
Efficient and Leakage-Resilient Authenticated
Key Transport Protocol Based on RSA

SeongHan Shin, Kazukuni Kobara, and Hideki Imai

Institute of Industrial Science, The University of Tokyo,
4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

shinsh@imailab.iis.u-tokyo.ac.jp, {kobara,imai}@iis.u-tokyo.ac.jp
http://imailab-www.iis.u-tokyo.ac.jp/imailab.html

Abstract. Let us consider the following situation: (1) a client, who com-
municates with a variety of servers, remembers only one password and
has insecure devices with very-restricted computing power and built-in
memory capacity; (2) the counterpart servers have enormous computing
power, but they are not perfectly secure; (3) neither PKI (Public Key
Infrastructures) nor TRM (Tamper-Resistant Modules) is available.
Our main goal of this paper is to provide its security against the leakage of
stored secrets as well as to attain high efficiency on client’s side. For those,
we propose an efficient and leakage-resilient RSA-based Authenticated
Key Establishment (RSA-AKE) protocol suitable for the above situation
whose authenticity is based on password and an additional stored secret.
The RSA-AKE protocol is provably secure in the random oracle model
where an adversary is given the stored secret of client and the RSA
private key of server. In terms of computation costs, the client is required
to compute only one modular exponentiation with an exponent e (e ≥ 3)
in the protocol execution. We also show that the RSA-AKE protocol has
several security properties and efficiency over the previous ones of their
kinds.

1 Introduction

Since the discovery of public-key cryptography by Diffie and Hellman [7], one of
the most important research topics is to design a practical and provably secure
protocol for realizing secure channels. In the 2-party setting (e.g., a client and a
server), this can be achieved by an authenticated key establishment (AKE) pro-
tocol at the end of which the two parties share a common session key to be used
for subsequent cryptographic algorithms. Typically, for mutual authentication it
requires some information that can be a (high-entropy) secret key (e.g., [4, 19])
to be shared between the parties or a private key corresponding to a public key
(e.g., [8, 19, 20]) owned by the parties.

In practice, the high-entropy keys may be substituted by human-memorable
passwords chosen from a relatively small dictionary size. Owing to the usability
of passwords, password-based AKE protocols have been extensively investigated
where a client remembers a short password and the corresponding server holds

J. Ioannidis, A. Keromytis, and M.Yung (Eds.): ACNS 2005, LNCS 3531, pp. 269–284, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

270 SeongHan Shin, Kazukuni Kobara, and Hideki Imai

the password or its verification data. However, there are existing two major
attacks on passwords: on-line and off-line dictionary attacks. The on-line dic-
tionary attack is a series of exhaustive search for a secret performed on-line,
so that an adversary can sieve out possible secret candidates one by one com-
municating with the target party. In contrast, the off-line dictionary attack is
performed off-line massively in parallel by simply guessing a secret and verifying
the guessed secret with recorded transcripts of a protocol. While on-line attacks
are applicable to all of the password-based protocols equally, they can be pre-
vented by letting a server take appropriate intervals between invalid trials. But,
we cannot avoid off-line attacks by such policies, mainly because the attacks
can be performed off-line and independently of the server, resulting in many
password-based protocols insecure [21].

At first sight, it seems paradoxical to design a secure AKE protocol with
passwords. For that, Bellovin and Merritt opened the door by showing that
a combination of symmetric and asymmetric (public-key) cryptographic tech-
niques can provide insufficient information for an adversary to verify a guessed
password and thus defeats off-line dictionary attacks [1]. By asymmetric cryp-
tographic techniques, we can roughly divide AKE protocols into two categories:
authenticated key agreement (e.g., incorporating the Diffie-Hellman protocol)
and authenticated key transport (e.g., using RSA) ones. When it comes to the
lower-power computing devices (especially, on client’s side), RSA-based AKE
protocols would be preferable to the Diffie-Hellman based ones since with an en-
cryption exponent e to be a small prime (e.g., e = 3) the computation costs will
be drastically decreased. In the next section, we revisit the previous AKE pro-
tocols (using password and RSA) from a point of view of how much the leakage
of stored secrets affect on its security of each protocol.

1.1 Previous Works

Bellovin and Merritt first proposed Encrypted Key Exchange (EKE) protocols
(including the RSA-based EKE) in [1] that was very influential and became the
basis for what we call Password-Authenticated Key Exchange (PAKE) proto-
cols1. In PAKE protocols, a client is required to remember his/her password
only (without any device) whereas the counterpart server has its verification
data that should be stored securely. In other words, if the stored secret (or,
password verification data) of the server is leaked out, the password eventually
can be retrieved through off-line dictionary attacks, simply by verifying pass-
word candidates one by one using the verification data. When implementing
with the RSA function, RSA-based PAKE protocols have to verify whether a
server’s RSA public key (e, N) is correct or not (i.e., gcd(e, ϕ(N)) = 1) due
to the lack of PKI (Public Key Infrastructures). This yields extra computation
costs or communication overheads.

Contrary to the PAKE protocols, Lomas et al., introduced an AKE proto-
col, resistant to off-line dictionary attacks, where a client remembers his/her

1 A complete list of such protocols can be found in Jablon’s research link [17].

Efficient and Leakage-Resilient Authenticated Key Transport Protocol 271

password and holds a server’s public key in advance whereas the corresponding
server has password verification data and its private key both of which should be
stored securely [15]. This type of AKE protocols were further studied by Gong
[9] and formalized by Halevi and Krawczyk [11]. However, the leakage of one of
the stored secrets (the verification data or the private key) may cause a serious
problem enough to break its security of the AKE protocol. For example, the
leakage of the verification data makes possible for an adversary to retrieve the
password through off-line dictionary attacks and thus to impersonate the client.
With the leaked private key, an adversary can impersonate the server so that
she can get the password through off-line dictionary attacks as well.

