

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 293 – 308, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Concern-Oriented Requirements
Engineering Model

Ana Moreira†, João Araújo†, and Awais Rashid‡

† CITI/Dept. Informática, FCT, Universidade Nova de Lisboa,
2829-516 Caparica, Portugal

‡ Computing Department, Lancaster University,
Lancaster LA1 4YR, UK

{amm, ja}@di.fct.unl.pt, awais@comp.lancs.ac.uk

Abstract. Traditional requirements engineering approaches suffer from the
tyranny of the dominant decomposition, with functional requirements serving as
the base decomposition and non-functional requirements cutting across them. In
this paper, we propose a model that decomposes requirements in a uniform
fashion regardless of their functional or non-functional nature. This makes it
possible to project any particular set of requirements on a range of other
requirements, hence supporting a multi-dimensional separation. The projections
are achieved through composition rules employing informal, often concern-
specific, actions and operators. The approach supports establishment of early
trade-offs among crosscutting and overlapping requirements. This, in turn,
facilitates negotiation and decision-making among stakeholders.

1 Introduction

The tyranny of the dominant decomposition [21] refers to the limited mechanisms
used by traditional methods to decompose complex systems into separate concerns.
Modern approaches propose mechanisms for decomposition and composition.
However, they mostly use a dominant dimension as the base decomposition, with
other possible dimensions cutting across them. For example, approaches, such as the
NFR framework [2], use non-functional requirements as the dominant dimension with
the functional dimension added a posteriori. Other existing requirements engineering
(RE) approaches, such as viewpoints [7, 19] and use cases [9], use functional
requirements as the dominant decomposition with analysis conducted against a set of
non-functional requirements cutting across the base.

It has been argued that crosscutting is a phenomenon that is not limited to non-
functional requirements and that functional requirements can also often cut across
parts of a system [16]. Existing separation of concerns mechanisms at the RE level do
not explicitly account for such crosscutting nature of functional requirements.
Consequently, they cannot be handled effectively leading to a lack of identification
and characterisation of their influence on other concerns in the system. Furthermore,
an initially non-crosscutting set of requirements (functional or non-functional) might
become crosscutting in future. The two-dimensional nature of existing decomposition
approaches does not provide support to deal with such unanticipated evolution.

294 A. Moreira, J. Araújo, and A. Rashid

In this paper, we propose a model that decomposes requirements in a uniform
fashion regardless of their functional or non-functional nature. This makes it possible
to project any particular set of requirements on a range of other requirements, hence
supporting a multi-dimensional separation. A projection specifies the influence of a
given concern on other concerns and is achieved through composition rules
employing informal, often concern-specific, actions and operators. The rules specify
the projection of a particular concern onto other concerns it relates to. The various
projections make it possible for us to compose a range of reflected projections
contributing to an individual concern. The approach supports establishment of early
trade-offs among crosscutting and overlapping requirements. This, in turn, facilitates
negotiation and decision-making among stakeholders. The uniform nature of the
decomposition also makes it possible to deal with situations where an initially non-
crosscutting set of requirements evolves to have a wider influence in the system.

Section 2 discusses existing approaches to separate crosscutting concerns at the RE
level and highlights how these suffer from the tyranny of dominant decomposition.
Section 3 presents our model for multi-dimensional separation of requirements level
concerns. Section 4 provides an overview of the realisation of the model using XML
and applies it to a case study of a location and context sensitive tourist guide. Section
5 discusses some related work, while Section 6 concludes the paper and identifies
directions for future work.

2 Background

Separation of concerns has been contemplated by well-known RE approaches such as
goal-oriented techniques and viewpoints. In goal-oriented approaches [12], such as
KAOS [3] and i* [23], a goal is an objective that the system under consideration
should achieve. It can be formulated at different levels of abstraction and covers
concerns in two dimensions, i.e., functional and non-functional. KAOS uses a formal
language (first-order temporal logic with real-time constraints) to specify critical parts
of the system, besides allowing informal modelling. Goals are used to detect and
manage conflicts among requirements. The i* framework identifies and models
organisational requirements and adopts the goal and softgoal modelling concepts as
its dimensions. A softgoal represents a non-functional requirement we expect to
satisfy within acceptable limits.

Separation of crosscutting properties has also been considered in PREView [19], a
viewpoint-oriented requirements engineering method. A PREView viewpoint
encapsulates partial information about the system. Requirements are organised in
terms of several viewpoints, and analysis is conducted against a set of concerns
intended to correspond broadly to the overall system goals. In applications of the
method, the concerns that are identified are typically high-level non-functional
requirements. Here again the separation of concerns is two-dimensional: one being
the viewpoints that handle functional requirements and the PREView-specific notion
of concerns which encapsulate non-functional properties.

