
Understanding the Requirements on
Modelling Techniques

S.J.B.A. Hoppenbrouwers, H.A. Proper, and Th.P. van der Weide

Institute for Computing and Information Sciences, Radboud University Nijmegen,
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, EU

{S.Hoppenbrouwers, Th.P.vanderWeide, E.Proper}@cs.ru.nl

Abstract. The focus of this paper is not on the requirements of an in-
formation system to be developed, but rather on the requirements that
apply to the modelling techniques used during information system devel-
opment. We claim that in past and present, many information systems
modelling techniques have been developed without a proper understand-
ing of the requirements that follow from the development processes in
which these techniques are to be used. This paper provides a progress
report on our research efforts to obtain a fundamental understanding of
the requirements mentioned. We discuss the underlying research issues,
the research approach we use, the way of thinking (weltanschauung) that
will be employed in finding the answers, and some first results.

1 Introduction

In past and present, many information systems modelling techniques have been,
and are being, developed [1, 2, 3, 4]. With the term modelling technique we
(roughly) refer to the combination of a modelling language/notation and proce-
dures/guidelines for the creation of models. This definition is in line with defi-
nitions that can be found in e.g. [3, 4, 5]. The authors of this paper have them-
selves contributed their fair share of modelling techniques [6, 7, 8, 9, 10, 11]. The
plethora of modelling techniques that is available to developers of information
system has, in the past, already been referred to as “a jungle” [3]. This jungle
leaves developers of information systems with the burden of selecting modelling
techniques that are apt for the modelling tasks at hand.

The UML [12] aims to provide a standardisation of some of the diagramming
techniques used. However, to a large extent it is still up to the modelers to choose
the right diagramming technique for a given task, and the best way to apply it
to this task. What is more, there are bound to be modelling tasks for which
none of the UML standard techniques suffice. There is no silver bullet [13] for
modelling techniques.

This leads us to the key questions with which the research, as reported in
this paper, is concerned:

– What are the purposes that modelling techniques should serve when used in
information system development?

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 262–276, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Understanding the Requirements on Modelling Techniques 263

– What requirements does this set for the modelling techniques to be used?
– How should one go about selecting and applying modelling techniques for a

given task in a development process?
In our view, selecting and applying modelling techniques depends strongly on
the goals of the tasks that are to be executed in the development process. These
goals dictate the requirements that should be set for the modelling technique
and their usage. In this paper, we will show how these requirements depend on
a multitude of factors. In doing so, we will base ourselves both on theoretical
considerations and on input from interviews with practitioners.

In finding answers to the questions raised above, we employ the action re-
search paradigm [14]. This entails that our work will progress (evolutionary)
through two major stages (taken from [15]):

Diagnostic stage – This stage involves a collaborative analysis of the social
situation by the researcher and the subjects of the research. Theories are
formulated concerning the nature of the research domain.

Therapeutic stage – This involves collaborative change experiments. In this
stage changes are introduced and the effects are studied [16].

We are currently in transition from the diagnostic stage to the therapeutic
stage. In the execution of the diagnostic stage, we have used a three-pronged
approach, which has also inspired the structure of the remainder of this article:

Articulate way of thinking – This sub-stage refers to the way of thinking
(or weltanschauung) concerning information system development we will em-
brace in seeking the answers to the questions raised above. The current status
of this sub-stage is discussed in section 2.

Define conceptual framework – The focus of this sub-stage is on a further
refinement and concretisation of the way of thinking in terms of a conceptual
framework. This framework is needed to position and “code” the empirical
results that will follow from the execution of the next stage (the therapeutic
stage). The current status of this sub-stage is addressed in section 3.

Initial findings – The elaboration of the conceptual framework took place in
conjunction with a number of interviews with experienced modelers (in par-
ticular enterprise architects)1. These interviews and discussions already pro-
duced some results that provide a more practical perspective on the theo-
retical framework. These results are presented in section 4.

2 Communication-Driven Knowledge Transformation

In this section we discuss our fundamental way of thinking with regard to sys-
tem development. It provides a frame of thought against which one can better
understand the (communicative) requirements posed on modelling techniques.

1 This part of the research was conducted within the context of the ArchiMate project
(http://archimate.telin.nl), a research projects that aims to provide concepts
and techniques to support enterprise architects in the visualisation, communication
and analysis of integrated architectures.