Other AKE protocols based on PKI can be found in SSL/TLS (Secure Socket
Layer/Transport Layer Security) [10, 13] and SSH (Secure SHell) [12] where a
client remembers his/her password and holds a server’s public key whereas the
corresponding server has password verification data and its private key both of
which should be stored securely. The difference from the above AKE protocols is
that the parties first establish a secure channel with the server’s public key and
then the client sends the password for authentication through the secure channel.
Note that the client must verify the server’s certificate via CRL (Certificate
Revocation Lists) or OCSP (Online Certificate Status Protocol), before running
the actual protocol, which entails additional computation and communication
costs. As for the leakage of the stored secrets, the same discussion of the above
paragraph can be done.

1.2 Motivation

The previous password-based AKE protocols have been designed to be secure
against an active adversary who controls the communications and usually based
on the assumption that the stored secrets would not leak out. However, the leak-
age of stored secrets is a more practical risk rather than breaking a well-studied
cryptographic hard problem. TRM (Tamper-Resistant Modules) of course may
be one of the ways to reduce the probability of leakage, but they cannot prevent
the damage caused by the leakage as well as it is still hard to make a perfect
TRM with low cost. In the password-based AKE protocols, the leakage of stored
secrets may occur more serious catastrophe in the following multiple server sce-
nario: a client who would have access to a lot of different servers registered the
same password to them for authentication. In this scenario either an adversary
or a dishonest server administrator who finds out the password with the leaked
stored secrets from one server can impersonate the client to the other remain-
ing servers! The other motivation comes from the fact that all of the previous
RSA-based AKE protocols couldn’t achieve perfect forward secrecy, if an RSA
key pair is fixed, without incorporating the Diffie-Hellman protocol.

1.3 Overview of Our Contributions

Let us consider the following situation for unbalanced wireless networks where
a client holds some insecure devices (e.g., mobile phones or PDAs) with very-

272 SeongHan Shin, Kazukuni Kobara, and Hideki Imai

restricted computing power and built-in memory capacity, on the other hand,
the counterpart server has enormous computing power but is not perfectly secure
against various attacks (e.g., virus or hackers). In addition, neither PKI nor
TRM is available. In this paper, we propose an efficient and leakage-resilient
RSA-based AKE (RSA-AKE) protocol, suitable for the above situation, whose
authenticity is based on the client’s password and an additional stored secret
both of which makes possible to extend to the multiple sever scenario with only
one password. That is, the respective leakage of stored secret(s) from a client
and servers doesn’t reveal any information on the password. That implies the
client need not change his/her password even if stored secrets are leaked out
from either the client or servers.

We also prove its security of the RSA-AKE protocol in the random oracle
model under the notion of LR-AKE security where an adversary is given the
stored secret of client and the RSA private key of server. Though our protocol
is a password-based AKE one, we can avoid even on-line dictionary attacks as
long as the leakage of stored secret from client does not happen.

In the RSA-AKE protocol, the client is required to compute only one modular
exponentiation with an exponent e (e ≥ 3) and the remaining computation
costs if the pre-computation is allowed are one modular multiplication and some
negligible operations. This is because we provide perfect forward secrecy, when
the RSA key pair is fixed, by taking a way to update each stored secret of
client and server every session. Doing so, the RSA-AKE protocol becomes efficient
mainly in aspects of both computation and communication costs.

Organization. This paper is organized as follows. In section 2, we introduce
the security model and security definitions. In Section 3, we propose an efficient
and leakage-resilient RSA-based AKE (RSA-AKE) protocol, followed by its secu-
rity proof and discussion in Section 4. Section 5 is devoted to comparison with
the previous RSA-based AKE protocols in aspects of security properties and
efficiency.

2 Security Model and Definitions

In this section we introduce the security model (based on [6] but extended consid-
ering “Leak” queries) and security definitions for the notion of LR-AKE security.

We denote by C and S two parties that participate in a protocol P . Each
of them may have several instances called oracles involved in distinct, possibly
concurrent, executions of P where we denote C (resp., S) instances by CI (resp.,
SJ), or by U in case of any instance. Let us show the capability of adversary A
each query captures:

– Execute(CI ,SJ): This query models passive attacks, where the adversary gets
access to honest executions of P between CI and SJ by eavesdropping.

– Send(U, m): This query models active attacks by having A send a message
to instance U . The adversary A gets back the response U generates in pro-
cessing the message m according to the protocol P .

Efficient and Leakage-Resilient Authenticated Key Transport Protocol 273

– Reveal(U): This query handles the misuse of a session key by any instance
U . The query is only available to A if the instance actually “holds” a session
key and the latter is released to A.

– Leak(U): This query handles the leakage of “stored” secrets by any instance
U . The query is available to A since stored secrets might be leaked out due
to a bug of the system or physical limitations.