The Aspect-Oriented Requirements Engineering (AORE) model presented in [17]
is based on treating PREView concerns as adaptations of the aspect-oriented
programming [6] notion of aspects and, consequently, carries out the analysis of

 A Concern-Oriented Requirements Engineering Model 295

broadly scoped properties against a base set of viewpoints. A refinement of this
model, presented in [16], supports separation of the specification of aspectual
requirements, non-aspectual requirements and composition rules in modules
representing coherent abstractions and following well-defined templates. This
modularisation makes it possible to establish early trade-offs between aspectual
requirements hence providing support for negotiation and subsequent decision-
making among stakeholders. However, the composition rules have to be written with
reference to a dominant decomposition that aspects cut across.

The discussion above demonstrates that, while existing RE approaches support
analyses of system requirements from the perspective of non-functional properties,
support for identifying the influence of crosscutting functional properties (or a
combination of functional and non-functional properties) is not available. Nor is there
any support for incorporating such an influence during trade-off analysis and
subsequent negotiation among stakeholders. The multi-dimensional approach
presented in this paper addresses the above issues by eliminating the dominant
decomposition through uniform treatment of the various types of requirements in the
system. In deriving our multi-dimensional model we have built on the strengths of the
model in [16], mainly the informal composition rules with concern-specific actions
and operators and the effective support for establishing trade-offs and negotiations
among stakeholders.

3 A Concern-Oriented Model for RE

Modern systems have to run in highly volatile environments where the business rules
change rapidly. Therefore, systems must be easy to adapt and evolve. In order to
facilitate adaptability and evolution, it is essential that the influence of any set of
requirements on the system can be determined. In existing RE approaches, such
analyses focus on the influence of non-functional requirements. Functional
requirements that might have a wide impact on other functional or non-functional
requirements are not effectively dealt with. In Section 2, we argued that this is a direct
consequence of having a largely two-dimensional decomposition.

Our proposed model addresses this problem by treating all concerns in a uniform
fashion. Concerns in our model imply any coherent collection of requirements. We do
not classify concerns into viewpoints, use cases or aspects though our concerns still
encapsulate coherent sets of functional and non-functional requirements. As shown in
Figure 1, we perceive the concern space at the requirements level as a hypercube.
Each face of the hypercube represents a particular concern of interest. By treating all
concerns as equal we can choose any set of concerns as a base to project the influence
of another concern or set of concerns onto this base. This flexible, multi-dimensional
view makes it possible to handle both crosscutting functional and non-functional
requirements in an effective fashion.

Our RE model is shown in Figure 2. We start by identifying and specifying concerns.
Concern identification is carried out using a synthesis of existing requirements
elicitation mechanisms such as viewpoints [7], use cases [9] and goals [12]. The
identified concerns are specified using well-defined templates (cf. Section 4.1.1).

296 A. Moreira, J. Araújo, and A. Rashid

Fig. 1. Concern space represented as a hypercube (the block arrows represent projections)

Identify coarse-grained
concern relationships

Specify concern
projections using
composition rules

Build
contribution
table

Attribute weights
to conflicting
concerns

Resolve
conflicts

Handle conflicts

Revise
Concerns

Specify concern
dimensions

Identify & specify concerns

Identify reflected
projections
through folding

Fig. 2. RE model based on uniform treatment of concerns

The next step is to identify coarse-grained relationships among concerns by
relating concerns to each other through a matrix. These relationships are identified
using techniques such as domain analysis [10], ethnography [22] and natural language
processing [18]. Looking at the matrix (cf. Table 1) we can see which concerns
influence other concerns and whether any reciprocal influence exists.

Notice that in this paper, we do not focus on the exact kind of relationships
between two concerns. In [3] interested readers can find a model for requirements
interdependencies and inter-relationships.

Once the coarse-grained relationships between concerns have been established, the
next step is to specify the possible projections of each concern on other concerns. This
is achieved through composition rules. These rules operate at the granularity of
individual requirements and not just the concerns encapsulating them. Consequently,
it is possible to specify how a requirement in the concern in question influences or
constrains the behaviour of a set of requirements in various other concerns. At the
same time, if desired, trade-offs among concerns can be observed at a finer
granularity. This alleviates the need for unnecessary negotiations among stakeholders
for cases where there might be an apparent trade-off between two (or more) concerns
but, in fact, different, isolated requirements are being influenced by them. It also
facilitates identification of individual, conflicting requirements with respect to which
negotiations must be carried out and trade-offs established.

After specifying the various projections with the aid of composition rules,
identification and resolution of conflicts among the concerns is carried out. This is
accomplished by:

 A Concern-Oriented Requirements Engineering Model 297

1. Building a contribution matrix (cf. Table 2) where each concern may contribute
negatively (-) or positively (+) to the others (empty cells represent “don’t care”
contributions). The diagonal is marked with the concern names to support
observation of reflected projections in step 2. This matrix is inspired on the NFR
framework [2].

