
Verification of EPCs: Using Reduction Rules
and Petri Nets

B.F. van Dongen, W.M.P. van der Aalst, and H.M.W. Verbeek

Department of Technology Management, Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

{b.f.v.dongen, w.m.p.v.d.aalst, h.m.w.verbeek}@tm.tue.nl

Abstract. Designing business models is a complicated and error prone
task. On the one hand, business models need to be intuitive and easy
to understand. On the other hand, ambiguities may lead to different in-
terpretations and false consensus. Moreover, to configure process-aware
information systems (e.g., a workflow system), the business model needs
to be transformed into an executable model. Event-driven Process Chains
(EPCs), but also other informal languages, are intended as a language
to support the transition from a business model to an executable model.
Many researchers have assigned formal semantics to EPCs and are using
these semantics for execution and verification. In this paper, we use a
different tactic. We propose a two-step approach where first the infor-
mal model is reduced and then verified in an interactive manner. This
approach acknowledges that some constructs are correct or incorrect no
matter what interpretation is used and that the remaining constructs
require human judgment to assess correctness. This paper presents a
software tool that supports this two-step approach and thus allows for
the verification of real-life EPCs as illustrated by two case studies.

1 Introduction

Nowadays, process-aware information systems such as Workflow Management
(WFM) [4, 15] and Enterprise Resource Planning (ERP) [12] systems are used
to support a wide range of operational business processes. These systems are
often configured on the basis of a process model and therefore it is of the utmost
importance that the process model is correct. Therefore, many researchers have
worked on the verification of process definitions. Several tools and approaches
have been developed for the workflow domain. The basis for most of the work in
this area is typically the construction of mathematically sound and executable
semantics for a specific modeling language. However, when looking at process
modeling techniques, we see that very often, such semantics do not exist, or
are too complex for a process designer to comprehend. Still, creating models in
these languages is usually easy to do and the resulting models are understood
by a broad audience. In this paper, we will focus on one of these modeling
languages: Event-driven Process Chains (EPCs) [11, 12, 22]. EPCs are used in
a large variety of systems, most notably SAP/R3, the Aris Toolset and Aris

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 372–386, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Verification of EPCs: Using Reduction Rules and Petri Nets 373

EPC ready to
be verified

Apply Reduction
Rule

No reduction
possible,

EPC is trivial

More reduction
rules can be

applied

No reduction
possible,

EPC is not Trivial

EPC is correct and
executable

Check Result Check Result Check Result

EPC can be
correct, Further

investigation
necessary

EPC is incorrect,
Problem has to be

resolved

Calculate initial
events

Initial Events
are known

Transform to
Petri net

Ready for
transformation

Possible
combinations

of initial Events

Safe Petri net
with one

initial place
ready

Calculate state
space

Possible final
Markings known

Ready for
analysis

Allowed final
Markings

Color the state
space

All states
are colored

Not all states
are colored,

but all transitions
are covered

Some OR-
transitions

are not covered

Remove OR-
transitions if

allowed

All allowed OR
transitions are

removed

Not all transitions
are covered

Fig. 1. EPC describing the EPC verification process

Process Performance Monitor (PPM). We will not provide “yet another formal
semantics” for EPCs to be used as a basis for verification. Instead, we look at
verification from a designer point of view. We help the designer to find structural
conflicts, and give feedback about possible semantical problems. Furthermore,
if there is a trivial executable semantics, we will also provide this information
to the designer. However, in case of possible semantical problems, we leave the
designer in charge and let him decide what to do.

Since this paper is about the verification of EPCs, we use an EPC to describe
our approach. Figure 1 shows the details of the verification process in terms of
an EPC. The process consists of two main parts. First we take the EPC that is
defined by a process designer and, using simple reduction rules, we extract the
possibly problematic area. Then we translate the result into a Petri net and use
variants of existing Petri-net-based verification techniques to give feedback to
the designer.

As we discussed before, we will look at verification from a designers per-
spective, instead of from a formal perspective. Therefore, we will look at a more
relaxed correctness notion (similar to relaxed soundness [8, 7]). This process con-
sists of multiple steps. First, we introduce fictive nodes to make an EPC with one
initial event and one final event. Then, we use some reduction rules to eliminate
the “easy” constructs for which we know that they are correct.