264 S.J.B.A. Hoppenbrouwers, H.A. Proper, and Th.P. van der Weide

2.1 Communication-Driven

Key to our view on the utility of modelling techniques is their role as a means
of communication in system development. In the past we have already taken a
communication-driven perspective on modelling activities in information system
development [11, 17, 18, 19, 20], as well as on the act of system development
itself [21]. We are certainly not alone in doing so [22, 23].

To understand the role of modelling techniques in system development, we have
extended our communicative perspective to cater for the fact that the communica-
tion taking place during during system development leads to the creation and dis-
semination of knowledge. In essence, we regard system development as a communi-
cation-driven knowledge transformation process whereby conversations are used
to share and create knowledge pertaining to the system being developed as well
as the development process as such. The notion of conversation should be inter-
preted here in the broadest sense, ranging from a single person producing a model
(description), via one-on-one design/elicitation sessions, to workshops with several
stakeholders, and even the broad dissemination of definitive system designs.

Our aim of viewing information system development as a knowledge trans-
formation process is to use this perspective on system development to better
understand and articulate the requirements that should be set for modelling
techniques. From this perspective, modelling techniques should be regarded as
a means (a language) to an end (system development), not unlike a functional
perspective (What is it to be used for? ) on language [24].

2.2 Development Community

Given our focus on communication, it is important to identify the actors and ob-
jects that could play a role in the communication that takes place during the sys-
tem development process. The actors are likely to have some stake with regards
to the system being developed. Examples of such actors are: problem owners,
prospective actors in the future system (such as the future ‘users’ of the system),
domain experts, sponsors, architects, engineers, business analysts. The actors,
however, are not the only items playing an important role in system develop-
ment. In addition, consider a number of objects: the many different documents,
models, forms, etc., that represent bits and pieces of knowledge pertaining to the
system that is being developed. Actors and objects combined, and the different
roles they can play, is what we shall refer to as a system development community.

The actors in a system development community will (typically as a con-
sequence of their personal goals and stakes) have some specific interests with
regard to the system being developed. This interest implies a sub-interest re-
garding (the contents of) the system descriptions that are communicated within
the community. This interest is, in line with [25], referred to as the concern of a
stakeholder. Some examples of concerns are:

– The current situation concerning the computerized support of a business
process.

– The requirements of a specific stakeholder with regard to the desired situation.



Understanding the Requirements on Modelling Techniques 265

– The improvements/benefits which a new system may bring to a pre-existing
situation in relation to the cost of acquiring the system.

2.3 System Development Knowledge

The system development community harbours knowledge about the system being
developed. To be more precise, the members of the system development commu-
nity can be regarded as knowledge carriers harbouring knowledge pertaining to
(their view on) a sub-domain within the system being developed (and/or its de-
velopment process). In this vein, the communication occurring within a system
development community essentially aims to create, further, and disseminate this
knowledge. Importantly, the actual knowledge can pertain to the system being
developed, as well as the development process as such. In the next section, we
will provide a more elaborate discussion on the kinds of knowledge that may
(have to) be communicated.

Depending on the concerns of a stakeholder, she will be interested in differ-
ent knowledge topics pertaining to the system being developed. For example: a
financial controller will be interested in an investment perspective on the overall
scope of a future system, a designer will be interested in all aspects of the design
chain from different perspectives, etc.

2.4 Transformations of Knowledge

During the development of a system, the knowledge about the system and its
development will evolve. New insights emerge, designs are created, views are
shared, opinions are formed, design decisions made, etc. Consequently, the knowl-
edge as it is present in a development community can be seen to evolve through
a number of knowledge states. At present, we identify two dimensions for the
knowledge states of the development community: (1) level of sharing, and (2)
level of explicitness.

Knowledge needs to be introduced into the community first, either by creating
the knowledge internally or importing it from outside of the community. Once the
knowledge has been introduced to a community, it can be shared among different
knowledge carriers. Sharing knowledge between different knowledge carriers may
progress through a number of stages. Of the two kinds of knowledge carriers
(objects and actors) in a development community, only the actors are “allowed”
to cast judgement on the level of sharing between two knowledge carriers. We
actually distinguish three major stages of knowledge sharing:

Aware – An carrier may become “aware” of (possible) knowledge by way of
the sharing by another carrier (possibly from outside the community), or by
creating it themselves.

Agreed – When shared, carriers can make up their own “minds” about the
shared knowledge, and decide wether or not to agree to the knowledge shared.