2. Folding the table along its diagonal (cf. Figure 3) to obtain the cumulative effect
for situations where two concerns directly influence each other. An example of
this folding is shown for C1 and Cn-1 in Figure 3. The folded table provides us the
reflected projections: the combined influence of a set of concerns on a particular
concern.

3. Attributing weights to those concerns that contribute negatively to each other in
relation to a particular concern. Each weight is a real number in the interval [0 .. 1]
and represents the priority of a concern in relation to the concern it is projected on.

4. Solving the conflicts with the stakeholders, using the above prioritisation
approach to help negotiation and decision-making.

Table 1. Relating concerns to each other

 C1 C2 … Cn

C1 √

C2 √

… …

Cn √

Table 2. Contributions between concerns

 C1 C2 … Cn

C1

C2 −

…

Cn −

Conflict resolution might lead to a revision of the requirements specification
(concerns and/or composition rules). If this happens, then the projections are revised
and any further conflicts arising are resolved. The cycle is repeated until all conflicts
have been resolved through effective negotiations.

Concernn

Concernn-1

Concernn

Concernn-1

Concern1 Concern2

Fig. 3. The concern contribution table folded along its diagonal

The last activity in the model is identification of the dimensions of a concern. As
observed in [17], concerns at this early stage can have an impact on artefacts at later
development stages that can be described in terms of two dimensions:

- Mapping: a concern might map onto a system feature/function (e.g., a simple
method, object or component), decision (e.g., a decision for architecture choice)
and design (and hence implementation) aspect (e.g., mobility cf. Section 4.1.1).

298 A. Moreira, J. Araújo, and A. Rashid

Note that despite their crosscutting nature at this stage, some concerns might not
directly map onto an aspect at later stages.

- Influence: a concern might influence different points in a development cycle, e.g.,
availability influences the system architecture while mobility influences
specification, architecture, design and implementation.

4 Realisation of the Model

We have employed the eXtensible Markup Language, XML, as the definition
language to specify the concerns and the composition rules to relate them with each
other. The concerns and composition rules are specified using pre-defined templates.
These templates can, optionally, be enforced using XML schemas. XML has been
chosen because, as demonstrated by the following case study, there is a need for
concern-specific actions and composition operators when defining the composition
rules. The extensible model offered by XML coupled with the rich specification
model of the XML schema language makes it an ideal choice as it is virtually
impossible to anticipate the various types of composition operators and actions that
might be required. Since the XML schema language is extensible – it is based on
XML itself – it is possible to enforce constraints on the specification of composition
rules when new operators and/or actions are introduced. Furthermore, the ability to
define semantically meaningful tags and informal operators ensures that the
readability of the requirements specification is not compromised as the specification
resides in the stakeholders’ domain and must be readable by them.

The use of XML makes it possible to select any projections of interest by using
XPath queries and observe their cumulative effect. The selected projections and their
effect can also be visualised using the eXtensible Stylesheet Language (XSL). This
aids scalability in the presence of a large number of concerns.

4.1 Case Study

The case study we have chosen is a location and context sensitive tourist guide system
inspired by a real system implemented at Lancaster [5]:

“The system provides an electronic hand-held guide that offers the following facilities
to the visitors: (1) retrieve information about the city, including information about their
current location; (2) provide route guidance to help visitors move between locations on the
tour; (3) enter a set of preferences and interests to generate suitable tours of the city; (4)
access external services, such as hotel and theatre ticket reservations.”

4.1.1 Identify and Specify Concerns
There are some concerns that are probably easier to identify as they directly represent
stakeholders views on the basic functionality of the system. For example, we
definitely have a concern that reflects the visitor needs and another for tourist
information centre. Other concerns reflect more global properties of the system. For
example, mobility will be a concern, as the system needs to react while the visitor is
moving around. This brings immediately to our minds the context concern as the
system needs to recognise the visitor’s change in location. This, in turn, suggests
portability as another one, since the visitor needs to carry with her/himself the

 A Concern-Oriented Requirements Engineering Model 299

electronic device to access the system while on the move. Other concerns such as
compatibility and availability are two obvious ones, since the system must be
compatible with other external services (hotel and ticket reservation systems) and
available anytime the visitor is using it. The concerns we identified are as follows:

- Visitor: users that can retrieve information from the system, including their
current location.

- Tourist Information Centre: decides which information goes into the system.
- Electronic Device: used by the visitors to access the system.
- Portability: the electronic devices to access the system must be carried around

by the visitors and therefore must be portable.
- Mobility: the system must handle mobility as the visitor will need to access the

system on the move during his/her tour.
- Context: the system must recognise and handle the visitor’s change in location.
- Compatibility: the system must be compatible with the external services it has to

interact with, in particular, hotel and theatre ticket reservations.
- Availability: the system must always be available to react to stimuli (e.g., be

accessed by the visitor) and for data updates.