374 B.F. van Dongen, W.M.P. van der Aalst, and H.M.W. Verbeek

In Section 4 we will discuss these reduction rules. If the EPC under investiga-
tion reduces to the trivial EPC, it is correct. In the reduction step, all functions
and events except initial and final event are removed. Furthermore, local choices
and trivial synchronization constructs are eliminated. If the result of the reduc-
tion is not the trivial EPC, the next step is to translate the EPC into a Petri
net in a rather simplistic way. In the last step we use the theory of workflow
nets [2, 4] and its related concepts such as soundness [2] and relaxed soundness
[8, 7]. The last step will provide the designer with one of the following three
answers:

The Petri net is sound, which means that the original EPC is correct and
no further reviewing is necessary.

The Petri net is relaxed sound, which means that some constructs need fur-
ther reviewing of the designer.

The Petri net is not relaxed sound, which means that there are unrecover-
able problems with the EPC. Corrections are necessary to create a correct
EPC.

We have developed a tool for the analysis of EPCs using the approach de-
picted in Figure 1. The tool is implemented in the context of the ProM frame-
work1.

In the remainder of this paper we will first look at some related work in Sec-
tion 2. Then, in Section 3 we introduce concepts like EPCs, Petri nets, soundness,
and relaxed soundness. As mentioned before, Section 4 introduces a set of power-
ful but simple reduction rules for EPCs. In Section 5 we translate the EPC into
a Petri net and discuss the verification process in more detail. In Section 6, we
briefly describe two case studies: one involving the trade process within a large
Dutch bank and the other involving the SAP R/3 reference models. Section 7
concludes the paper.

2 Related Work

Since the mid-nineties, a lot of work has been done on the verification of process
models, and in particular workflow models. In 1996, Sadiq and Orlowska [19]
were among the first ones to point out that modeling a business process (or
workflow) can lead to problems like livelock and deadlock. In their paper, they
present a way to overcome syntactical errors, but they ignore the semantical
errors. Nowadays, most work that is conducted is focusing on semantical issues,
i.e. “will the process specified always terminate” and similar questions. The work
that has been conducted on verification in the last decade can roughly be put
into three main categories. In this section, we present these categories and give
relevant literature for each of them.

1 See www.processmining.org for details.



Verification of EPCs: Using Reduction Rules and Petri Nets 375

2.1 Verification of Models with Formal Semantics

In the first category we consider the work that has been done on the verifica-
tion of modeling languages with formal semantics. One of the most prominent
examples of such a language are Petri nets [9, 17, 18]. Since Petri nets have a
formal mathematical definition, they lend themselves to great extent for for-
mal verification methods. Especially in the field of workflow management, Petri
nets have proven to be a solid theoretical foundation for the specification of
processes. This, however, led to the need of verification techniques, tailored to-
wards Petri nets that represent workflows. In the work of Van der Aalst and
many others [2, 6, 8, 10, 23] these techniques are used extensively for verifica-
tion of different classes of workflow definitions. However, the result is the same
for all approaches. Given a process definition, the verification tool provides an
answer in terms of “correct” or “incorrect”. However, not all modeling lan-
guages have a formal semantics. On the contrary, the most widely used model-
ing techniques, such as UML and EPCs are merely an informal representation of
a process. These modeling techniques therefore require a different approach to
verification.

2.2 Verification of Informal Models

Modeling processes in a real-life situation is often done in a less formal language.
People tend to understand informal models easily, and even if models are not
executable, they can help a great deal when discussing process definitions. How-
ever, at some point in time, these models usually have to be translated into a
specification that can be executed by an information system. This translation
is usually done by computer scientists, which explains the fact that researchers
in that area have been trying to formalize informal models for many years now.
Especially in the field of workflow management, a lot of work has been done
on translating informal models to Petri nets. Many people have worked on the
translation of EPCs to Petri nets, cf., [1, 3, 7, 14]. The basic idea of these authors
however is the same: “Restrict the class of EPCs to a subclass for which we can
generate a sound Petri net”. As a result, the ideas are appealing from a scientific
point of view, but not useful from a practical point of view.