Committed – Carriers who “agree” to a specific knowledge topic may decide
to actually commit to this knowledge. In other words, they may decide to
adopt their future behaviour in accordance to this knowledge.



266 S.J.B.A. Hoppenbrouwers, H.A. Proper, and Th.P. van der Weide

There is no way to objectively and absolutely determine the levels of awareness,
agreement, and commitment of a given set of knowledge carriers. It is in the eyes
of the beholder.

The actual knowledge that is harboured by a knowledge carrier can also not
be taken into account explicitly since the knowledge that is available from/on/in
a knowledge carrier is subjective and context-dependent by nature [26]. The
harbouring of a knowledge topic by some knowledge carrier may occur at differ-
ent levels of formality, completeness, executability, etc. In the field of knowledge
management, a key distinction is made between explicit and tacit knowledge [27].
Explicit knowledge refers to knowledge that can be externalised in terms of some
representation. In representation of knowledge, we refer to the process of encod-
ing knowledge in terms of some language on some medium. Our focus is on the
communication of system development knowledge by way of explicit representa-
tions. In other words, explicit knowledge, where the representations pertain to
an existing or future system; its design, the development process by which it
was/is to be created, the underlying considerations, etc.

3 Conceptual Framework

Following the general way of thinking as discussed in the previous section,
in this section we present a conceptual framework. This framework will be
used in the further development of our theories based on its use in practical
settings.

3.1 System Development Knowledge

We start by briefly exploring the kinds of knowledge that are relevant to a system
and its development, in other words: the knowledge topics that can be discerned.
During system development, members of the system development community
will create and exchange knowledge pertaining to different topics. A first dis-
tinction can be made between:

Target domain – Knowledge pertaining to the system being developed.
Project domain – Knowledge about the development process that brings forth

the system.

We have borrowed the terms target domain and project domain from the Infor-
mation Services Procurement Library (ISPL) [28]. For both of these knowledge
domains, further refinements can be made with regards to the possible topics.
One can identify the following additional characterizations:

Perspective – Artifacts, such as systems, can be considered from different per-
spectives. Some examples are: (1) Business, application, and infrastructure
aspects of a (computerized) information system; (2) Social, symbolical, and
physical aspects of a system; (3) Process, information, actors, and technology
featuring in a system.



Understanding the Requirements on Modelling Techniques 267

Scope – Given a domain, such as a system or a development project, several
scopes can be identified when approaching the domain. Some examples are:
(1) enterprise wide; (2) department specific; (3) task specific.

Design chain – When considering the design of some artifact, a distinction
can be made between: (1) the purpose for which an artifact is needed; (2)
the functionality which the artifact should provide to its environment; (3)
the design of the artifact, i.e. how it should realize the functionality; (4) the
quality of the artifact, i.e. how well it should do so; (5) the cost at which
it will/may do so, and at which it may be constructed.
Based on these distinctions, knowledge topics can be characterized in terms
of their focus on, for example, functionality or quality in isolation, or their
focus on bridging the gaps between purpose, functionality and design in
terms of the underlying design rationale.

Historical perspective – Given an artefact with a design, one may consider
different versions of this design over time. One could, for example, make a
distinction between a strategic (5-10 years), a tactical (1-5 years), and an
operational perspective (now).

Abstraction level – When considering a domain, one may do so at several
levels of abstraction. Various forms of abstraction can be distinguished, for
example type-instance, generalisation, is-a-kind-of, encapsulation, and the
hiding/encapsulation of implementation details.

In general, each of the above characterizations of knowledge topics applies to
both target and project domains. As mentioned before, depending on their con-
cerns, stakeholders may be interested in different knowledge topics.

3.2 Explicitness of Knowledge

Given our focus on system development, a more precise classification can be
made with regard to the level of explicitness as mentioned in section 3.2. Based
on [28, 29], the following dimensions of explicitness for representations of system
development knowledge (pertaining to both target domain and project domain
knowledge) can be identified:

Level of formality – The degree of formality indicates the type of represen-
tation language used. Such a language could be formal, in other words a
language with an underlying well-defined semantics in some mathematical
domain, or it could be informal –not mathematically underpinned; typically
texts in natural language, graphical illustrations, animations, etc.

Level of quantifiability – Different aspects of the designed artefact, be it
(part of) the target or the project domain, may be quantified. Quantification
may be expressed in terms of volume, capacity, workload, effort, resource,
usage, time, duration, frequency, etc.