– Test(U): This oracle is used to see whether the adversary can obtain some
information on the challenge session key, by giving a hint on the latter.
The Test-query can be asked at most once by the adversary A and is only
available to A if the instance U is “fresh” in that the session key is not
obviously known to the adversary. This query is answered as follows: one
flips a (private) coin b ∈ {0, 1} and forwards the corresponding session key
SK (Reveal(U) would output) if b = 1, or a random value except the session
key if b = 0.

The goal of the adversary is to break the privacy of the session key (a.k.a.,
semantic security) in the context of executing P . We denote LR-AKE advantage,
by Advlr−ake

P (A) = 2 Pr[b = b′]− 1, as the probability that A can correctly guess
the value of b. The protocol P is said to be LR-AKE secure if A’s advantage
is negligible for any adversary A with polynomial running time t. We formally
define the LR-AKE security; this will be necessary for stating meaningful results
about our protocol (compared to the other protocols) in Section 5.

Definition 1 (LR-AKE Security) A protocol P is said to be LR-AKE secure
if, when adversary A asks qs queries to Send oracle and passwords are chosen
from a dictionary of size D, the adversary’s advantage Advlr−ake

P (A) = 2 Pr[b =
b′]− 1 in attacking the protocol P is bounded by

O(qs/D) + ε(k), (1)

for some negligible function ε(·) 2 in the security parameter k. The first term
represents the fact that the adversary can do no better than guess a password
during each query to Send oracle.

The LR-AKE security notion captures the intuitive fact that the protocol P
is secure against on-line and off-line dictionary attacks even if the leakage of
stored secrets from the involving parties happens.

3 An RSA-Based AKE (RSA-AKE) Protocol

Before presenting an RSA-based AKE (for short, RSA-AKE) protocol, we will
start by giving some preliminary notations to be used. Let k and l denote the
security parameters, where k can be thought of as the general security parameter
2 Denote with N the set of natural numbers and with R

+ the set of positive real
numbers. We say that a function ε : N → R

+ is negligible (in k) if and only if for
every polynomial P (k) there exists an n0 ∈ N such that for all n > n0, ε(k) ≤ 1/P (k).

274 SeongHan Shin, Kazukuni Kobara, and Hideki Imai

for hash functions (say, 160 bits) and l (l > k) can be thought of as the security
parameter for RSA (say, 1024 bits). We define the RSA function by RSAN,f(w) ≡
wf mod N for all w ∈ Z

�
N . Let D be a dictionary size (cardinality) of passwords

(say, 36 bits for alphanumerical passwords with 6 characters). Let {0, 1}� denote
the set of finite binary strings and {0, 1}k the set of binary strings of length k.
If A is a set, then a

R← A indicates the process of selecting a at random and
uniformly over A. Let “||” denote the concatenation of bit strings in {0, 1}�.

Let us define secure one-way hash functions (e.g., SHA-1). While G : {0, 1}� →
Z

�
N\{1} denotes a full-domain hash (FDH) function, the other hash functions

are denoted Hj : {0, 1}� → {0, 1}k for j = 1, 2, 3 and 4. Here G and Hj are
distinct random functions one another. Let C and S be the identities of client
and server, respectively, with representing each ID ∈ {0, 1}� as well.

3.1 The RSA-AKE Protocol

We consider the following scenario where a client is communicating with many
disparate i servers3. We especially focus on unbalanced wireless networks where
the client has insecure devices (e.g., mobile phones or PDAs) with very-restricted
computing power but some memory capacity itself, on the other hand, each server
has its database and enormous computing power enough to generate a pair of
(public and private) keys of RSA and to perform the RSA decryption function,
when e is a small prime number. The choice of RSA key pair ((e, N), (d, N)) is in
general left to the implementations. However, in order to speed-up computation
of RSAN,e, e should be chosen to be a small prime with a small number of 1’s
in its binary representation (e.g., e = 3 or 216 + 1). In addition, neither PKI nor
TRM is available at all. Here we propose an efficient and leakage-resilient RSA-
based AKE (RSA-AKE) protocol suitable for the above-mentioned situation. The
whole protocol is illustrated in Fig. 1.

[Initialization]. During the initialization phase, client C registers a verification
data, computed by a secret and his password, to one of different servers Si (i ≥
1). At first, server Si sends its RSA public key (e, N), which is generated from
RSAKeyGen(1l), to the client. The latter picks a secret value αi1 randomly chosen
in Z

�
N and registers securely a verification data pi1 to server Si:

pi1 ≡ αi1 + α0 mod N (2)

and sets the term α0 = pw where pw is the client’s password4. Since both αi1

and pi1 are in the set of the same length, each of αi1 and pi1 is a share of
(2, 2)-threshold secret sharing scheme for α0 [18].

Then client C remembers his password pw and additionally stores the secret
value αi1 and the RSA public key (e, N) on insecure devices (e.g., mobile devices
3 For simplicity, we assign the servers consecutive integer i ≥ 1 where Si can be

regarded as i-th server.
4 The password pw is drawn from password space DPassword according to a certain

probability distribution.

Efficient and Leakage-Resilient Authenticated Key Transport Protocol 275

Client C (Mobile Device) Server Si (i ≥ 1)

[Initialization]

αi1
R← Z

�
N , pi1 ≡ αi1 + pw mod N

(e,N)� (e,N), (d, N)← RSAKeyGen(1l)

pi1 �

1, αi1, (e, N) 1, pi1, (d, N)

[j-th Protocol Execution (j ≥ 1)]

j, αij , (e, N) j, pij , (d,N)

pij ≡ αij + pw mod N

W ← G(j, pij)

x
R← Z

�
N , y ≡ xe mod N

z ≡ y ·W mod N C, j, z �

W ← G(j, pij)

If j is incorrect, then reject.