Also non-Petri-net based approaches have been proposed for the verification
of informal modeling languages. One of these ideas is graph reduction. Since
most modeling languages are graph-based, it seems a good idea to reduce the
complexity of the verification problem by looking at a reduced problem, in such
a way that correctness is not violated by the reduction, i.e. if a model is not
correct before the reduction, it will not be correct after the reduction and if the
model is correct before the reduction, it will be correct after the reduction. From
the discussion on graph reduction techniques started by Sadiq and Orlowska in
1999 [20, 21] and followed up by many authors including Van der Aalst et al.
in [5] and Lin et al in [16], it becomes clear that again the modeling language
is restricted to fit the verification process. In general this means that the more
advanced routing constructs cannot be verified, while these constructs are what
makes informal models easy to use.



376 B.F. van Dongen, W.M.P. van der Aalst, and H.M.W. Verbeek

The tendency to capture informal elements by using smarter semantics is
reflected by recent papers, cf. [3, 7, 13]. In these papers, the problem is looked
at from a different perspective. Instead of defining subclasses of models to fit
verification algorithms, the authors try to give a formal semantics to an informal
modeling language. Even though all these authors have different approaches, the
goal in every case is similar: try to give a formal executable semantics for an
informal model.

2.3 Verification by Design

The last category of verification methods is somewhat of a by-stander. Instead
of doing verification of a model given in a specific language, it is also possible to
give a language in such a way that the result if always correct. An example of
such a modeling language is IBM MQSeries Workflow [15]. This language uses a
specific structure for modeling, which will always lead to a correct and executable
specification. However, modeling processes using this language requires advanced
technical skills and the resulting model is usually far from intuitive.

In this section, we have presented an overview of the literature on process
model verification. We have categorized the various methods in three main cat-
egories and pointed out why many of them are not used in practice. The main
difference between the technique presented in this paper and existing literature
is that we will not restrict an informal modeling language to fit our verification,
nor will we give an executable specification of an informal model. Instead, we
combine the best of existing literature and provide a system designer with a
tool to find possible problems in a specification. We do not aim at solving these
problems. Instead, we assume the designer to be able to decide whether or not
a specification is correct. The result of our work will be a verification plug-in,
implemented in the Process Mining (ProM) Framework, that is able to import
EPCs defined in the Aris Toolset2 and will provide the designer with feedback
about possible problems.

3 Preliminaries

In this section, we introduce some basic concepts needed for the verification
process. We introduce the modeling language of EPCs and Petri nets. Fur-
thermore, we introduce the notion of soundness and relaxed soundness of Petri
nets.

3.1 Event-Driven Process Chains

The concept of Event-driven Process Chains is to provide an intuitive modeling
language to model business processes. They were introduced by Keller, Nüttgens
and Scheer in 1992 [11]. It is important to realize that the language is not
intended to be a formal specification of a business process.

2 See www.ids-scheer.com for information about the ARIS toolset.



Verification of EPCs: Using Reduction Rules and Petri Nets 377

An EPC consists of three main elements. Combined, these elements define
the flow of a business process as a chain of events. The elements used are:

Functions, which are the basic building blocks. A function corresponds to an
activity (task, process step) which needs to be executed. A function is drawn
as a box with rounded corners.

Events, which describe the situation before and/or after a function is executed.
Functions are linked by events. An event may correspond to the position of
one function and act as a precondition of another function. Events are drawn
as hexagons.

Connectors, which can be used to connect functions and events. This way, the
flow of control is specified. There are three types of connectors: ∧ (and), ×
(xor) and ∨ (or). Connectors are drawn as circles, showing the type in the
center of the circle.

Functions, events and connectors can be connected with edges in such a
way that (i) events have at most one incoming edge and at most one outgoing
edge, but at least one incident edge (i.e. an incoming or an outgoing edge), (ii)
functions have precisely one incoming edge and precisely one outgoing edge,
(iii) connectors have either one incoming edge and multiple outgoing edges, or
multiple incoming edges and one outgoing edge, and (iv) in every path, functions
and events alternate (no two functions are connected and no two events are
connected, not even when there are connectors in between.)

From the definition of an EPC it is clear that a process always starts when a
certain event occurs. Such an event should be one of the events without incoming
edges. After the process is finished, the events that have not been dealt with yet
should be events without outgoing edges. If this is the case, we call the EPC
correct.