Level of executability – The represented knowledge may, where it concerns
artefacts with operational behaviour, be explicit enough so as to allow for ex-
ecution. This execution may take the form of a simulation, a prototype, gen-
erated animations, or even fully operational behaviour based on executable
specifications.



268 S.J.B.A. Hoppenbrouwers, H.A. Proper, and Th.P. van der Weide

Level of comprehensibility – The knowledge representation may not be com-
prehensible to the intended audience. Tuning the required level of compre-
hensibility of the representation, in particular the representation language
used, is crucial for effective communication. The representation language
may offer special constructs to increase comprehension, such as stepwise re-
finements, grouping/clustering of topically related items/statements, etc.

Level of completeness – The knowledge representation may be complete, in-
complete, or overcomplete with regard to the knowledge topic (see previous
subsection) it intends to cover.

3.3 Conversation Strategies

The knowledge transformations as discussed in section 2.4 are brought about
by conversations. The scope of these conversations may range from ‘atomic’
actions involving a small number of actors, via discussions and workgroups, to
the development process as a whole. This has been illustrated informally in
figure 1.

Fig. 1. Example sequence of conversations

Each conversation is presumed to have some knowledge goal : a knowledge
state which the conversation aims to achieve (or maintain). This knowledge
state can best be regarded as a multi-dimensional vector, positioning: (1) the
knowledge topic (see section 3.1); (2) the level of explicitness of the knowledge
(see section 3.2); (3) the level of sharing (see section 2.4).

In achieving a knowledge goal, a conversation will follow a conversation strat-
egy. Such a strategy is needed to achieve the goal of the conversation, starting
out from the current state:

Knowledge goal – The knowledge goal; a desired knowledge state which the
conversation will aim to achieve/contribute towards.

Initial state – The initial knowledge state as it holds at the start of the con-
versation.

Conversations take place in some situation in which resources may or may not
be available for execution of the conversation. A conversation situation may be
characterised further in terms of situational factors [28]. We identify three classes
of situational factors:



Understanding the Requirements on Modelling Techniques 269

Availability of resources – Refers to the availability of resources that can
be used in a conversation. The availability of resources can be refined to
more specific factor such as: time for execution, actors present, intellectual
capacities required from the actors, and financial means.

Complexity – The resources needed for the conversation, the knowledge be-
ing conversed about, etc., will exhibit a certain level of complexity. This
complexity also influences the conversation strategy to be followed. Exam-
ples of such complexity factors (inspired by [28]) are: heterogeneity of actors
involved, quantity of actors involved, complexity of technology used, com-
plexity of knowledge being conversed about, and size of the gap between the
initial knowledge state and the desired knowledge state.

Uncertainty – In determining a conversation strategy fit for a given situation,
assumptions will have to be made about the knowledge goal, the initial
state, the availability of resources, and the complexities of these factors.
During the execution of a conversation, some assumptions may prove to
be wrong. For example: the commitment of certain actors may be lower
than anticipated (initial state); materials needed for a workshop may not be
available on time (resources); during a requirements elicitation session it may
emerge that the actors involved do not (yet) have enough knowledge about
the future system and its impact to formulate/reflect on the requirements
of the future system (initial state). Typical uncertainty factors could relate
to: the knowledge goal, the initial state, the abilities of actors involved, the
availability of resources, and the complexities as discussed above.

In formulating a conversation strategy, all of the above factors should be taken
into account. A conversation strategy should typically cover at least the following
elements:

Execution plan – As mentioned before, a conversation can be composed of
sub-conversations. Each of these sub-conversations focusses on a sub-goal,
but they all contribute towards the goal of the conversation as a whole.
The execution plan of a (composed!) conversation consists of a set of sub-
conversations, together with a planned execution order.

Description languages – The description languages to be used in the conver-
sation(s).

Media – The kind of media to be used during the conversation(s).
Cognitive mode – The cognitive mode refers to the way in which knowledge

is processed/gathered by the collective of actors involved in a conversation.
Typically, a distinction is made between an analytical and experimental ap-
proach.

Social mode – The social mode is the way in which the actors executing the
system development process collaborate with the actors from the business
domain. We distinguish between an expert-driven and a participatory ap-
proach.