Otherwise, y′ ≡ z ·W−1 mod N

x′ ≡ (y′)d
mod N ,

VSi ←H1(tmp||x′).Si, VSi�
If VSi �= H1(tmp||x), then reject.

Otherwise, VC ←H2(tmp||x)

SKij ←H3(tmp||x),

αi(j+1) = αij +H4(tmp||x),

and accept.

VC �
If VC �= H2(tmp||x′), then reject.

Otherwise, SKij ← H3(tmp||x′),

pi(j+1) = pij +H4(tmp||x′),

and accept.

j + 1, αi(j+1), (e,N) j + 1, pi(j+1), (d, N)

Fig. 1. The initialization and j-th protocol execution of RSA-based AKE (RSA-AKE)
protocol where tmp = C||Si||j||z||pij and the enclosed values in rectangle represent
stored secrets of client and server, respectively. The first flow of the protocol execution
comprises a key exchange (concretely, key transport), followed by authenticators that
are just the hashed values easily computable by both parties. Both of them check the
received authenticator prior to accepting the session key.

or smart cards) which may happen to leak the secret αi1 and the key (e, N)
eventually. The server Si also stores the verification data pi1 and its RSA private
key (d, N) on its databases both of which may be leaked out. Finally, they set a
counter j as 1.

276 SeongHan Shin, Kazukuni Kobara, and Hideki Imai

[The j-th Protocol Execution]. When client C wants to share an authenti-
cated session key securely with server Si, they run the j-th (j ≥ 1) execution
of the RSA-AKE protocol as follows. At the start of the j-th protocol execution,
client C and server Si hold (j, αij , (e, N)) and (j, pij , (d, N)), respectively, where
pij ≡ αij + pw mod N . The client C should recover the verification data pij by
adding the secret value αij stored on devices with the password pw kept in his
mind. Then the client chooses a random value x (as a keying material) from
Z

�
N and sends (C, j, z) to server Si, after calculating z using a mask generation

function as the product of an encryption of x under the RSA public key (e, N)
with a full-domain hash of (j, pij). If the received counter j is correct, the server
divides this encrypted value by a hash of the counter and its verification data
pij , and then decrypts the resultant value under its RSA private key (d, N) so as
to obtain the keying material x that is used to compute its authenticator VSi and
a session key SK. Upon receiving (Si, VSi) from the server, client C computes
his authenticator VC and a session key SKij , as long as the authenticator VSi is
valid, and sends VC to server Si. Of course, if VSi is not the case, client C wipes
off all the temporal data including the keying material and then terminates the
protocol. If the authenticator VC is valid, server Si actually computes a session
key SKij that will be used for their subsequent cryptographic algorithms.

At the end of the j-th protocol execution, client C refreshes the secret value
αij to a new one αi(j+1) for (j + 1)-th session:

αi(j+1) = αij +H4(C||Si||j||z||pij ||x).

In the same way, server Si also refreshes the verification data pij to a new
one: pi(j+1) = pij +H4(C||Si||j||z||pij ||x′). Finally, client C stores (j + 1, αi(j+1),

(e, N)) on his devices and server Si stores
(
j + 1, pi(j+1), (d, N)

)
on its databases

for the next session.
Only if client C inputs the right password pw and the corresponding secret

value αij to server Si and server Si uses the right verification data pij and its
RSA private key (d, N), they can generate the correct authenticators, share the
same session key and refresh each stored secret to a new one all of which are
derived from the keying material x. Without any leaked secret the probability
of guessing the other’s keying material is 1/2l.

4 Security Proof for the RSA-AKE Protocol

In this section we show the RSA-AKE protocol of Fig. 1. is provably secure in the
random oracle model5, under the assumption that inverting an RSA problem is

5 To analyze the security of certain cryptographic constructions Bellare and Rogaway
introduced an idealized security model called the random oracle model [3]. Random
oracles are used to model cryptographic hash functions such as SHA-1 which produce
a random value for each new query. Note that security in the random oracle model is
only heuristic: it does not imply security in the real world. Nevertheless, the random
oracle model is a useful tool for validating natural cryptographic constructions.

Efficient and Leakage-Resilient Authenticated Key Transport Protocol 277

hard. Informally speaking, an adversary cannot determine the correct password
through off-line dictionary attacks, even if she knows the client’s secret and
the server’s RSA private key, since generating the valid client’s authenticator
after computing z or generating the valid server’s authenticator falls into on-
line dictionary attacks (which can be easily prevented and detected).

4.1 Security Proof

In order to simplify the security proof, we only consider the first two flows of
the j-th protocol execution (unilateral authentication of S to C) 6. This is due
to the well-known fact that the basic approach in folklore for adding authenti-
cation to an AKE protocol is to use the distributed Diffie-Hellman key or the
keying material to construct a simple “authenticator” for the other party [2, 6].
Therefore, the security proof with unilateral authentication can be extended to
one with mutual authentication by simply adding the authenticator of C (the
third flow) as in Fig. 1. However, this entails a more complicated proof.

Here we assert that the two-flows RSA-AKE protocol distributes semantically-
secure session keys and provides unilateral authentication for the server S under
the one-wayness of RSA. Since the security of the RSA-AKE protocol only de-
pends on the password, the LR-AKE security can be proven with some adjust-
ments and changes of the proof for the RSA-based PAKE protocol [6]7.