3.2 Petri Nets

Petri nets are a formal language that can be used to specify processes. Since
the language has a formal and executable semantics, processes modeled in terms
of a Petri net can be executed by an information system. In this paper, we use
a variant of the classic Petri-net model, namely Place/Transition nets. For an
elaborate introduction to Petri nets, the reader is referred to [9, 17, 18]. A Petri
net consists of two modeling elements:

Transitions, which typically correspond to either an activity (task, process
step) which needs to be executed, or to a “silent” step that takes care of
routing.

Places, which are used to define the preconditions and postconditions of tran-
sitions. A transition can be fired (executed) if the precondition is satisfied.
The result of such a firing will be that the postcondition holds.

Transitions and places are connected through directed arcs in such a way that (i)
places and transitions have at least one incident edge and (ii) in every path, tran-
sitions and places alternate (no place is connected to a place and no transition
is connected to a transition.)



378 B.F. van Dongen, W.M.P. van der Aalst, and H.M.W. Verbeek

To denote the state a process execution the concept of tokens is used. A
token is placed inside a place to show that a certain condition holds. Each place
can contain arbitrarily many of such tokens. If a transition execution occurs
(or fires), one token is removed from each of the input places and one token is
produced in each of the output places. This restricts the behavior in such a way
that a transition can only occur when there is at least one token in each of the
input places. The distribution of tokens over the places is called a state, or a
marking.

In this paper, we mostly consider Workflow nets (WF-nets). WF-nets are a
subclass of Petri nets tailored towards workflow modeling and analysis. A WF-
net has one source place and one sink place and all transitions are on a path
from source to sink. Based on WF-nets correctness notions such as soundness
[2, 4], generalized soundness [10] and relaxed soundness [8, 7] have been defined.

3.3 State Space

Petri nets can be used as executable specifications of business processes. When-
ever a Petri net is given, together with an initial marking it is possible to capture
all possible behavior in a state space. The only caveat here is that the Petri net
should be constructed in such a way that there is a maximum number of tokens
that can appear in a place. This property is called boundedness, and a special
case is when the maximum number of tokens in each place is one. In that case
this is called safeness.

In this section, we introduced EPCs and Petri nets. In the remainder of
this paper, we show the process of EPC verification. The first step is made in
Section 4, where we reduce the verification problem of a large EPC to that of a
smaller EPC. In Section 5, we use Petri nets and state spaces to decide whether
the EPC is correct.

4 Reduction Rules

In general, EPCs can contain a large number of functions, events and connectors.
However, for the verification of EPCs, not all of these elements are of interest.
In particular, we are interested in the routing constructs that are used in the
EPC, since that is where the errors can be. Furthermore, it is obvious that some
constructs are trivially correct, for example if a split of some type is followed by
a join of the same type. In this section, we introduce a set of reduction rules.
These rules can be applied on any EPC in such a way that, if the EPC is correct
before the reduction, then the result after reduction is correct and if the EPC
is not correct before reduction, then the result after reduction is not correct,
i.e. these rules are correctness preserving. However, we do not intend these rules
to be complete. Instead, they merely help to speed up the verification process,
by removing trivial parts before going to the more complex steps in terms of
computation time.

It is easily seen that the applying the reduction rules does not result in an
EPC, since functions and events no longer alternate. However, for the process of



Verification of EPCs: Using Reduction Rules and Petri Nets 379

verification, this is not a problem and we will refer to this reduced model as a
reduced EPC.

f

t
1

e

Fig. 2. Trivial construct

t1

t
2

t1

t
2

t1 = t2

OR

t2 = \/

Fig. 3. Simple split/join

t1

t
2

t
1

t
1

= t
2

Fig. 4. Similar joins

t1

t
2

t1t
1

= t
2

Fig. 5. Similar splits

X

X

X

X

Fig. 6. XOR loop

\/

t
1

\/

t
1

t
1
 = x

OR
t
1
 = \/

Fig. 7. optional OR loop

Figure 2 shows the reduction rule for trivial constructs. It shows that a func-
tion f , an event e or a connector with type t1 with precisely one ingoing and
one outgoing edge can be removed completely. As stated before, we are only in-
terested in routing constructs and functions, events or connectors with only one
incoming and only one outgoing edge do not provide any routing information.
Therefore, they can be removed while preserving correctness.