We will be using the concerns Visitor, Mobility and Compatibility to illustrate our
approach. Figures 4 through 6 show these concerns specified in XML.

- <Requirement id="4">
 The visitor will be able to access external
services.

 <Requirement id="4.1">
The visitor will be able to access

hotel reservation.
</Requirement>

 <Requirement id="4.2">
The visitor will be able to access

theatre ticket reservation.
</Requirement>

 </Requirement>
 </Concern>

Fig. 4. The Visitor concern in XML

<?xml version="1.0" ?>
- <Concern name="Mobility">
 - <Requirement id="1">

 The system will be accessed on the move.
 <Requirement id="1.1">

The system will be accessed from
within a limited area.

 </Requirement>
 </Requirement>
 </Concern>

Fig. 5. The Mobility concern in XML

<?xml version="1.0" ?>
- <Concern name="Visitor">
 - <Requirement id="1">
 The visitor will be able to retrieve information

from the system.
 <Requirement id="1.1">

The visitor will be able to access
information about the attractions.

</Requirement>
- <Requirement id="1.2">

The visitor will be able to access
information about his/her location.

 <Requirement id="1.2.1">
The visitor will be able to validate

the information about the location if it
does not correspond to what s/he
sees.

</Requirement>
 </Requirement>
 <Requirement id="1.3">

The visitor will be able to obtain a
list of available preset tours.

</Requirement>
 </Requirement>

- <Requirement id="2">
 The visitor will be able to create a custom tour.

 <Requirement id="2.1">
The visitor will be able to specify

preferences.
 </Requirement>

 </Requirement>
- <Requirement id="3">

 The visitor will be able to follow a tour.
 <Requirement id="3.1">

The visitor will be able to
reconfigure the tour.

</Requirement>
 </Requirement>

<?xml version="1.0" ?>
- <Concern name="Compatibility">

 <Requirement id="1">
The system must be able to interact with

external services.
</Requirement>

 </Concern>

Fig. 6. The Compatibility concern in XML

300 A. Moreira, J. Araújo, and A. Rashid

The structure is self-explanatory: a Concern tag denotes the start of a concern
while a Requirement tag denotes the start of a requirement. Refinements such as sub-
requirements are represented via the nesting of the tags. Each requirement has an id
which is unique within its defining scope i.e. the concern. Concern names are unique
within the case study. However, XML namespaces can be used for the purpose as well.

4.1.2 Identify Coarse-Grained Concern Relationships
As we identify and describe concerns we can relate them, by building the matrix in
Table 3. The tick indicates a unidirectional relationship, from left to right, between
two concerns. For example, Tourist Information Centre has an impact on Visitor, as it
is responsible to make available the information visitors can access. Between Visitor
and Mobility, on the other hand, we can identify two unidirectional relationships (as
they are semantically different cf. composition rules in Section 4.1.3): one from
Visitor to Mobility indicating that visitors require mobility; and another from Mobility
to Visitor indicating that mobility has to support information access for visitor.

4.1.3 Specify Concern Projections Using Composition Rules
Having studied the impact of each concern on all the others we can now start by
analysing in more detail each relationship. The fundamental idea is that we can
project each concern on all the others with which the first has a relationship. The
projection specifies the influence of a given concern (represented in a row in Table 3)
on other concerns (represented in columns in Table 3). Whenever a concern affects
several other concerns it has a broadly scoped impact on the system and, therefore,
can be classified as a crosscutting concern. As we can see from Table 3, not only non-
functional concerns such as Mobility are crosscutting but also functional concerns
such as Visitor have a similar nature.

Table 3. Matrix relating concerns (Vis: Visitor; TIC: Tourist information centre; Port: Portability;
Mob: Mobility; ED: Electronic device; Cont: Context; Comp: Compatibility; Avail: Availability)

Concerns
Concerns

Vis TIC Port Mob ED Cont Comp Avail

Vis

TIC

Port

Mob

ED

Cont

Comp

Avail

The materialisation of these projections is accomplished here by defining a set of
composition rules, one for each projection. Composition rules define the relationships
between concerns requirements at a fine granularity (unlike the relationship matrix in
Section 4.1.2 which is aimed at identifying coarse-grained relationships).
Composition rule definitions can be governed by an XML schema. However, for
simplification we describe the structure of composition rules with reference to some
examples and not the XML schema definition. As shown in Figures 7 through 9, a

 A Concern-Oriented Requirements Engineering Model 301

coherent set of composition rules is encapsulated in a Composition tag. Figure 7
encapsulates all compositions (i.e. projections) for the Visitor requirements while
Figures 8 and 9 do so for Mobility requirements and Compatibility requirements
respectively. The semantics of the Requirement tag here differ from the tags in the
concern definition. If a concern requirement has any sub-requirements these must be
explicitly excluded or included in the Constraint imposed by a concern requirement.
This is done by providing an “include” or “exclude” value to the optional children
attribute. A value of “all” for a concern or id value implies that all the requirements
within the specified concern are to be constrained.

