for some h2 ∈ {0, 1}λ

(meaning the a hash value was previously assigned to the same input).
If it does, h2 is returned to A.

• Otherwise, B submits (P, QID, A, Ppub, ω) to the ODBDH(.) oracle which
decides whether it is a valid BDH tuple.
∗ If it is, then:
· If A = cP and coin = 1 (i.e. H1(ID) was defined to be u(bP )), B

halts and outputs ω1/u which is the searched solution. We denote
by AskH2 the event that such a hash query is made .
· Otherwise, B continues and adds (QID, A, ω) in L2,b.
· If L2,c contains an entry (QID, A, h2) for some h2 ∈ {0, 1}λ, the

tuple (QID, A, ω, h2) is stored in L2,a and h2 is returned to A.
Otherwise, B continues.

∗ It selects a string h2
R← {0, 1}λ, inserts the tuple (QID, A, ω, h2) into

L2,a and answers h2 to A.
– Decryption queries: upon receiving a ciphertext C = 〈A, B〉 ∈ G1 × {0, 1}n

and an identity ID, the simulator B does the following:
• it checks if (QID, A, ω) exists in L2,b for some ω ∈ G2. If it does, B

retrieves the tuple (QID, A, ω, h2) that must be in L2,a and returns the
symmetric decryption Dh2(B) of B using h2 ∈ {0, 1}λ as a symmetric
key. Otherwise, it continues.

• It tests whether L2,c contains a triple (QID, A, h2) for some string h2 ∈
{0, 1}λ. In this case, the latter is used to compute a symmetric decryption
Dh2(B) that is returned as a result. Otherwise, a random h2

R← {0, 1}λ is
chosen and (QID, A, h2) is inserted into L2,c (B thereby implicitly assigns
the hash value h2 to the oracle H2 on the unique input (QID, A, ω) for
which ODBDH(P, QID, A, Ppub, ω) = 1 although the relevant ω ∈ G2 is
still unknown) while Dh2(B) is returned to A.

After the find stage, A comes with messages M0, M1 ∈ {0, 1}n and a target
identity ID∗. Let (ID∗, u∗, coin∗) be the corresponding entry in L1. If coin∗ = 0,
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B aborts and reports “failure” because, in such a situation, A is of no help in B’s
endeavour. Otherwise, it sets A∗ = cP ∈ G1, checks whether L2,c contains an
entry (QID∗ , A∗, h∗

2) for QID∗ = h1(ID∗) and some h∗
2 ∈ {0, 1}λ (if not, B inserts

it for a string h2
R← {0, 1}λ of its choice) to compute a symmetric encryption

B∗ = Eh∗
2
(Md), for d R← {0, 1}, and return the challenge C∗ = 〈A∗, B∗〉. In

the unlikely event (its probability is less than qD/2k) that C∗ was previously
submitted to the decryption oracle for the identity ID∗, B aborts.

At the second stage, B processes all queries as above and A eventually pro-
duces a bit d′. In a real game, we have Pr[d′ = d] = (ε + 1)/2 and, provided the
simulation is perfect, the latter equality still holds as A’s view is indistinguish-
able from a real environment. It can be showed that the simulation is imperfect
with a probability smaller than e−1(qKE +1)−1(1−qD/2k). Indeed, let us define
the following events:

E1: B does not abort as a result of a private key extraction query.
E2: B does not abort during the challenge phase because A chooses a target

identity ID∗ for which coin∗ = 0.
E3: B does not fail because the constructed challenge C∗ was previously queried

to the decryption oracle for the identity ID∗.

Those events are independent. We observed that Pr[E3] ≥ 1 − qD/2k. We also
have Pr[E1] = (1 − 1/(qKE + 1))qKE ≥ 1/e (as shown in the proof technique of
[15]) and Pr[E2] = 1/(qKE + 1). It comes that if Fail = ¬E1 ∨ ¬E2 ∨ ¬E3, we
have Pr[¬Fail] = e−1(qKE + 1)−1(1− qD/2k).

On the other hand, if AskH2 does not occur and thus if A never makes
the relevant h2(QID∗ , A∗, ω∗) query during the game, the only way for her to
produce a correct guess for d is to succeed in a chosen-ciphertext attack against
the symmetric cipher (E, D): indeed, in the latter case, each decryption query on
a ciphertext C′ = (A∗, B), with B �= B∗, for the target identity ID∗ corresponds
to a symmetric decryption request for a completely random key SK∗. It follows
that, if (E, D) is a chosen-ciphertext secure symmetric encryption scheme, the
event AskH2 is very likely to happen and B is able to extract the Gap-BDH
solution.

