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Abstract. In vague queries, a user enters a value that represents some real world
object and expects as the result the set of database values that represent this real
world object even with not exact matching. The problem appears in databases that
collect data from different sources or databases were different users enter data
directly. Query engines usually rely on the use of some type of similarity metric
to support data with inexact matching. The problem of building query engines to
execute vague queries has been already studied, but an important problem still
remains open, namely that of defining the threshold to be used when a similarity
scan is performed over a database column. From the bibliography it is known
that the threshold depends on the similarity metrics and also on the set of values
being queried. Thus, it is unrealistic to expect that the user supplies a threshold at
query time. In this paper we propose a process for estimation of recall/precision
values for several thresholds for a database column. The idea is that this process
is started by a database administrator in a pre-processing phase using samples
extracted from database. The meta-data collected by this process may be used in
query processing in the optimization phase. The paper describes this process as
well as experiments that were performed in order to evaluate it.

1 Introduction

In vague queries, the problem is to find all database values that represent the same real
world as the one represented by the value entered by the user in the query. A vague query
accept variation in spelling to consider not exact match in query argument compared to
the values in the database. This type of query is usual in databases that collect data
from different sources or are generated by different users. As an example consider a
query like “Authors that have published at the ‘Intl. Conf. on Very Large Databases’ in
2002”. In the database the name of this conference may be spelled in different ways,
like ‘International Conference on Very Large Databases’ or simply ‘VLDB’.

For this kind of problem a typical Information Retrieval (IR) solution is to rank the
values in the database using some type of similarity metric (e.g. an edit distance [1, 2]
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and display them to the user ordered according to this ranking. The values that are more
similar to the query value should be shown first. The user pages through the output
identifying the database values that represent the real object that is being searched.

However, not all queries can be solved by applying a single similarity search over the
database. In more complex queries the values resulting from one similarity search are
used as query values for another similarity search. For example, consider a database that
contains two tables with data collected from the Web: ConfPaper (ConfName,
PaperTitle) and PaperAuthor (PaperTitle, AuthorName). If both ta-
bles are fed with data from different sources it may happen that the title of one specific
paper is spelled differently in both tables. In order to process the example query above,
two similarity searches must be executed: (1) over table ConfPaper retrieving the pa-
per titles for the conference name given in the query and (2) over table PaperAuthor
retrieving the author names for the paper titles found in step (1) (actually this last step
is a similarity join operation [3, 4, 5, 6]).

The classical database solution for processing such types of queries is to build a
query execution plan. An execution plan defines the query operators that are used in
each step as well as the order of execution of those operators. In the context of sim-
ilarity queries additionally to the classical database operators (table scan, index scan,
join,. . . ), similarity operators like a similarity table scan [3], similarity index scan [7]
and a similarity join [4, 5] are involved. The problem of building query execution plans
for this type of queries has already been addressed in query systems that handle vague
queries, like Vague and Query Refinement System Architecture [8, 9].

An open problem in these systems is to automatically determine the results that are
relevant for a query. The IR approach described above presents all results to a user and
leaves to him the task of picking up relevant results. This approach is not feasible if we
are handling large data sets. The entire set of database values would appear as result of
each step of the execution plan, leading to unacceptable performance. Thus, thresholds
must be established for each similarity operator involved in the query execution plan.

The threshold to be applied depends on factors like the specific similarity metric
that is being applied and the set of values to be queried. The threshold will depend also
on the quality of the result that the user expects stated, for example, in classical IR
measures like recall or precision [10].

In this paper we focus on the problem of semi-automatically estimating recall and
precision for queries on a specific database column when a specific similarity metric
is applied. The user intervention required in our approach is small. The user must just
provide an approximation of the number of different real world objects that are rep-
resented in a small sample (typically 50 values) of the database column. Using this
number as input and applying the process described in this paper the database system
may generate meta-data that contains estimations of recall and precision for queries on
the column, when different thresholds and different similarity metrics are considered.
This meta-data may be subsequently used during query optimization phase. It may help
the query optimizer in the choice of similarity operators, similarity metrics, as well as
thresholds to be used when processing a specific query.

It should be noted that the idea of gathering information about the values in the
columns in a database is central to query optimization [11, 12]. The query optimizers
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of many commercial DBMS depend on meta-data gathered at specific time points de-
termined by a database administrator. In the case of the process described in this paper
the database administrator would have to additionally provide the information for the
recall and precision estimation process.

This paper is organized as follows. In Section 2 related work is discussed. Section 3
describes our method to estimate recall and precision values. Section 4 presents the
experiments that were performed in order to validate the proposed approach. Section 5
presents the conclusion and discusses future work.

2 Related Work

The idea of vague or inexact queries over databases is not new and has been studied
from several points of view.

Vague or Imprecise Queries Over Database. The Vague System [8] and the Query
Refinement System Architecture [9] are examples of vague query database processing.
The former discusses a query language (an extension of QUEL) and a general model of
vague queries implementation over a relational database. In this system the similarity
metrics (called data metrics) are user provided. The latter discusses the problem of
query refinement in the presence of similarity queries. Both cited approaches assume
the availability of a user provided distance measure.