The Constraint tag defines an, often concern-specific, action and operator defining
how the concern requirements are to be constrained by another concern requirement.
Although the actions and operators are informal, they have clearly defined meaning
and semantics to ensure valid composition of concerns. This provides the architects
and designers a systematic means to interpret the requirements specification. The
Outcome tag defines the result of constraining the concern requirements with another
concern requirement. The action value describes whether another concern
requirement or a set of concern requirements must be satisfied or merely the
constraint specified has to be fulfilled (see Table 6).

The informality of the actions and operators ensures that the composition
specification is still readable by the stakeholders, an important consideration during

<?xml version="1.0" ?>
- <Composition>

- <Requirement concern="Visitor" id="all">
- <Constraint action="ensure"

operator="during">
 <Requirement concern="Mobility" id="1"
children="include" />

 </Constraint>
 <Outcome action="fulfilled" />

 </Requirement>
- <Requirement concern="Visitor" id="all">

- <Constraint action="provide" operator="by">
 <Requirement concern="ElectronicDevice"
id="all" />

 </Constraint>
 <Outcome action="fulfilled" />

 </Requirement>
 </Composition>

Fig. 7 Composition rule for Visitor

<?xml version="1.0" ?>
- <Composition>

- <Requirement concern="Mobility" id="1"
children="include">
- <Constraint action="provide" operator="for">

 <Requirement concern="Visitor" id="all" />
 </Constraint>
 <Outcome action="fulfilled" />

 </Requirement>
- <Requirement concern="Mobility" id="1"

children="exclude">
- <Constraint action="enforce" operator="for">

 <Requirement concern="Portability" id="1" />
 </Constraint>
 <Outcome action="fulfilled" />

 </Requirement>

- <Requirement concern="Mobility" id="1"

children="include">

- <Constraint action="affect" operator="on">
 <Requirement concern="Context" id="1"

children="include" />
 </Constraint>
 <Outcome action="fulfilled" />

 </Requirement>
- <Requirement concern="Mobility" id="1.1">

- <Constraint action="affect" operator="on">
 <Requirement concern="Availability" id="all"/>

 </Constraint>
 <Outcome action="fulfilled" />

 </Requirement>
 </Composition>

Fig. 8 Composition rule for Mobility

<?xml version="1.0" ?>
- <Composition>

- <Requirement concern="Compatibility" id="1">
- <Constraint action="ensure" operator="with">

 <Requirement concern="Visitor" id="4"
children="include" />

 </Constraint>
- <Outcome action="satisfied">

 <Requirement concern="Mobility" id="1"
children="include" />

 </Outcome>
 </Requirement>
- <Requirement concern="Compatibility" id="1">

- <Constraint action="ensure" operator = "with">
 <Requirement

concern="TouristInformationCent
re" id="2" />

 </Constraint>
 <Outcome action="fullfilled" />

 </Requirement>
 </Composition>

Fig. 9 Composition rule for Compatibility

.

.

.

302 A. Moreira, J. Araújo, and A. Rashid

Figure 7 and focus on the values in bold we get the following: “All Visitor
requirements must be ensured during requirement 1 of Mobility, including its
children, with the outcome that the Visitor’s requirements are fulfilled”.

Tables 4 to 6 describe the semantics of the actions and operators, which we have
defined so far, for Constraint and Outcome. The initial set of these actions and
operators was first defined in [16]. Here, we have validated that proposal and
identified one new action: affect.

Table 4. Description of Constraint actions Table 5. Description of Constraint operators

The interesting point to note here is that not all operators are concern-specific, e.g.
XOR is a generic operator. Also, the actions for the Outcome are generic and not
specific to a particular concern. It is, however, not possible to say whether Outcome
actions are always generic, as more case studies need to be carried out before arriving at
such a conclusion. It is also worth noting that although the same operator might apply to
different concern requirements, not all operator-action combinations are valid in the
Constraint specification for a particular concern. More case studies need to be carried
out to validate the set of operator-action combinations.

Table 6. Description of Outcome actions

Outcome Action
Type Description

satisfied Used to assert that a set of viewpoint requirements will be satisfied after the
constraints of a concern requirement have been applied.

fulfilled Used to assert that the constraints of a concern requirement have been successfully
imposed.