More formally, for any event E, if we denote by pr[E] the conditional prob-
ability Pr[E|¬Fail], we have

pr[d′ = d] = pr[d′ = d|AskH2]pr[AskH2] + pr[d′ = d|¬AskH2]pr[¬AskH2]
≤ pr[AskH2] + pr[d′ = d|¬AskH2](1− pr[AskH2])

and, since pr[d′ = d] = (ε + 1)/2 and pr[d′ = d|¬AskH2] ≤ (ν + 1)/2, it comes
that

ε + 1
2
≤ ν + 1

2
+

1− ν

2
pr[AskH2] ≤ ν + 1

2
+

1
2
pr[AskH2]

and hence pr[AskH2] ≥ ε− ν. When going back to non-conditional probabilities,
we find the announced lower bound

Pr[AskH2 ∧ ¬Fail] ≥ 1
e(qKE + 1)

(
1− qD2−k

)(
ε− ν

)
>

1
e(qKE + 1)

(
ε− qD

2k
− ν

)

on B’s probability of success. ��
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The reason for which the symmetric encryption key is computed using a hash
function taking U and QID among its input is that it provides us with a more
efficient reduction: the security of the scheme can still be proved if the symmetric
key is derived from the sole bilinear Diffie-Hellman key but the reduction then
involves qDqH2 calls to the decision oracle. A similar observation was made by
Cramer and Shoup [17] in their security proof of the Hashed El Gamal KEM.

The reduction given in theorem 1 is more efficient than the one obtained from
the BDH assumption through the Fujisaki-Okamoto tranform [23] in the original
IBE. Although our proof relies on a stronger assumption, we believe that this
is a fact of interest because a tight reduction from a given assumption should
always be preferred to a loose reduction from a potentially weaker assumption as
argued in [27]. On the other hand, the Gap-BDH assumption does not appear as
a much stronger assumption than the (already non-standard) BDH assumption.

Interestingly, if we compare our security reduction for Hybrid-IBE with the
one of Galindo [24] for another variant of the Boneh-Franklin IBE obtained
through the first Fujisaki-Okamoto transform [22], we find that ours is as effi-
cient as Galindo’s one (which relies on the DBDH assumption) but our Hybrid
construction happens to be more efficient (as no re-encryption is needed for the
receiver) and produces shorter ciphertexts thanks to the absence of redundancy.

As for Galindo’s variant [24], an essentially optimal reduction can be obtained
for Hybrid-IBE by applying a trick suggested in [27] at the cost of an additional
pairing computation at encryption. We also mention that a similar technique
can be applied to a variant of a certificateless encryption scheme [3] proposed
in [4].

4 Shortening Ciphertexts in the Multiple-Receiver Case

A recent result [5] of Baek, Safavi-Naini and Susilo showed how to efficiently
encrypt a message intended to N distinct recipients from their identities with-
out having to compute more than one pairing. The security of their scheme in
the selective-ID model considered in [12] and [9] (that is, the attacker has to an-
nounce the set of identities it intends to attack at the beginning of the game even
before seeing the master-key of the scheme) was shown to rely on the Gap-BDH
assumption and was obtained through the REACT transformation.

It is not hard to see that the construction we used in the previous section
can also help to shorten the ciphertexts produced by the single-recipient version
of the latter scheme since, in the same way as the use of an IND-CCA cipher
instead of an IND-CPA one allows removing the message authentication code
(MAC) from the DHIES construction [1] as shown in [28], it also allows removing
the checksum from REACT (so that the resulting construction produces as short
ciphertexts as the GEM conversion).

Interestingly, the same trick applies to the multiple-receiver case considered
in [5] if we accept a loss of efficiency in the security reduction. The latter then
involves a number of calls to the decision oracle that depends on the square of
the number of adversarial queries. We thus believe the resulting hybrid multiple-
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recipient scheme (called Hybrid-IBE2 and depicted on figure 2) to be of interest
because of its ciphertexts which are about 1184 bits shorter than in [5] as no
checksum is needed and there is no need to encode a part of ciphertext as a G2

element.

4.1 The Selective-ID Security Model for Multiple-Receiver Schemes

The formal definition [5] of a multiple-receiver IBE scheme is identical to the
definition of section 2.3 with two essential syntactic differences. First, the en-
cryption algorithm takes as inputs a message M , system-wide parameters params
and several identities (ID1, . . . , IDt) to produce an encryption C of M under
(ID1, . . . , IDt). Secondly, the decryption algorithm is given a ciphertext C to-
gether with a receiver number i ∈ {1, . . . , t} and the associated private key dIDi

and returns either a plaintext or a rejection message ⊥. In the scheme described
in this section, a ciphertext is never rejected.