Theorem 1 (LR-AKE/UA Security) Let P be the two-flows RSA-AKE pro-
tocol, where passwords are chosen from a dictionary of size D. For any adversary
A within a polynomial time t, with less than qs active interactions with the par-
ties (Send-queries), qp passive eavesdroppings (Execute-queries) and ql leakages
(Leak-queries), and asking qg and qh hash queries to G and any Hi respectively,
Advlr−ake

P (A) ≤ 4ε and AdvS−auth
P (A) ≤ ε, with ε upper-bounded by

(qC + 3qS)/D + 6ql · Succow
RSA

(
q2
h, t + 2q2

hτrsa

)
+

qC
2k1

+
2qC + (qg + qh)2

2l+1
, (3)

where qC and qS denote the number of C and S instances involved during the
attack (each upper-bounded by qp + qs), k1 is the output length of H1, l is the
security parameter, and τrsa is the computational time needed for RSAN,d.

Due to the lack of space, we omit the security model, formal definitions and the
proof but those will appear in the full version. Here we justify the main terms
in the security result. Some ways for the adversary A to break the protocol
are: (1) guess a password and makes an on-line trial with respect to CI and
SJ involved during the attack. The RSA-AKE protocol is secure against on-line
dictionary attacks since the advantage of A essentially grows with the ratio of
6 For the sake of brevity, we omit the index i in the proof.
7 The security reduction to the one-wayness of RSA is based on [5] where a challenge

RSA problem is included in the answer of many hash queries so that the adversary
is useful to the simulator with greater probability.

278 SeongHan Shin, Kazukuni Kobara, and Hideki Imai

interactions to the number of passwords. Hence the term (qC + 3qS)/D; (2) use
the authenticator VS to check the correct password. But this requires the ability
to compute RSAN,d(z × W−1). Hence the term 6ql · Succow

RSA(·, ·); (3) send a
correct authenticator VS , but being lucky. Hence the term qC/2k1 . Additional
negligible terms come from very unlikely collisions. All the remaining kinds of
attacks need some information about the password.

In the proof, the simulator has to “guess” which hash query to G will be used
by the adversary to produce the correct bit b, resulting in a factor of ql (the
number of Leak-queries) in the success probability to invert the RSA encryption
function.

4.2 Discussion

The only restriction on an adversary is that she cannot replace an RSA public key
(e, N), stored on a client’s devices, with a different one (e′, N ′). If it is possible,
the adversary can store a fake RSA public key (e′, N ′) such that (e, N) �= (e′, N ′)
and gcd(e′, ϕ(N ′)) �= 1. As a result, the RSA encryption function RSAN ′,e′(x) ≡
xe′

mod N ′ is no longer a permutation on Z
�
N ′ which maps an element x ∈ Z

�
N ′

to the set of e′-residues (a proper subset of Z
�
N ′). Since the adversary knows

the factorization of N ′, it is easy to check whether an element x ∈ Z
�
N ′ is e′-

residues or not. This is generally called e-residue attack that is one of the off-line
dictionary attacks.

However, one has to notice the intrinsic distinction of adversary’s behavior
in the RSA-AKE and PAKE protocols. In the latter, an adversary is a kind of
network adversary who can impersonate the involving parties and control all of
the communications for e-residue attacks. On the other hand, an adversary, who
is willing to perform e-residue attacks in the RSA-AKE protocol, should first steal
a client’s device, change an RSA public key and return back to the client. Then
the adversary impersonates the corresponding server so as to narrow down the
password candidates. (We call this “replacement attack” for convenience.)

One of the possible ways to thwart e-residue attacks in the RSA-AKE protocol
is as follows. If the client has noticed the leakage of stored secrets (αj , (e, N))
or couldn’t run the protocol within a fixed number of trials, he runs one of the
RSA-based PAKE protocols (e.g., [6, 22]) by using pj instead of the password
pw. After establishing a secure channel, the client refreshes the secret αj to αj+1

and stores the correct RSA public key. In this case, the adversary cannot mount
e-residue attacks successively since its security now depends on the refreshed
secret αj+1 as well as the latter is completely independent from αj . In order to
continue the e-residue attacks, the adversary should steal the device to get αj+1,
change the RSA public key, return back to the client, and then impersonate the
server again.

More simple way against e-residue attacks is to exploit insecure devices in
the practical point of view. Suppose that a client has a mobile phone on which
a server’s RSA public key (e, N) is stored, on the other hand, he also holds a
memory card separately for the mobile phone where the fingerprint of (e, N) is

Efficient and Leakage-Resilient Authenticated Key Transport Protocol 279

kept. Of course, TRM is not needed at all. Whenever the client runs the RSA-
AKE protocol with the server, he should at first do the integrity check for (e, N),
as Halevi and Krawczyk’s protocol [11] does8, by inserting the memory card to
the phone and confirming the correctness of (e, N).

5 Comparison

In this section we compare the RSA-AKE protocol of Section 3.1 with the previ-
ous AKE protocols using password and RSA. In order to be fair, we instantiate
with the RSA function if a public key encryption is not specified in the relevant
previous works. For simplifying its discussion, we omit additional computation
and communication costs of SSL/TLS and SSH in order to verify the counter-
part’s certificate.