Constraint Action

Type Description

enforce Used to impose an additional condition
over a set of concern requirements.

ensure Used to assert that a condition that should
exist for a set of concern requirements
actually exists.

provide Used to specify additional features to be
incorporated for a set of concern
requirements.

applied Used to describe rules that apply to a set
of concern requirements and might alter
their outcome.

exclude Used to exclude some concerns or
requirements if the value all is specified.

affect Used to specify that a set of concern
requirements will alter the state of
another concern.

onstraint Operator

Type Description

during Describes the temporal interval during
which a set of requirements is being
satisfied.

between Describes the temporal interval falling
between the satisfaction of two
requirements. The interval starts when
the first requirement is satisfied and ends
when the second one is to start being
satisfied.

on Describes the temporal point after a set of
requirements has been satisfied.

for Describes that additional features will
complement the concern requirements.

with Describes that a condition will hold for
two sets of requirements with respect to
each other.

in Describes that a condition will hold for a
set of requirements that has been
satisfied.

AND,OR,
XOR

Conjunction, disjunction and exclusive-
OR (when either requirement is satisfied
but not both)

requirements engineering. For example, if we look at the first composition rule in

 A Concern-Oriented Requirements Engineering Model 303

4.1.4 Handle Conflicts
The composition rules leads to the identification of conflicts among concerns whose
requirements constrain the same or overlapping sets of other concern requirements. In
case of our approach this process is optimised as any potential interaction or conflict
can be deduced from the composition rules. Conflict resolution is carried out in the
four steps described below.

Build the Contribution Table. The contribution table (cf. Table 7) shows in which
way (negatively or positively) a concern contributes to the others. Each cell shows a
unidirectional contribution between a concern located in a line and a concern located
in a column. In this case, Availability contributes positively to Visitor and Tourist
Information Centre and negatively to Mobility and Electronic Device.

Table 7. Contribution table

Concerns
Concerns

Vis

TIC

Port

Mob

ED

Cont

Comp

Avail

Vis

TIC

Port

Mob –
ED

Cont

Comp –

Avail – –

Identify Reflected Projections Through Folding. Having studied the contribu tions
between concerns we can now fold the table in order to reduce the range of
projections we have to deal with. During folding, concerns that have a symmetric
projection on each other have their effects accumulated. This is shown in Table 8.
The columns in the table show the reflected projections of various concerns on an
individual concern.

Table 8 shows that Compatibility and Availability contribute negatively to
Mobility. We can help resolve such conflict by attributing weights to the concerns
involved in the conflicting situation.

Table 8. Folded table w/ reflected projections

Vis Vis

TIC TIC

Port Port

Mob Mob

ED ED

Cont Cont

Comp – Comp

Avail – – Avail

304 A. Moreira, J. Araújo, and A. Rashid

Attribute Weights to Conflicting Concerns. Weighting allows us to describe the
extent to which a concern may constrain another. The values are given according to
the importance each concern has with respect to another one. The scales we are using
are based on ideas from fuzzy logic and have the following meaning:
- Very important takes values in the interval] 0,8 .. 1,0]
- Important takes values in the interval] 0,5 .. 0,8]
- Average takes values in the interval] 0,3 .. 0,5]
- Not so important takes values in the interval] 0,1 .. 0,3]
- Do not care much takes values in the interval [0 .. 0,1]

Using fuzzy values (very important, important, not so important, etc.) facilitates
the stakeholders’ task of attributing priorities to conflicting concerns.

Weights will be given to concerns with respect to the concern for which we have
specified a composition rule. For example, with respect to Mobility, Compatibility can
have a weight of 0.5, since accessing external services is not a fundamental issue in
our system. In turn, Availability is very important for Mobility (a weight of 1.0), as
without the system being available, we cannot offer mobility.

Table 9. Weighted (folded) contribution table

Vis Vis

TIC TIC

Port Port

Mob Mob

ED ED

Cont Cont

Comp 0,5 Comp

Avail 1,0 1,0 Avail

Resolve Conflicts. The conflicts mentioned above for Mobility should not be too
difficult to resolve, as the weights express priorities. If this was not the case
negotiation would be needed among the stakeholders. Once all the conflicts have been
resolved the specification is revised and recomposition carried out to identify any
further conflicts.

4.1.5 Specify Concern Dimensions
Specification of a concern’s dimensions makes it possible to determine its influence
on later development stages and identify its mapping onto a function, a decision or an
aspect. The various concerns in our case study and their mappings and influences are
shown in Table 10.

Consider our Compatibility concern. The requirements derived from this concern
will influence parts of the system specification, architecture and design pertaining to
requirements derived from other concerns constrained by it. They will also influence
system evolution as change of the external services must be anticipated. The
Compatibility concern will, however, map on to a function allowing visitors to
connect to both hotel and ticket reservations. The Mobility concern, on the other

 A Concern-Oriented Requirements Engineering Model 305

Table 10. Concern dimension specification

Concern Influence Mapping

Visitor Specification, design, evolution Function
Tourist inf. centre Specification, design, evolution Function

Portability Specification, architecture, design, implementation Decision

Mobility Specification, architecture, design, implementation Aspect
Electronic device Specification, architecture, design Function
Context Architecture, design, implementation Aspect
Compatibility Specification, architecture, design, evolution Function
Availability Architecture Decision

hand, will influence the specification, the type of architecture chosen and the design
of the classes realising the requirements constrained by Mobility. It will map to an
aspect at the design and implementation level because mobility properties cannot be
encapsulated in a single class and will be otherwise spread across a number of classes.