Figure 3 shows the reduction rule for a split that is followed by a join con-
nector. This rule can be applied if both connectors are of the same type (i.e.
AND, OR or XOR), or if the join connector is of type OR. Again it is trivial to
see that correctness is preserved.

Figures 4 and 5 show the rules for two connectors of the same type that
directly follow each other. These two connectors can then be merged into one
connector of the same type. Note that syntactical restrictions of (reduced) EPCs
do not allow for more then one edge between the first and the second connector,
since connectors are either a split or a join and never both.



380 B.F. van Dongen, W.M.P. van der Aalst, and H.M.W. Verbeek

EPC ready to
be verified

EPC is correct and
executable

EPC can be
correct, Further

investigation
necessary

EPC is incorrect,
Problem has to be

resolved

Initial Events
are known

Possible
combinations

of initial Events

Possible final
Markings known

Allowed final
Markings

Fig. 8. Reduced EPC for the verification process

Finally, figure 6 and 7 show two very similar reduction rules that deal with
loops. In these cases correctness preservation is less straightforward. For Figure 6
it is clear that removing the possibility to loop back is correctness preserving,
because the “backward arc” does not introduce any new states. Figure 7 shows
an optional rule. Unlike the others it is not correctness/incorrectness preserving
in any situation like the first five rules. The rule assumes that the intended
semantics is safe (i.e., no multiple activations of functions and no events that are
marked multiple time). This implies that if t1 is an OR-join either the backward
arc is taken or any combination of the other arcs.

Figure 8 shows the result of applying reduction rules to the EPC of Figure 1.
The resulting reduced EPC does not contain any functions, and only some of
the connectors from the original EPC. We know that none of the reduction rules
will make the reduced EPC incorrect if the original was correct, and they will
not make the reduced EPC correct if the original was incorrect. Therefore, we
can now proceed with the verification process using this reduced EPC and the
result can directly be translated back to the original EPC.

5 Verification of the Reduced EPC

In the previous section, we introduced reduction rules for EPCs in such a way
that we can use a reduced EPC for the verification process. In this section,
we will translate the reduced EPC into a safe Petri net (i.e. a Petri net where a
place contains at most one token). This is also the part of the verification process
where user interaction plays an important role. The user has to provide us with
possible combinations of initial events. These combinations are then translated
into initial markings of the Petri net. By calculating the state space, we can then
provide the user with all possible combinations of final events that can happen.
It is again up to the user to divide those into a set of desired and undesired
combinations. Using this information we go into the final stage, where we use a
simple coloring algorithm on the state space to decide whether the reduced EPC
is correct. This is then translated back to the original EPC.



Verification of EPCs: Using Reduction Rules and Petri Nets 381

The whole process of verification described in this section is implemented
in our the ProM framework. This tool interacts with the Aris toolset, which is
widely used in industry for modeling business processes.

User Interaction 1. As we stated before, the process of EPC verification relies
on user interaction at two points. The first point is where the user has to specify
which combinations of initial events can appear to initiate the process described
by the EPC. Using this information from the user, we can calculate which ini-
tial markings are possible for the Petri net that we will build. If we consider
the example from Figure 1, then there is only one combination of events that
can start the process. This is the combination of the events “EPC ready to be
verified”, “Possible combinations of initial events” and “allowed final markings”.
It has to be noted that the events “Possible combinations of initial events” and
“allowed final markings” can only appear as a consequence of some choice that
was made in the model. However, these causalities are not expressed in the EPC,
and therefore they cannot be known to the verification system. As can be seen
in the procedure shown in Figure 1, we are now ready to transform the EPC
into a Petri net.

Translation to Petri Net. Many authors have described algorithms to trans-
late EPCs to Petri nets. In this paper, we use a modified version of the translation
proposed in [8, 7]. The translation presented there gives a translation into normal
Petri nets, whereas we use the same translation algorithm, but assume the result
to be a safe Petri net, or elementary net. In terms of an EPC, this corresponds
to ruling out the situation where an event can occur more then once before it is
dealt with. Converting an elementary net into a Petri net again is a trivial step,
since it only requires the duplication of all places. The choice for elementary nets
is motivated by the idea that an EPC should clearly reflect its behavior from its
design. When one event is allows to appear again, before it is dealt with by some
function, this does not hold any more. The result of the transformation process
is shown in Figure 9. Note that in the layout of the Petri net the reduced EPC
from Figure 8 is visible.