5.1 As for Security Properties

The RSA-AKE protocol may seem to be similar to Halevi and Krawczyk’s proto-
col [11] since a client holds a server’s RSA public key and remembers his password
after the initialization phases of both protocols. However, in their protocol if an
adversary changes the RSA public key (e, N), stored on the client’s devices, with
a one (e′, N ′) generated by RSAKeyGen(1l) of the adversary, she can discover the
password through off-line dictionary attacks with only one interaction with the
client.

As for several security properties, we show the comparative results in Table
1 and 2. For an easier comparison, the following three cases are considered.

– Case1: This is the case that an adversary gets the stored secret associated
with the password from client C.

– Case2: This is the case that an adversary gets the verification data associ-
ated with the password from server S.

– Case3: This is the case that an adversary gets the RSA private key from
server S.

In the RSA-AKE protocol, Case1, Case2 and Case3 correspond to the leakage
of αi(j+1), pi(j+1) and (d, N), respectively. We can see in Table 1 that the RSA-
AKE protocol guarantees semantic security of session keys even if Case1 and
Case3 happen at the same time. In terms of semantic security against Case2,
the key-establishment part of SSL/TLS and SSH in the public-key based user
authentication mode is the only survivor simply because the password is not
used for client’s authentication but for protecting the client’s private key.

In terms of security of password against Case1 and Case2 (in Table 2), we
claim the following theorem:

8 For the integrity check in their protocol, a client receives a public key from a server
and then compares the key with one stored on devices. Unfortunately, their protocol
is insecure against the “replacement attack” described above (refer to Section 5).

280 SeongHan Shin, Kazukuni Kobara, and Hideki Imai

Table 1. Comparison of RSA-based AKE protocols in a situation where no perfect
TRM is available.

Client’s possessions Semantic security of session key against
Case1∨

Protocols PW∗1 SS∗2 PI∗3 Case1 Case2 Case3 Case3

P RSA-IPAKE [6]
A PEKEP [22]

√
K CEKEP [22] secure insecure secure secure
E SNAPI [16]

SNAPI-X [16]
√ √∗4

MAKE∗5 [11]
√ √∗7 secure insecure insecure insecure

MA-DHKE∗6 [11]
√ √∗4,∗7 secure insecure insecure insecure

SSL/TLS, SSH∗8 √ √
secure insecure insecure insecure

SSL/TLS, SSH∗9 √ √ √
insecure∗10 secure insecure insecure

RSA-AKE
√ √ √

secure insecure secure secure∗11

*1: Human-memorable secret (i.e., password)
*2: Stored secret: a secret value, a signing (decryption) key or a symmetric key
*3: Public information: a CA’s verification key, an encryption key or its fingerprint
*4: Public parameters for the Diffie-Hellman protocol: let G be a finite, cyclic group
of prime order q and g be a generator of G

*5: Mutual Authentication and Key Exchange of Section 3.4
*6: Mutual Authentication and Diffie-Hellman Key Exchange of Section 3.4
*7: Cached server’s RSA public key (e.g., H(e, N))
*8: Key-establishment part of SSL/TLS and SSH in the password-based user au-
thentication mode
*9: Key-establishment part of SSL/TLS and SSH in the public-key based user au-
thentication mode with a password-protected private key
*10: Epw(d) where d is an RSA private key and E is a symmetric encryption with
pw as its key
*11: Theorem 1

Theorem 2 (Security of Password) The password in the RSA-AKE protocol
remains information-theoretically secure against off-line dictionary attacks even
after either Case1 or Case2 happens.

Proof. The proof is straightforward. First, we think of an adversary who obtains
the stored secret αi(j+1) of client C and is trying to deduce the password pw.
Since αi(j+1) is completely independent from pw, αi(j+1) doesn’t reveal any
information about the password.

H(pw) = H
(
pw|αi(j+1)

)
(4)

where H(X) denotes the (Shannon) entropy of X and H(X |Y) denotes the con-
ditional entropy of X conditioned on Y . Second, we think of the security of
password against an adversary who obtains the stored secret pi(j+1) of server

Efficient and Leakage-Resilient Authenticated Key Transport Protocol 281

Table 2. Comparison of RSA-based AKE protocols in a situation where no perfect
TRM is available (con’t).

Security∗1 of
password Extension∗2 Perfect forward secrecy

Protocols Case1 Case2 (Case1 ∨ Case2 ∨Case3)

P RSA-IPAKE [6] PFS can be achieved
A PEKEP [22] © X (�∗3) only if
K CEKEP [22] impossible server S changes
E SNAPI [16] its RSA key pair

SNAPI-X [16] © �∗4 every time.

MAKE [11] © �∗3 impossible not achieved

MA-DHKE [11] © �∗3 impossible achieved∗5

SSL/TLS, SSH © X (�∗3) impossible achieved∗5

SSL/TLS, SSH � © possible achieved∗5

RSA-AKE ©∗6 ©∗6 possible∗7 achieved

*1: Security level against an adversary who either obtains client’s devices (Case1)
or intrudes severs (Case2) in order to retrieve the client’s password in each case:
© guarantees the security of password against both on-line and off-line dictionary
attacks; � guarantees the security of password against on-line, but not off-line
attacks; and X guarantees the security of password against neither on-line nor off-
line attacks.
*2: Extension to the multiple server scenario with only one password
*3: A client registers password verification data computed with a particular one-
way function of the password, f(pw), to the server instead of pw. Doing this some-
what slows down off-line dictionary attacks of an adversary who obtained the
server’s database.
*4: gH5(C||S||pw) where H4 is a secure one-way hash function
*5: Due to the Diffie-Hellman protocol
*6: Information-theoretically secure
*7: The number of stored secrets αij grows linearly to the number of servers.