5 Related Work

Multi-dimensional separation of concerns is supported by Hyperspaces [21] and
Cosmos [20]. The Hyperspaces approach employs hyperslices as a decomposition
mechanism where concerns are organised according to multiple dimensions, where
each dimension is partitioned by concerns of the same type (e.g classes, functions). A
hypermodule is a set of hyperslices together with a composition rule that specifies
how the hyperslices are composed to form a more complex hyperslice. Our model can
be seen as a specific instantiation of the hyperspaces model at the requirements level.
Concerns in our model can be perceived as hyperslices while composition rules
defining the projections can be seen as a specific instance of hypermodules. Cosmos
is a concern-space modelling schema. Here a concern is any matter of interest in a
system. A concern-space is an organised representation of concerns and their
relationships. Similar to our work, Cosmos generalises the idea of a concern
hyperspace (or hyperslice). It models concern-spaces through concerns, relationships
and predicates. Concerns are classified as logical (representing concepts) and physical
(representing elements of software systems). Some of the concerns and relationships
e.g. physical ones are not relevant at the requirements level. Moreover, the projections
of concerns on other concerns are not truly achieved.

Grundy proposes an aspect-oriented requirements engineering method targeted at
component based software development [8]. The approach provides a categorisation
of diverse aspects of a system that each component provides to end users or other
components. A UML compliant approach to handle quality attributes (i.e. non-
functional requirements) at the early stages of the development process is proposed in
[14]. In both of these approaches, the separation of concerns is two-dimensional (i.e.,
functional and non-functional concerns (or aspects)). Moreover, the projections are
limited from aspects to functional requirements.

In the Architecture Trade-off Analysis Method (ATAM) [11] various competing
quality attributes and their interactions are characterised. This is achieved by building
and maintaining both quantitative and qualitative models of these attributes. The

306 A. Moreira, J. Araújo, and A. Rashid

models are used as a basis to evaluate and evolve the architecture. The main focus of
ATAM is on identifying the trade-off points at the architecture level. The work
described in this paper focuses on identifying conflicting concerns in a uniform
fashion and establishing critical trade-offs before the architecture is derived.
Consequently, it is closer to the Twin Peaks model [15] which focuses on developing
requirements and architectures in parallel in order to develop an early understanding
of the system’s technical feasibility, discover further requirements and constraints and
evaluate alternative design solutions.

Theme/Doc [1] provides support for aspect-oriented analysis. Analysis is carried
out by first identifying a set of actions in the requirements list which are, in turn, used
to identify crosscutting behaviours. A theme is a collection of structures and
behaviours that represent one feature. It is related to a concern in the work described
here. While Theme/Doc is useful to identify themes in a requirements document, our
approach complements this work by considering not only the identification of
concerns, but also their specification and composition.

6 Conclusions and Future Work

In this paper, we have proposed a model to support multi-dimensional separation of
concerns at the requirements level. This multi-dimensionality is achieved through a
uniform treatment of both functional and non-functional properties. This is in direct
contrast with existing RE approaches which typically focus on identifying the effects
of non-functional requirements with reference to the functional requirements.
Consequently, any broadly scoped influence of functional properties is not effectively
dealt with.

The uniform treatment of concerns in our model makes it possible for us to define
the projections of each concern on any set of concerns it relates to. By folding the
resulting contribution matrix, we obtain a set of reflected projections which are then
used for analysing the contribution of multiple concerns towards one particular
concern. It is a difficult and complex task to derive such reflected projections
otherwise.

The trade-off analysis and stakeholder negotiation supported by our RE model is
based on a simple yet natural separation of concerns. This offers a powerful
mechanism to identify influences of the various concerns in the system in a multi-
dimensional fashion. This, in turn, supports better understanding of both crosscutting
functional and non-functional requirements. Also, if a previously non-crosscutting set
of requirements evolves to have a wider impact, the approach can easily deal with
such a change through revision and recomposition of its projections. Any changes to
relationships among concerns can be identified through requirements level impact
analysis techniques [13].

Our future work will focus on developing case studies to further validate the
proposed model and our set of concern specific actions and operators. In the near
future we aim to incorporate the approach in our concern composition and decision
support tool ARCADE which already provides support for the composition rules used
for our case study. We are also interested in exploring the use of fuzzy logic for trade-

 A Concern-Oriented Requirements Engineering Model 307

off analysis based on the weights we may give to concerns. This could help us
identify a process to rank concerns by degree of importance in a system and use the
result as a basis for incremental development.