Using the combinations of initial events calculated in the previous step, we
are ready for the state space generation.

State Space Generation. As we stated in Section 3.3, it is possible to calculate
the entire state space for a Petri net, if it is bounded, and the Petri net is not
too large. In our case, the Petri net is likely to be of limited size, since we used
the reduction rules to get a model that is as small as possible. Furthermore, the
Petri net contains at most one token in each place. Therefore we are likely to be
able to calculate the state space.

User Interaction 2. Now that we have calculated the state space, we are able
to provide the user with details about the possible outcomes of the process. In
our example, there are many different outcomes that were not intended to be
there. The reason for this is in the informal definition of the OR-connector in the
process. From this paper it will become clear that you either have both events



382 B.F. van Dongen, W.M.P. van der Aalst, and H.M.W. Verbeek

Fig. 9. Petri net translation of the reduced EPC

“Ready for analysis” and “Allowed final markings”, or you have “All allowed
OR transitions are removed”. However, from the description of the EPC, this is
not clear. Therefore, we require the user to select those possible outcomes that
correspond to correct executions of the process.

The Decision Process. Finally, we have all the ingredients we need to decide
whether the EPC is correct. We have a state space, of which we know all initial
states and all allowed final states. The first step toward the final decision is to
color everything from the state space that appears on a path from a initial state
to one of the allowed final states. The colored part of the state space then de-
scribes all the behavior that the user allows. Then, we look for all transitions that
do not have a colored edge in the reduced state space. We call those transitions
“not covered”.

In principle, transitions that are not covered show that there is possible in-
correct behavior. Translating this back to an EPC would result in saying that
a certain connector is used incorrectly. This is indeed the case for connectors of
type XOR and AND. However, for connectors of type OR, we need to perform
an additional step. When people use connectors of type OR, they do not neces-
sarily want all the possible behavior to appear. For example an OR split on two
functions A and B can be used to express that you want to execute either A, or
A and B, but never just B. In the verification process, this needs to be taken
into account. If for example the transition that goes only to B is not covered,
then it can safely be removed. However, this can only be done if the transition



Verification of EPCs: Using Reduction Rules and Petri Nets 383

to A and B is covered. This check is performed for all transitions that belong
to OR connectors and are not covered. Some of them will be removed from the
Petri net. The state space is then recalculated without the need for user inter-
action. Again, the coloring process is repeated and finally, when we know all the
transitions that are covered, we can provide the final answer.

There are three possible answers, namely:

The EPC is correct. This is the case if the entire state space is colored. If
the EPC is correct, then it is always possible to execute the process without
ending up in some undesired state.

The EPC can be correct. This is the case if the state space is not entirely
colored, but all transitions are covered. This result tells the designer that
the EPC can be executed, but special care has to be taken to make sure that
an execution does not end up in some undesired result.

The EPC is incorrect. This is the case when not all transitions are covered.
Basically this means that there is some part of the EPC that cannot be
executed without running into some undesired behavior.

In this section, we have presented a step by step algorithm for the verification
of EPCs. We have shown that we need user interaction on two levels, and that the
resulting answer is not “black or white”. Instead, there is a gray area where the
EPC can be executed correctly, but can also run into problems. This gray area
is not a flaw of the verification process. Instead, it shows the difference between
a conceptual modeling language such as EPCs and an executable specification
in terms of a Petri net. The EPC should be used to talk about the process
and not as an executable specification. However, it is possible to derive such an
executable specification from the EPC.

6 Two Case Studies

When developing methods for the verification of informal modeling languages,
such as EPCs, there is a need to show applicability in real life. Therefore, we
tested our approach in two different settings. The first case study was conducted
within the Trade Department of a large Dutch bank.3 There we applied our
approach and tool on a trade execution process. We were not primarily interested
in the outcome of the algorithm, i.e., whether the EPC analyzed was correct or
not, but whether the consultants that modeled the EPC would understand the
concepts described in this paper, and whether they would be able to use the
tools we developed. The second case study was not conducted within an external
organization. Instead we used our tool for the verification of some SAP reference
models present in SAP R/3 and Aris for MySAP. Also in the second case study,
we found some interesting problems.