Communication mode – A small number of basic patterns of communication
can be distinguished, as covered by combinations of the some basic factors:



270 S.J.B.A. Hoppenbrouwers, H.A. Proper, and Th.P. van der Weide

speaker-hearer ratio, requirements on hearer response, allowed time-lag, lo-
cality, and persistency. Combinations of these factors can be used to typify
many different modes of communication, which can have a major impact
on the resources required for communication and the likelihood a knowledge
goal is achieved.

4 Guidelines for the Usage of Modelling Techniques

This section concerns guidelines that should help practitioners in selecting mod-
elling techniques for communication tasks at hand. These guidelines are based
on interviews with a number of architects. In general, the use of a modelling
technique will pass through a number of phases. These phases are:

Phase 1 – Scoping: Select (an) appropriate modelling technique, select the
(sub)domain that needs to be represented/modelled in terms of (a) model(s),
and determine the constraints that apply to the domain being modelled.

Phase 2 – Creation of models: Create/select the actual content of the mod-
els. This can pertain to the selection of a part of a larger (pre-existing) model,
or the creation/refinement of a part of a model.

Phase 3 – Validation: Validate the resulting model. Do the stakeholders agree
to the fact the model is a correct representation of the actual/intended sit-
uation?

Phase 4 – Obtaining commitment: If agreement has been reached among
the key stakeholders involved, the next step will be to create commitment
for the results. In other words, do the stakeholders commit themselves to
the (potential) impact of what is described by the model?

Phase 5 – Informing: Inform other stakeholders of the results. These stake-
holders will be those members of the development community whose explicit
commitment has, in a conscious decision, been considered not to be crucial.

Note that these phases will not necessarily be executed in a linear order. Practi-
cal circumstances usually dictate a more evolutionary approach. Any modelling
techniques is to be used in activities from each of the above phases. The guide-
lines resulting from the interviews are categorised according to these phases, and
are discussed below.

4.1 Scoping

The importance of focussing on the concerns of stakeholders and the extent to
which a specific modelling technique addresses these concerns, was confirmed by
the outcomes of the interviews:

– Quite a number of important business-related concerns are left out by the
regular (technology-oriented) modelling techniques. Most notable are legal,
ethical and economical aspects of a system.

– When communicating to business managers, only those models are needed
that enable a discussion of factors deserving special attention. Typically,



Understanding the Requirements on Modelling Techniques 271

these are factors that have a high impact if they fail and also have a high risk
of indeed failing. For communication with the actual software developers, on
the other hand, more detailed models are crucial.

The selection of modelling techniques should be deliberate and based on ratio-
nal considerations. What is more, architects stated that this decision, and its
rationalisation, must be readily available for communication during the different
phases:

– The modelling techniques to be used, the goals for which the models are to
be created, as well as the underlying rationale, should be known beforehand.

– It is quite possible that a stakeholder (usually a technology-oriented one) will
ask for more detail in a model than you can give her, or want to give her, in
that particular phase of the project. A modeller/designer should be prepared
to better clarify the goals of the particular model and phase, and why the
requested details are not yet relevant (or even harmful).

– Even if the stakeholders do not always need to know why a certain model or
way of modelling is used, the modeler should know this perfectly well, at all
times.

4.2 Creation of Models

During the creation of a model, in particular when actual modelling (i.e. not
elicitation etc.) is concerned, it is considered sensible to limit the number of
participants in a conversation:

– Graphical models may or may not be used in communication with stakehold-
ers, but most actual modelling is done by individuals, two people at most.
Genuine group modelling sessions are very rare.

During the early stages of system design, it is often considered a bad thing to
“think” in terms of “solutions”. According to some of the interviewed architects,
however, it is sometimes defendable to let this “thinking in terms of examples”
run its course, as long as the results are expressed at the correct level of abstrac-
tion:

– When detailed modelling takes place in a cooperative setting, give informants
some room to think in terms of “solutions” even if pure requirements thinking
(what, not how) does not officially allow for this.
Most people just think better in terms of in concrete solutions; it is a vital
part of their creativity. Just be sure that requirements thinking is returned to
in due time.

The above observation is actually a concretisation of a more abstract observation:

– When discussing models with stakeholders and informants, in particular when
trying to establish a common understanding, it is sensible to discuss differ-
ent scenarios and alternatives to the model being considered. Doing so leads
to an exploration of the meaning and impact of the model taking shape, and
also leads to improved mutual understanding.



272 S.J.B.A. Hoppenbrouwers, H.A. Proper, and Th.P. van der Weide

The use of concrete examples is but a way to make the different potential sce-
narios more tangible.