Acknowledgements

This work is supported by EPSRC Grant MULDRE (EP/C003330/1) and Portuguese
FCT Grant SOFTAS (POSI/EIA/60189/2004).

References

[1] E. Baniassad and S. Clarke, “Theme: An approach for aspect-oriented analysis and
design”. In 26th International Conference on Software Engineering (ICSE), (Edinburgh,
Scotland), 2004.

[2] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-Functional Requirements in
Software Engineering: Kluwer, 2000.

[3] Å. Dahlstedt and A. Persson, "Requirements Interdependencies - Moulding the State of
Research into a Research Agenda". The Ninth International Workshop on Requirements
Engineering: Foundation for Software Quality (REFSQ 2003), Klagenfurt/Velden,
Austria, pp 71-80, 2003

[4] A. Dardenne, A. Lamsweerde, and S. Fickas, "Goal-directed Requirements Acquisition",
Science of Computer Programming, 20, pp. 3-50, 1993.

[5] N. Davies, K. Cheverst, K. Mitchell, and A. Efrat, "Using and Determining Location in a
Context-Sensitive Tour Guide", IEEE Computer, 34(8), pp. 35-41, 2001.

[6] T. Elrad, R. Filman, and A. Bader (eds), "Theme Section on Aspect-Oriented
Programming", CACM, 44(10), 2001.

[7] A. Finkelstein and I. Sommerville, "The Viewpoints FAQ." BCS/IEE Software
Engineering Journal, 11(1), 1996.

[8] J. Grundy, "Aspect-Oriented Requirements Engineering for Component-based Software
Systems", 4th IEEE International Symposium on Requirements Engineering, 1999, IEEE
Computer Society Press, pp. 84-91.

[9] I. Jacobson, Object-Oriented Software Engineering - a Use Case Driven Approach:
Addison-Wesley, 1992.

[10] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, "Feature-Oriented
Domain Analysis (FODA) Feasibility Study", Software Engineering Institute Technical
Report CMU/SEI-90-TR-21 1990.

[11] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere, "The
Architecture Tradeoff Analysis Method", Proc. ICECCS, 1998, IEEE Computer Society
Press, pp. 68-78.

[12] A. Lamsweerde, "Goal-Oriented Requirements Engineering: A Guided Tour", 5th
International Symposium on Requirements Engineering, 2001, IEEE Computer Society
Press, pp. 249-261.

[13] S. Lock and G. Kotonya, "An Integrated, Probabilistic Framework for Requirement
Change Impact Analysis", Australian Journal of Information Systems, 6(2), 1999.

[14] A. Moreira, J. Araújo, and I. Brito, "Crosscutting Quality Attributes for Requirements
Engineering", In 14th International conference on Software Engineering and Knowledge
Engineering (SEKE), 2002, ACM, pp. 167-174.

308 A. Moreira, J. Araújo, and A. Rashid

[15] B. Nuseibeh, "Weaving Together Requirements and Architectures", IEEE Computer,
34(3), pp. 115-117, 2001.

[16] A. Rashid, A. Moreira, and J. Araújo, "Modularisation and Composition of Aspectual
Requirements", In International Conference on Aspect-Oriented Software Development
(AOSD), 2003, ACM, pp. 11-20.

[17] A. Rashid, P. Sawyer, A. Moreira, and J. Araújo, "Early Aspects: A Model for Aspect-
Oriented Requirements Engineering", In International Conference on Requirements
Engineering (RE), 2002, IEEE Computer Society Press, pp. 199-202.

[18] P. Rayson, L. Emmet, R. Garside, and P. Sawyer, "The REVERE Project: Experiments
with the application of probabilistic NLP to Systems Engineering", Proc. NLDB 2000,
LNCS 1959, pp. 288-300.

[19] I. Sommerville and P. Sawyer, Requirements Engineering - A Good Practice Guide: John
Wiley and Sons, 1997.

[20] S. M. Sutton and I. Rouvellou, "Modeling of Software Concerns in Cosmos", In
International Conference on Aspect-Oriented Software Development (AOSD), 2002,
ACM, pp. 127-133.

[21] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. Sutton, "N Degrees of Separation:
Multi-Dimensional Separation of Concerns", In International Conference on Software
Engineering (ICSE), 1999, ACM, pp. 107-119.

[22] S. Viller and I. Sommerville, "Social Analysis in the Requirements Engineering Process:
From Ethnography to Method", In International Conference on Requirements
Engineering (RE), 1998, IEEE Computer Society, pp. 6-13.

[23] E. Yu, "Modelling Strategic Relationships for Process Reengineering": PhD Thesis,
University of Toronto, 1995.

	Introduction
	Background
	A Concern-Oriented Model for RE
	Realisation of the Model
	Case Study

	Related Work
	Conclusions and Future Work
	Acknowledgements
	References