Similarly to the authors of [5], we establish the security of our multiple-
receiver construction in the selective-ID model recalled in the next definition.
The reason for this is that, as in [5], a security reduction in the strongest model
(where target identities are adaptively chosen) involves a loss of concrete security
which is exponential in the number of receivers.

Definition 4 ([5]). A multiple-receiver IBE scheme is said to be selective-ID
secure against chosen-ciphertext attacks (or IND-sMID-CCA secure) if no PPT
adversary has a non-negligible advantage in the game below.

1. The attacker A outputs a set of target identities (ID∗
1, . . . , ID

∗
t ).

2. The challenger CH runs the setup algorithm, transmits the public parameters
params to A and keeps the master key mk to itself.

3. A issues a number of key extraction queries (as in definition 2) for identities
ID �= ID∗

1, . . . , ID
∗
t and decryption queries, each of which is denoted by (C, IDi)

for some i ∈ {1, . . . , t}.
4. A produces messages (M0, M1) and obtains a challenge ciphertext C∗ =

Encrypt(Mb, params, ID∗
1, . . . , ID

∗
t ), for a random bit b R← {0, 1}, from CH.

5. A issues new queries with the same restriction as in step 3. Additionally,
she is disallowed to ask for the decryption of C∗ for any one of the target
identities (ID∗

1, . . . , ID
∗
t ).

6. A outputs a bit b′ ∈ {0, 1} and wins if b′ = b. Her advantage is again
Adv(A) = |2× Pr[b′ = b]− 1|.

4.2 The Scheme

A strange feature of Hybrid-IBE2 is that, unlike Hybrid-IBE, it is not a pub-
lic key encryption scheme without redundancy in the strict sense of [31] and
[33]. Indeed, in the simplest single-recipient scenario, elements 〈U, V, W 〉 of the
ciphertext space for which logP (U) �= logQID+Q(V ) can never be reached by a
correct application of the encryption function and thus do not correspond to
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Setup: given security parameters k and λ, this algorithm selects a k-bit prime q,
groups G1, G2 of order q, a generator P ∈ G1, a bilinear map e : G1×G1 → G2,
hash functions H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → {0, 1}λ and an IND-CCA

cipher (E,D) of keylength λ. It also picks Q R← G1, a master key mk := s R← Z
∗
q

and the public key is (Ppub := sP, Q). The public parameters are

params := {q, G1, G2, P, Q,Ppub, e,H1, H2, n, E, D, λ}
where n denotes a bound on the size of plaintexts.

Keygen is the same as in Hybrid-IBE.
Encrypt: to encrypt a message M under the system-wide public key Ppub

for identities ID1, . . . , IDt ∈ {0, 1}∗, compute QIDi = H1(IDi) ∈ G1 for

i = 1, . . . , t, pick a random r R← Z
∗
q and output the ciphertext

C = 〈U,V1, . . . , Vt, W,L〉 = 〈rP, rQID1 + rQ, . . . , rQIDt + rQ, ESK(M),L〉
where SK = H2(U, V1, . . . , Vt,L, ω) ∈ {0, 1}λ with ω = e(Ppub, Q)r and L is
a label indicating how each part of ciphertext is associated to each receiver.

Decrypt: given C = 〈U,V1, . . . , Vt, W,L〉 ∈ G
t+1

1 × {0, 1}n and his private key
dIDi = sQIDi , receiver i ∈ {1, . . . , t} computes ω = e(Ppub, Vi)/e(U, dIDi) and
returns M = DSK(W ) where SK = H2(U, V1, . . . , Vt,L, ω) ∈ {0, 1}λ.

Fig. 2. Hybrid-IBE2

any plaintext. Nevertheless, the decryption oracle never returns an error mes-
sage indicating a badly formed ciphertext and the receiver does not have to
perform a validity checking (that could be made here by solving a DDH problem
in G1) when decrypting a ciphertext. In any case, for an input 〈U, V, W 〉, the
decryption algorithm returns a symmetric decryption of W using a hash value
of e(Ppub, V )/e(U, dID) and other ciphertext components (it is essential to in-
clude them among the inputs of H2 to prevent the scheme from being malleable)
as a symmetric key so that inconsistent ciphertexts are decrypted into random
messages but consistently encrypted messages are always correctly decrypted.

From a security point of view, theorem 2 shows that ill-formed ciphertexts
do not have to be detected and that their existence does not induce security
concerns: in the security proof, the simulator is always able to provide an attacker
with a perfectly consistent emulation of the decryption oracle thanks to the
power of the decision oracle. This result shows that the existence of incorrectly
formed ciphertexts does not necessarily require the recipient to perform a validity
checking for chosen-ciphertext security purposes.