The graphical notation that is part of a modelling technique should be ap-
proached flexibly when it comes to communicating with stakeholders (in partic-
ular non-technical ones):

– If people are not used to or prepared to deal with abstract graphical models,
do not use them. It is pointless. Use other forms of visualization; anything.
Iconised diagrams work particularly well. However, be prepared to point out
the relation between the alternative visualisation and your abstract models if
asked to. Also do use your models for your own insight, and for generating
extra questions you can ask your stakeholders.

Finally, during a modelling session, several things may come to the fore that will
influence the further process. External events may occur that are a threat to the
process as a whole:

– Be prepared to stop modelling if executive commitment is withdrawn. It may
be frustrating, but from a business perspective it may also be crucial. It is
simply part of a flexible project setup.

– If the informants turn out to be less informed than expected, it is better to
stop than to try to “make the best of it” and produce an ill-conceived model.

4.3 Validation

In validation, a clear difference should be made between validation of content
(qualitative validation, by modelers and experts) and validation in terms of
commitment (by executives). Both are crucial, but very different. Obtaining
(and validating) commitment is discussed in the next subsection.

Whether good mutual communication and understanding about a model is
being reached is often a matter of intuition:

– If people involved have a mutual feeling that “their thoughts are well in sync”,
then dare to trust that feeling. However, if the opposite is the case, be prepared
to invest in substantial discussion of concrete examples – or face the dire
consequences of poor validation.

Validation is an activity that should be conducted in limited groups:

– “Feedback Rounds” involving a larger number of people, by e-mail or printed
documentation, do not really work. If you want feedback that is worth some-
thing, find key people and discuss the models, preferably face to face.

4.4 Obtaining Commitment

Obtaining commitment for a specific architectural design involves obtaining com-
mitment for the impact of this design on the future system and its evolution, as
well as the costs/resources needed to arrive at this future system. This means
that the message that one needs to get across to the stakeholders involves:



Understanding the Requirements on Modelling Techniques 273

– What are the major problems in the current situation?
– How bad are these problems (to the concerns and objectives of the stake-

holders)?
– How will this improve in the new situation? (Benefits)
– At what costs will these improvements come?

When discussing costs and benefits with stakeholders, it is important to realize
the following:

– Make costs and benefits as SMART (Specific, Measurable, Attainable, Real-
isable, and Time-bound) as possible.

– Make sure that the stakeholders agree, up front, to the criteria that are used to
express/determine costs and benefits. It is their commitment that is needed.
They will be the judge. Let them also decide what they want to base their
judgement on! Create shared responsibility towards the outcomes.

Selecting the stakeholders that should be involved when obtaining commit-
ment is also of key importance. Involving the wrong stakeholders, or leaving out
important ones, will have obvious repercussions. At the same time, selecting too
large a group of stakeholders may make the process bog down.

– Though ideally “everyone” should be heard, this is generally a practical im-
possibility. Therefore, choose your experts carefully. Aim for the opinion lead-
ers, and also accept that you cannot please everyone. Be aware that some
people will not be perfectly satisfied, prepare for it, and deal with it.

– People who actually make the decisions are usually those who are just outside
the group of people who really know what is going on. Make sure that the
former people are also involved and aware of what is happening.

– Careful reflection about the stakeholders that should be involved in obtaining
commitment often lacks in practice. There is a natural tendency to involve
only like-minded stakeholders, i.e. to “preach to the converted”.

The architects interviewed also noted some potential pitfalls in obtaining com-
mitment:

– Communication between a representative and her group is vital, but may also
do damage if conducted clumsily. Interestingly, too much communication may
be a bad thing: it may create unnoticed and uncontrolled discussion outside
the main discussion, leading to twisted conceptualisations and expectations.
Therefore, communication between representatives and their group should at
least be monitored.

– Getting executive commitment may actually be technologically dictated. If
their business is heavily technological, business people do not see technology
as secondary, and will only commit to anything if they are assured that “their
organization will be able to run it”.

– Sharing design decisions and their underlying considerations at a late stage
has a negative impact on the commitment of stakeholders. Start commitment
building early on in the process.

The latter point clearly confirms that the linear ordering of the “technique use
phases” as provided at the start of this section should not be applied strictly.