Si and is trying to deduce the password pw. However, the adversary cannot
get any information about the password, simply because pi(j+1) is one share
of (2, 2)-threshold (perfect) secret sharing scheme. As a result, the password is
information-theoretically secure as a secret value of (2, 2)-threshold secret shar-
ing scheme. �

Contrary to the RSA-AKE protocol, the other AKE protocols don’t have the
security of password since their stored secrets in either the client or the server(s)
contain enough information to succeed in retrieving the relatively short password
with off-line dictionary attacks.

One of the important security properties is perfect forward secrecy. According
to [20], we informally say that a protocol P achieves perfect forward secrecy if the
disclosure of “long-term” secrets of the involving parties does not compromise
the semantic security of session keys from previous sessions (even though that

282 SeongHan Shin, Kazukuni Kobara, and Hideki Imai

compromises the authenticity and thus the security of new sessions). In the
RSA-AKE protocol, perfect forward secrecy can be interpreted as follows: if an
adversary is given with αi(j+1), pi(j+1) and (d, N), such that pi(j+1) = αi(j+1) +
pw, in the (i + 1)-th session, the adversary is trying to deduce the previous
session key SKij for the i-th session9. In order to compute x

x = RSAN,d(z/W) = RSAN,d(z)/RSAN,d

(
G(j, pij)

)

= RSAN,d(z)/RSAN,d

(
G(j, αij + pw)

)

= RSAN,d(z)/RSAN,d

(
G(j, pi(j+1) −H4(·|| · || · || · ||pij ||x))

)
, (5)

the adversary should know αij or pij both of which are completely independent
from αi(j+1) and pi(j+1) without x. Remember that αij and pij are uniformly
distributed in (Z�

N)2. That is, the RSA-AKE protocol achieves perfect forward
secrecy10 even if server Si would use the same RSA key pair for many sessions.

5.2 As for Efficiency

Since password-based AKE protocols have been motivated by the very practical
implementations and widely used even in wireless networks, we analyze compu-
tation costs of client and communication overheads in the RSA-AKE protocol
while comparing with those of each protocol execution, providing perfect for-
ward secrecy, in Table 3. We denote by l (resp., k) the security parameter for
the RSA function and the Diffie-Hellman protocol (resp., for the hash functions
and random numbers). The number of modular exponentiations is a major factor
to evaluate efficiency of a cryptographic protocol because that is the most power-
consuming operation. So we count the number of modular exponentiations as
computation costs of client C. The figures in the parentheses are the remaining
costs after pre-computation. For brevity, we denote by RSA-Exp. (resp., DH-
Exp.) the number of RSA modular exponentiations with an exponent e (resp.,
the number of Diffie-Hellman modular exponentiations with an exponent of 160-
bits long). In terms of communications overheads, the length of identities is
excluded and | · | indicates its bit-length.

With respect to computation costs in the RSA-AKE protocol, client C is re-
quired to compute one modular exponentiation with an exponent e (e ≥ 3)
and one modular multiplication. In particular, the remaining costs after pre-
computation is only one modular multiplication and additional operations for
modular additions and hash functions. On the other hand, MAKE protocol
doesn’t allow pre-computation and doesn’t provide perfect forward secrecy. With
respect to communication overheads in the RSA-AKE protocol, it requires a band-
width of (l + 2k) bits approximately.
9 The adversary is in the game to distinguish the i-th session key given by Test oracle.

10 For an RSA-based AKE protocol without incorporating the Diffie-Hellman protocol,
it seems impossible to prove perfect forward security in a sense of [2, 14] since this
kind of protocol is actually a key transport one.

Efficient and Leakage-Resilient Authenticated Key Transport Protocol 283

Table 3. Comparison of RSA-based AKE protocols as for efficiency.

Computation costs of client C Communication
Protocols DH-Exp. RSA-Exp. with e overheads

P RSA-IPAKE [6] m + 1 when e ≥ 3, (m) ∗1 (m + 2)l + 3k
PEKEP [22] n + 1 when e ≥ 3, (n) ∗2 2l + 4k + |e|

A CEKEP [22] 2n when e ≥ 3, (2n− 1) ∗3 3l + 6k + |e|+ |n|
or 2, (2) ∗4

K SNAPI [16] Primality test of large e 2l + 4k + |e|
and 1 ∗5, (Primality test of e)

E SNAPI-X [16] 2, (2) Primality test of large e 3l + 4k + |e|
and 1 ∗5, (Primality test of e)

MAKE [11] 1 when e ≥ 3, (1) 2l + 3k + |e|
MA-DHKE [11] 2, (1) 1 when e ≥ 3, (1) 4l + 3k + |e|
SSL/TLS, SSH 2, (1) 1 when e ≥ 3, (1) 3l + |E|
SSL/TLS, SSH 2, (1) 1 when e ≥ 3 and 1 RSA-Exp. 3l

with d, (1 RSA-Exp. with d) ∗6

RSA-AKE 1 when e ≥ 3, (0) l + 2k

*1: m is the system parameter
*2: n = �loge N

*3: n =

⌈
loge ω−1

⌉
where 0 < ω ≤ 2−80

*4: 2 modular exponentiations each having an exponent of
⌈
loge ω−1

⌉
bits where

0 < ω ≤ 2−80

*5: 1 modular exponentiation with an exponent e having the following explicit
requirements on e and N (in order to enforce the relative primality of e and ϕ(N)).
One is to set e to be a prime, in the range of 2l + 1 ≤ e < 2l+1, greater than N .
The other is to set e to be a prime such that e ≥ √N and (N mod e) � N .
*6: 1 modular exponentiation with an exponent d

Acknowledgements

The authors appreciate anonymous reviewers for their helpful comments.