Theorem 2. Let A be an adversary having an advantage ε against the IND-
sMID-CCA2 security of Hybrid-IBE2 when running in a time τ , making qHi

queries to random oracles Hi (i = 1, 2), qD decryption queries and qKE private
key extraction queries. Then, for any 0 ≤ ν ≤ ε, there either exists

– a PPT algorithm B to solve the Gap-BDH problem with an advantage

ε′ ≥ ε− ν − qD

2k

within time τ ′ ≤ τ + (qH1 + qKE)τmult + (2qD + 1)qH2Φ + qD(τsym + τp)
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– an attacker that breaks the IND-CCA security of the symmetric encryption
scheme (E, D) with an advantage ν within a time τ ′

where τmult is the time to perform a multiplication in G1, τsym denotes the
cost of a symmetric decryption, τp the cost of a pairing evaluation and Φ the
complexity of a call to the decision oracle.

Proof. Given an instance (aP, bP, cP,ODBDH ) of the Gap-BDH problem, B
launches the adversary A who first announces the set of identities (ID∗

1, . . . , ID
∗
t )

that she intends to attack. She then obtains the domain-public key (Ppub =
aP, Q = bP ) from B that simulates her view as follows.

– queries H1(IDi): B draws li
R← Z∗

q . If IDi = ID∗
j for some j ∈ {1, . . . , t},

B returns liP − Q. Otherwise, it responds with liP (so that the associated
private key dIDi

= li(aP ) is always computable).

H2(.) queries and decryption queries are handled using two lists L2 and L′
2 which

are initially empty.

– For decryption queries on a ciphertext C = 〈U, V1, . . . , Vt, W,L〉 for an iden-
tity IDi and a receiver number i ∈ {1, . . . , t}, the simulator’s strategy is to
always return a symmetric decryption of W under a symmetric key that
appears (or will subsequently appear) to A as a hash value of the tuple

(U, V1, . . . , Vt,L, e(Ppub, Vi)/e(U, dIDi))

according to the specification of the decryption algorithm under recipient
i’s private key dIDi

. To do so, B first retrieves QIDi
= H1(IDi) ∈ G1 and

then searches list L2 for entries of the form (U, V1, . . . , Vt,L, ωj , κj) for pairs
(ωj , κj) ∈ G2 × {0, 1}λ indexed by j ∈ {1, . . . , qh2}.
• For each one of such entries, B checks whether

ODBDH(P, QID, U, Ppub, e(Ppub, Vi)/ωj) = 1

(meaning that ωj = e(Ppub, Vi)/e(U, dIDi
)). If the unique ω ∈ G2 satisfy-

ing the latter relation is found, B uses the corresponding κ to compute
M = Dκ(W ) and return the result to A.

• If no entry of L2 satisfies the above condition, B draws κ R← {0, 1}λ, stores
the information (U, V1, . . . , Vt,L, ?, κ, e(Ppub, Vi), QIDi), where ? denotes
an unknown G2 element, into L′

2 and returns M = Dκ(W ) as a plaintext.
– H2(.) queries: for such a query on an input (U, V1, . . . , Vt,L, ω), B halts

and outputs ω as a result if ODBDH(P, aP, bP, cP, ω) = 1. Otherwise, it
first checks whether H2 was previously defined for that input. If so, the
previously defined value is returned. Otherwise, B checks if the auxiliary list
L′

2 contains an entry of the form (U, V1, . . . , Vt,L, ?, κ, γ, QIDi
) for some pair

(κ, γ) ∈ {0, 1}λ ×G2 and some QIDi
∈ G1.
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• If it does, B checks if ODBDH(P, QIDi
, U, Ppub, γ/ω) = 1 for each one of

such triples (κ, γ, QIDi). If the decision oracle positively answers for one
of them, the corresponding κ is returned as a hash value.

• Otherwise, B returns a randomly sampled string κ R← {0, 1}λ
In both case, B stores the information (U, V1, . . . , Vt,L, ω, κ) in L2.