274 S.J.B.A. Hoppenbrouwers, H.A. Proper, and Th.P. van der Weide

4.5 Informing

Once commitment from the opinion leaders has been obtained, other stakehold-
ers may be informed about future plans and their impact. In doing so, it still
makes sense to concentrate on cost/benefit considerations when trying to “sell”
the new system. Below, we have gathered some observations that apply to the
informing phase. However, due to their general communicative nature, some of
these observations are also applicable to the creation, validation, and commit-
ment phases.

– Do not impose presumed information system terminology on true business
people. Use their terminology. Even a concept like “service” is suspect be-
cause it is relatively technology-oriented and often unknown by stakeholders
that are strictly on the business side.

– Models are particularly important in giving stakeholders a feeling that they
are “part of the larger whole”. Often, just knowing where in the model “they
can be found” is important to stakeholders, even if they do not understand
the fine points of the model.

– Even if people are willing to and capable of reading models thoroughly, text
(spoken or written) needs to be added. Models alone never suffice.

5 Conclusion

We presented a progress report on one of our ongoing research efforts. We dis-
cussed our way of thinking regarding system development as a communication-
driven knowledge transformation process, and refined this way of thinking in
terms of a conceptual framework. Finally, some first results have been discussed.
These results are guidelines based on interviews with (enterprise) architects,
which were conducted as part of the “diagnostic” stage of the action research
paradigm.

We are currently in the process of initiating the “therapeutic” stage of the
action research paradigm. Our plan is to participate in selected activities in
development processes taking place in large Dutch cooperations and/or govern-
mental agencies.

References

1. Bubenko, J.: Information System Methodologies - A Research View. In Olle, T.,
Sol, H., Verrijn-Stuart, A., eds.: Information Systems Design Methodologies: Im-
proving the Practice. North-Holland/IFIP WG8.1, Amsterdam, The Netherlands,
EU (1986) 289–318.

2. Avison, D., Wood-Harper, A.: Information Systems Development Research: An
Exploration of Ideas in Practice. The Computer Journal 34 (1991) 98–112.

3. Avison, D.: Information Systems Development: Methodologies, Techniques and
Tools. 2nd edn. McGraw-Hill, New York, New York, USA (1995). ISBN 0077092333



Understanding the Requirements on Modelling Techniques 275

4. Bernus, P., Mertins, K., Schmidt, G., eds.: Handbook on Architectures of Informa-
tion Systems. International Handbooks on Information Systems. Springer, Berlin,
Germany, EU (1998). ISBN 3-540-64453-9

5. Olle, T., Hagelstein, J., Macdonald, I., Rolland, C., Sol, H., Assche, F.v., Verrijn-
Stuart, A.: Information Systems Methodologies: A Framework for Understanding.
Addison-Wesley, Reading, Massachusetts, USA (1988). ISBN 0-201-54443-1

6. Bommel, P.v., Hofstede, A.t., Weide, T.v.d.: Semantics and verification of object-
role models. Information Systems 16 (1991) 471–495.

7. Hofstede, A.t., Weide, T.v.d.: Expressiveness in conceptual data modelling. Data
& Knowledge Engineering 10 (1993) 65–100.

8. Bronts, G., Brouwer, S., Martens, C., Proper, H.: A Unifying Object Role Mod-
elling Approach. Information Systems 20 (1995) 213–235.

9. Creasy, P., Proper, H.: A Generic Model for 3-Dimensional Conceptual Modelling.
Data & Knowledge Engineering 20 (1996) 119–162.

10. Campbell, L., Halpin, T., Proper, H.: Conceptual Schemas with Abstractions –
Making flat conceptual schemas more comprehensible. Data & Knowledge Engi-
neering 20 (1996) 39–85.

11. Hoppenbrouwers, J., Vos, B.v.d., Hoppenbrouwers, S.: Nl structures and conceptual
modelling: Grammalizing for KISS. Data & Knowledge Engineering 23 (1997) 79–
92.

12. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modelling Language User
Guide. Addison-Wesley, Reading, Massachusetts, USA (1999). ISBN 0-201-57168-
4

13. Brooks, R.: Studying programming behavior experimentally: The problems of
proper methodology. Communications of the ACM 23 (1980) 207–213.

14. Avison, D., Lau, F., Meyers, M., Nielsen, P.: Action research. Communications of
the ACM 42 (1999) 94–97.

15. Baskerville, R.: Investigating Information Systems with Action Research. Com-
munications of the Association for Information Systems 2 (1999).