References

1. S. M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-based Proto-
cols Secure against Dictioinary Attacks. In Proc. of IEEE Symposium on Security
and Privacy, pages 72-84. IEEE Computer Society, 1992.

2. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated Key Exchange Secure
against Dictionary Attacks. In Proc. of EUROCRYPT 2000, LNCS 1807, pages
139-155. Springer-Verlag, 2000.

3. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for De-
signing Efficient Protocols. In Proc. of ACM CCS ’93, pages 62-73, 1993.

4. M. Bellare and P. Rogaway. Entity Authentication and Key Distribution. In Proc.
of CRYPTO ’93, LNCS 773, pages 232-249. Springer-Verlag, 1993.

5. M. Bellare and P. Rogaway. The Exact Security of Digital Signatures: How to
Sign with RSA and Rabin. In Proc. of Eurocrypt ’96, LNCS 1070, pages 399-416.
Springer-Verlag, 1996.

284 SeongHan Shin, Kazukuni Kobara, and Hideki Imai

6. D. Catalano, D. Pointcheval, and T. Pornin. IPAKE: Isomorphisms for Password-
based Authenticated Key Exchange. In Proc. of CRYPTO 2004, LNCS
3152, pages 477-493. Springer-Verlag, 2004. The full version is available at
http://www.di.ens.fr/∼pointche/slides.php?reference=CaPoPo04.

7. W. Diffie and M. Hellman. New Directions in Cryptography. In IEEE Transactions
on Information Theory, Vol. IT-22(6), pages 644-654, 1976.

8. W. Diffie, P. van Oorschot, and M. Wiener. Authentication and Authenticated Key
Exchange. In Proc. of Designs, Codes, and Cryptography, pages 107-125, 1992.

9. L. Gong. Optimal Authentication Protocols Resistant to Password Guessing At-
tacks. In Proc. of IEEE Computer Security Foundation Workshop, pages 24-29,
1995.

10. A. Frier, P. Karlton, and P. Kocher. The SSL 3.0 Protocol. Netscape Communica-
tion Corp., 1996. available at http://wp.netscape.com/eng/ssl3/.

11. S. Halevi and H. Krawczyk. Public-Key Cryptography and Password Protocols.
February 1999.

12. IETF (Internet Engineering Task Force). Secure Shell (secsh) Charter.
http://www.ietf.org/html. charters/secsh-charter.html

13. IETF (Internet Engineering Task Force). Transport Layer Security (tls) Charter.
http://www.ietf.org/ html.charters/tls-charter.html

14. J. Katz, R. Ostrovsky, and M. Yung. Forward Secrecy in Password-Only Key Ex-
change Protocols. In Proc. of SCN 2002, LNCS 2576, pages 29-44. Springer-Verlag,
2002.

15. M. Lamos, L. Gong, J. Saltzer, and R. Needham. Reducing Risks from Poorly Cho-
sen Keys. In Proc. of the 12th ACM Symposium on Operating System Principles,
ACM Operating Systems Review, pages 14-18, 1989.

16. P. MacKenzie, S. Patel, and R. Swaminathan. Password-Authenticated Key
Exchange Based on RSA. In Proc. of ASIACRYPT 2000, LNCS 1976,
pages 599-613. Springer-Verlag, 2000. The full version is available at
http://cm.bell-labs.com/who/philmac/bib.html.

17. Phoenix Technologies Inc., Research Papers on Strong Password Authentication.
available at http://www.integritysciences.com/links.html.

18. A. Shamir. How to Share a Secret. In Proc. of Communications of the ACM, Vol.
22(11), pages 612-613, 1979.

19. V. Shoup. On Formal Models for Secure Key Exchange. IBM Research Report RZ
3121, 1999.

20. S. B. Wilson, D. Johnson, and A. Menezes. Key Agreement Protocols and their
Security Analysis. In Proc. of IMA International Conference on Cryptography and
Coding, December 1997.

21. T. Wu. A Real-world Analysis of Kerberos Password Security. In Proc. of Network
and Distributed System Security Symposium, February 1999.

22. M. Zhang. New Approaches to Password Authenticated Key Exchange based
on RSA. In Proc. of ASIACRYPT 2004, LNCS 3329, pages 230-244. Springer-
Verlag, 2004. Cryptology ePrint Archive, Report 2004/033, available at
http://eprint.iacr.org/2004/033.

	Efficient and Leakage-Resilient Authenticated Key Transport Protocol Based on RSA
	1 Introduction
	1.1 Previous Works
	1.2 Motivation
	1.3 Overview of Our Contributions

	2 Security Model and Definitions
	3 An RSA-Based AKE (RSA-AKE) Protocol
	3.1 The RSA-AKE Protocol

	4 Security Proof for the RSA-AKE Protocol
	4.1 Security Proof
	4.2 Discussion

	5 Comparison
	5.1 As for Security Properties
	5.2 As for Efficiency

	References