3 We cannot disclose the name of the bank.



384 B.F. van Dongen, W.M.P. van der Aalst, and H.M.W. Verbeek

6.1 Verification of Trade Execution Process in a Dutch Bank

Within the bank, business consultants made large EPCs modeling the trade exe-
cution process. They used the Aris toolset for modeling their business processes.
They approached us to verify these processes. We applied the approach and the
conclusion of the ProM tool was that the EPC could be correct. In other words,
there existed possible executions that were not desirable. Using our tool, the
consultants were able to identify the problem area’s and from that they con-
cluded that the model was correct and that the intended behavior would not
lead to undesirable outcomes. Performing this test on their trade execution pro-
cess made them decide to keep on using the ProM tool in the future. Figure 10
shows the trade execution process in our ProM tool.

Fig. 10. ProM showing the trade process Fig. 11. ProM showing the SAP process

6.2 Verification of SAP Reference Models

The SAP reference models are widely used in industry as a starting point for the
configuration of SAP implementations. Of course, one would expect all these ref-
erence models to be correct, or at least to be possibly correct. Surprisingly, many
reference models contained unrecoverable errors, and they would (if applied di-
rectly in industry) definitely lead to undesired behavior of the SAP system. In
Figure 11 we show our tool highlighting the problem area of one of the SAP
reference models. The model shown here is the “Procurement of Materials and
External Services” process, where a mistake was made in one of the connectors,
since it was modelled as a XOR-join instead of an AND-join.

The two case studies highlight the applicability of the approach. Unfortu-
nately, we cannot elaborate on them because a detailed discussion would make
the paper too long.

7 Conclusion

In this paper, we have presented an algorithm for the verification of EPCs. In
contrast to many authors, we do not assume EPCs to be an executable specifica-



Verification of EPCs: Using Reduction Rules and Petri Nets 385

tion of a process, nor do we translate the EPC into one. In order to still be able
to say something about the correctness of EPCs, we developed an interactive
way of verifying EPCs. In this interactive process, we assume the user to have
deeper knowledge of the EPC and we assume the user to be able to interpret the
results. Besides that, we acknowledge the fact that EPCs are conceptual models
and therefore our result cannot be expressed in a binary way. An EPC obviously
is incorrect, if some part of it will always lead to undesired behavior, and it is
correct if no part will ever lead to undesired behavior. However, there is a gray
area in between those two extremes, where the EPC does allow for undesired
behavior on the level of the model. This however, does not mean that there is
no way of deriving an executable specification using the EPC as a basis.

References

1. W.M.P. van der Aalst. Formalization and Verification of Event-driven Process
Chains. Information and Software Technology, 41(10):639–650, 1999.

2. W.M.P. van der Aalst. Workflow Verification: Finding Control-Flow Errors using
Petri-net-based Techniques. In W.M.P. van der Aalst, J. Desel, and A. Oberweis,
editors, Business Process Management: Models, Techniques, and Empirical Stud-
ies, volume 1806 of Lecture Notes in Computer Science, pages 161–183. Springer-
Verlag, Berlin, 2000.

3. W.M.P. van der Aalst, J. Desel, and E. Kindler. On the Semantics of EPCs: A
Vicious Circle. In M. Nüttgens and F.J. Rump, editors, Proceedings of the EPK
2002: Business Process Management using EPCs, pages 71–80, Trier, Germany,
November 2002. Gesellschaft für Informatik, Bonn.

4. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2002.

5. W.M.P. van der Aalst, A. Hirnschall, and H.M.W. Verbeek. An Alternative Way
to Analyze Workflow Graphs. In A. Banks-Pidduck, J. Mylopoulos, C.C. Woo, and
M.T. Ozsu, editors, Proceedings of the 14th International Conference on Advanced
Information Systems Engineering (CAiSE’02), volume 2348 of Lecture Notes in
Computer Science, pages 535–552. Springer-Verlag, Berlin, 2002.

6. W.M.P. van der Aalst and A.H.M. ter Hofstede. Verification of Workflow Task
Structures: A Petri-net-based Approach. Information Systems, 25(1):43–69, 2000.