16. Blum, F.: Action research – a scientific approach? Philosophy of Science 22 (1955)
1–7.

17. Derksen, C., Frederiks, P., Weide, T.v.d.: Paraphrasing as a Technique to Support
Object-Oriented Analysis. In Riet, R.v.d., Burg, J., Vos, A.v.d., eds.: Proceed-
ings of the Second Workshop on Applications of Natural Language to Databases
(NLDB’96), Amsterdam, The Netherlands (1996) 28–39.

18. Frederiks, P., Weide, T.v.d.: Information modeling: the process and the required
competencies of its participants. In Meziane, F., Métais, E., eds.: 9th International
Conference on Applications of Natural Language to Information Systems (NLDB
2004). Volume 3136 of Lecture Notes in Computer Science., Manchester, United
Kingdom, EU, Springer-Verlag, Berlin, Germany, EU (2004) 123–134.

19. Bleeker, A., Proper, H., Hoppenbrouwers, S.: The role of concept management
in system development – a practical and a theoretical perspective. In Grabis,
J., Persson, A., Stirna, J., eds.: Forum proceedings of the 16th Conference on
Advanced Information Systems 2004 (CAiSE 2004), Riga, Latvia, EU, Faculty of
Computer Science and Information Technology, Riga Technical University, Riga,
Latvia, EU (2004) 73–82. ISBN 9984-9767-0-X

20. Proper, H., Hoppenbrouwers, S.: Concept evolution in information system evolu-
tion. In Gravis, J., Persson, A., Stirna, J., eds.: Forum proceedings of the 16th
Conference on Advanced Information Systems 2004 (CAiSE 2004), Riga, Latvia,
EU, Faculty of Computer Science and Information Technology, Riga Technical
University, Riga, Latvia, EU (2004) 63–72.



276 S.J.B.A. Hoppenbrouwers, H.A. Proper, and Th.P. van der Weide

21. Veldhuijzen van Zanten, G., Hoppenbrouwers, S., Proper, H.: System Development
as a Rational Communicative Process. Journal of Systemics, Cybernetics and
Informatics 2 (2004). http://www.iiisci.org/Journal/sci/pdfs/P492036.pdf

22. Embley, D., Kurtz, B., Woodfield, S.: Object-Oriented Systems Analysis – A
model-driven approach. Yourdon Press, Englewood Cliffs, New Jersey, USA (1992).
ASIN 0136299733

23. Halpin, T.: Information Modeling and Relational Databases, From Conceptual
Analysis to Logical Design. Morgan Kaufman, San Mateo, California, USA (2001).
ISBN 1-55860-672-6

24. Cruse, A.: Meaning in Language, an Introduction to Semantics and Pragmatics.
Oxford University Press, Oxford, United Kingdom, EU (2000). ISBN 0-198-70010-5

25. The Architecture Working Group of the Software Engineering Committee, Stan-
dards Department, IEEE: Recommended Practice for Architectural Description
of Software Intensive Systems. Technical Report IEEE P1471-2000, The Ar-
chitecture Working Group of the Software Engineering Committee, Standards
Department, IEEE, Piscataway, New Jersey, USA (2000). ISBN 0-738-12518-0
http://www.ieee.org

26. Peirce, C.: Volumes I and II – Principles of Philosophy and Elements of Logic.
Collected Papers of C.S. Peirce. Harvard University Press, Boston, Massachusetts,
USA (1969). ISBN 0-674-13800-7

27. Nonaka, I., Takeuchi, H.: The knowledge-creating company. Harvard Business
Review (1991) 97–130.

28. Franckson, M., Verhoef, T., eds.: Managing Risks and Planning Deliveries. Infor-
mation Services Procurement Library. ten Hagen & Stam, Den Haag, The Nether-
lands (1999). ISBN 9076304831

29. Proper, H., ed.: ISP for Large-scale Migrations. Information Services Procure-
ment Library. ten Hagen & Stam, Den Haag, The Netherlands, EU (2001). ISBN
9076304882

http://www.iiisci.org/Journal/sci/pdfs/P492036.pdf
http://www.ieee.org

	Introduction
	Communication-Driven Knowledge Transformation
	Communication-Driven
	Development Community
	System Development Knowledge
	Transformations of Knowledge

	Conceptual Framework
	System Development Knowledge
	Explicitness of Knowledge
	Conversation Strategies

	Guidelines for the Usage of Modelling Techniques
	Scoping
	Creation of Models
	Validation
	Obtaining Commitment
	Informing

	Conclusion