In the challenge step, A produces messages M0, M1 ∈ {0, 1}n. The simulator
B computes U∗ = cP, V ∗

1 = l∗1(cP ), . . . , V ∗
t = l∗t (cP ) and the corresponding

label L∗ where l∗1 , . . . , l
∗
t ∈ Z

∗
q are finite field elements for which H1(ID∗

j ) =
l∗j P − Q for j ∈ {1, . . . , t}. It then chooses a random κ∗ R← {0, 1}λ and com-
putes W ∗ = Eκ∗(Md) for d R← {0, 1}. The challenge ciphertext is set to C∗ =
〈U∗, V ∗

1 , . . . , V ∗
t , W ∗,L∗〉. In the unlikely event (its probability is less than qD/2k)

that C∗ was queried to the decryption oracle at the find stage, B aborts.
All queries of the guess stage are processed as in the find stage and A even-

tually produces a bit d′. From a similar analysis to the one of theorem 1, we
find that the relevant query H2(U∗, V ∗

1 , . . . , V ∗
t ,L∗, ω∗), where ω∗ = e(P, P )abc

is very likely to be made by A during the simulation. The Gap-BDH solution
can thus be detected when handling H2(.) queries. ��

5 Another Way to Avoid the Re-encryption in IBE

This section presents an alternative method to achieve the chosen-ciphertext
security in the original IBE system [10] without requiring a re-encryption for
validity checking upon decryption and without having to encode of piece of ci-
phertext as a long G2 element. This method introduces a minimal amount of
redundancies in ciphertexts (only 160 additional bits are needed w.r.t to Ba-
sicIdent) and is actually an extension of a construction originally designed by
Bellare and Rogaway [6] for trapdoor permutations. Recall that this construc-
tion produces ciphertexts of the form E(m, r) = 〈f(r), m⊕G(r), H(m, r)〉, where
r denotes a random coin, f is a trapdoor permutation and G, H are random or-
acles. Actually, this construction (that was previously generalized into a generic
conversion in [29]) can be instantiated with more general number theoretic prim-
itives. For example, it can be applied to the El Gamal [19] cryptosystem and
to the Boneh-Franklin identity based encryption scheme. The resulting scheme
is called XBR-IBE (as a shorthand for eXtended Bellare-Rogaway like IBE) and
depicted on figure 3.

As for the schemes described in the previous sections, the security relies on
the Gap-BDH assumption. The security proof is omitted here because of space
limitation but will be given in the full version of this paper.

Theorem 3. If an IND-ID-CCA2 adversary A has advantage ε against XBR-
IBE in a time τ when asking qhi queries to oracles hi (i = 1, 2, 3), qD decryption
queries and qKE private key queries, then a PPT algorithm B can solve the
Gap-BDH problem with an advantage ε′ ≥ (e(qKE +1))−1(ε− qD

2k−1 ) within time
τ ′ ≤ τ + (qh1 + qKE)τmult + 2(qh2 + qh3)Φ where τmult is the cost of a scalar
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Setup: is the same as in Hybrid-IBE except that no cipher is needed and hash func-
tions are H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → {0, 1}k1 and H3 : G2 → {0, 1}n
where n still denotes the size of plaintexts and k1 is a security parameter
which is polynomial in k = log(|G1|).

Keygen is the same as in Hybrid-IBE and Hybrid-IBE2.
Encrypt: to encrypt a message M using an identity ID ∈ {0, 1}∗, compute QID =

H1(ID) ∈ G1, pick a random r R← Z
∗
q and output the ciphertext

C =
〈
rP, m⊕H3(g

r
ID), H2(m||rP ||ID||gr

ID)
〉

where gID = e(Ppub, QID) ∈ G2.
Decrypt: given C = 〈U, V, W 〉, compute ω = e(U, dID) and m = V ⊕ H3(ω) ∈
{0, 1}n. Output m ∈ {0, 1}n if W = H2(m||U ||ID||ω) and ⊥ otherwise.

Fig. 3. XBR-IBE

multiplication in G1, Φ denotes the cost of a call to the DBDH oralce and e is
the base of the natural logarithm.

Interestingly, a similar method also applies to Baek et al.’s multiple-receiver
scheme [5] and yields shorter ciphertexts (about 1024 bits are spared) which
have the form 〈rP, V1, . . . , Vt, m ⊕ H3(ω), H2(m, rP, V1, . . . , Vt,L, ω),L〉 where
Vi = rH1(IDi) + rQ for i = 1, . . . , t, ω = e(Ppub, Q)r and the label L contains
receivers’identities ID1, . . . , IDt. The security of this second multiple-receiver
scheme still relies the Gap-BDH assumption.

6 Conclusion

We presented two methods to avoid the re-encryption in chosen-ciphertext se-
cure IBE systems. Among those methods, the hybrid construction yields more
compact ciphertexts thanks to the absence of redundancies. We also explained
how to shorten ciphertexts produced by a multiple-receiver IBE scheme. We
finally gave an example of secure public key encryption scheme for which no
validity checking is needed at decryption although the encryption mapping is
not surjective.
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