7. J. Dehnert and W.M.P. van der Aalst. Bridging the Gap Between Business Models
and Workflow Specifications. International Journal of Cooperative Information
Systems, 13(3):289–332, 2004.

8. J. Dehnert and P. Rittgen. Relaxed Soundness of Business Processes. In K.R.
Dittrich, A. Geppert, and M.C. Norrie, editors, Proceedings of the 13th Interna-
tional Conference on Advanced Information Systems Engineering (CAiSE’01), vol-
ume 2068 of Lecture Notes in Computer Science, pages 157–170. Springer-Verlag,
Berlin, 2001.

9. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, Cambridge, UK, 1995.

10. K. van Hee, N. Sidorova, and M. Voorhoeve. Soundness and Separability of Work-
flow Nets in the Stepwise Refinement Approach. In W.M.P. van der Aalst and
E. Best, editors, Application and Theory of Petri Nets 2003, volume 2679 of Lec-
ture Notes in Computer Science, pages 335–354. Springer-Verlag, Berlin, 2003.



386 B.F. van Dongen, W.M.P. van der Aalst, and H.M.W. Verbeek

11. G. Keller, M. Nüttgens, and A.W. Scheer. Semantische Processmodellierung auf
der Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des
Instituts für Wirtschaftsinformatik, Heft 89 (in German), University of Saarland,
Saarbrücken, 1992.

12. G. Keller and T. Teufel. SAP R/3 Process Oriented Implementation. Addison-
Wesley, Reading MA, 1998.

13. E. Kindler. On the Semantics of EPCs: A Framework for Resolving the Vicious
Circle. In J. Desel, B. Pernici, and M. Weske, editors, International Conference
on Business Process Management (BPM 2004), volume 3080 of Lecture Notes in
Computer Science, pages 82–97. Springer-Verlag, Berlin, 2004.

14. P. Langner, C. Schneider, and J. Wehler. Petri Net Based Certification of Event
driven Process Chains. In J. Desel and M. Silva, editors, Application and Theory
of Petri Nets 1998, volume 1420 of Lecture Notes in Computer Science, pages
286–305. Springer-Verlag, Berlin, 1998.

15. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

16. H. Lin, Z. Zhao, H. Li, and Z. Chen. A Novel Graph Reduction Algorithm to
Identify Structural Conflicts. In Proceedings of the Thirty-Fourth Annual Hawaii
International Conference on System Science (HICSS-35). IEEE Computer Society
Press, 2002.

17. T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE, 77(4):541–580, April 1989.

18. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

19. W. Sadiq and M.E. Orlowska. Modeling and verification of workflow graphs. Tech-
nical Report No. 386, Department of Computer Science, The University of Queens-
land, Australia, 1996.

20. W. Sadiq and M.E. Orlowska. Applying Graph Reduction Techniques for Iden-
tifying Structural Conflicts in Process Models. In M. Jarke and A. Oberweis,
editors, Proceedings of the 11th International Conference on Advanced Informa-
tion Systems Engineering (CAiSE ’99), volume 1626 of Lecture Notes in Computer
Science, pages 195–209. Springer-Verlag, Berlin, 1999.

21. W. Sadiq and M.E. Orlowska. Analyzing Process Models using Graph Reduction
Techniques. Information Systems, 25(2):117–134, 2000.

22. A.W. Scheer. Business Process Engineering, Reference Models for Industrial En-
terprises. Springer-Verlag, Berlin, 1994.

23. H.M.W. Verbeek and W.M.P. van der Aalst. Woflan 2.0: A Petri-net-based Work-
flow Diagnosis Tool. In M. Nielsen and D. Simpson, editors, Application and
Theory of Petri Nets 2000, volume 1825 of Lecture Notes in Computer Science,
pages 475–484. Springer-Verlag, Berlin, 2000.


	Introduction
	Related Work
	Verification of Models with Formal Semantics
	Verification of Informal Models
	Verification by Design

	Preliminaries
	Event-Driven Process Chains
	Petri Nets
	State Space

	Reduction Rules
	Verification of the Reduced EPC
	Two Case Studies
	Verification of Trade Execution Process in a Dutch Bank
	Verification of SAP Reference Models

	Conclusion