Another system that implementsvague queriesis theImprecise Query Engine(IQE)[13].
Here the query engine is implemented over a classical query engine to handle vague
queries. The similarity query engine converts the vague query into equivalent precise
queries that appear in an existing query workload.

Probabilistic Algebra. Dey [14] has proposed an extended relational model and new
algebraic operators supporting probabilistic aspects. Fuhr [15] presents the PRA (Prob-
abilistic Relational Algebra) which is a generalization of the relational algebra. PRA
represents a logical data model allowing close integration of IR and database to model
probability values, but makes no assumptions about the underlying physical data model.
The WHRIL [16] system is also based on Fuhrs work and uses text-based similarity
and logic-based data access as known from Datalog to integrate data from heteroge-
neous sources. The work of several other authors follow the same line[17, 18, 19, 20].
These proposals include the use of redefined relational operators as select, join, etc.
with a probability value associated to each attribute or tuple. This value is a measure of
uncertainty obtained from a probabilistic model based on preprocessing of stored data.

These approaches use probabilistic models to compute similarity values in a prepro-
cessing phase. This is similar to our pre-processing phase to create meta-data. However,
in these approaches probability values must be stored associated with tuples or attributes
whereas in our approach similarity values are dynamically computed.

Probabilistic Model and XML. Several proposals explore the probabilistic IR model.
An example considering XML documents is the TIJAH system [21], an XML-IR system
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where XML documents are treated as ‘flat-text’. This query model extends XPath with
a special function called about. TIJAH is based on region algebra [22] and it is used
to rank node-set trees. The idea behind region algebra [22] is the representation of text
documents as a set of extents where each one is defined by its starting and end position.
Another similar approach is XIRQL [23], which develops an algebra that implements
the querying capabilities found in XPath extended with probabilistic functions. This
approach is different from ours because we apply specific similarity metrics for each
column.

IR-Style Ranking. Several IR-style systems implement k-top queries instead of con-
sidering a rank that is cut by a threshold value [24, 25, 26].

Additionally to the study of similarity searches over data sets, the problem of prox-
imity joins or similarity joins has also received attention. Gravano [4, 5] describes an ap-
proach for similarity based on joins on string attributes. This work is based on the iden-
tification of all string pairs (or set of strings) similar to each other using cosine similarity
metric [10] with weights derived from term frequency-inverse document frequency (tf-idf)
to join similar data. Cohen [27] describes WHRIL, which is also based on cosine sim-
ilarity to integrate information from structured information sources that contain textual
information. Cohen describes efficient algorithms do compute the top scoring matches
of a ranked result set.

Cohen [28] presents a survey comparing several similarity metrics for specific do-
mains. This work shows that the quality of the result of a query may be improved if
specific domain similarity metrics are used.

Schallehn [3, 29] presents a set of redefined relational operators to process vague
queries. His work shows how the operators can be used to evaluate the query using
these redefined operators.

What can be generally observed in related work is that a critical point is how to
specify a threshold to meet requirements regarding efficiency and accuracy [29]. This
should not be done by the user because it would lead to several trial-and-errors cycles.
Our approach differs also in evaluate the quality of intermediate results. None of related
work studied refers to evaluate the result set produced by similarity functions specific
for domains.

3 The Estimation Process

In this section we describe the process by which a vague query engine can estimate
recall and precision for a database column.

At specific time points defined by a database administrator (DBA), traditional DBMS
gathers statistics about the database (number of different values in a column, distribu-
tion of the values in a column,. . . ). These statistics are used by the query engine during
so called cost optimization [30].

In our case, the aim of this preprocessing phase is to estimate recall/precision tables
for approximate queries on specific database columns. A recall/precision table contains
estimated precision and recall values for several different threshold values.
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For each similarity metric that may be applied to the column, a recall/precision
table will be generated. These values can be used to optimize the query in the query
processing phase.

The specific metrics that can be used depend on the column domain [28]. For exam-
ple, a column containing author names and a column containing dates probably would
require different similarity metrics. The association of similarity metrics to database
columns could be established in the database schema.

Further for the same domain several different similarity metrics may be applied. For
example, in a column with person names if person names are always written in the same
order (e.g. name, surname) but may spelled in different ways, an edit distance metric
like Levenshtein [1] is adequate. However if the words that comprise the name may
appear in different orders another kind of similarity metric may be used.

Therefore, in our approach we allow several different metrics for each column and
estimate recall/precision for each of them. This information may be used by the query
engine to decide which of them is better suited for the specific set of values that appear
in the database.

Notice that recall/precision tables need to be generated only for those database
columns that may appear as arguments in vague queries.

The process of estimation is executed once for each database column and comprises
the steps described below.

1. Sampling
A random sample of the values in the database column is generated. Our experi-
ments have shown that a sample of 50 values is enough.

2. DBA intervention
The values in the sample are displayed to the database administrator (DBA). The
DBA counts the number of different real world objects that are represented by the
values in the sample. Remember that different values (e.g. “VLDB” and “Very
Large Databases”) may represent the same real world object.
The DBA enters the number no of real world objects that appear in the sample in
the system.

3. For each similarity metric that may be applied to the database column the following
steps are performed.
(a) Clustering

The values in the sample are clustered. Clustering begins with a predetermined
threshold and is repeated iteratively with different thresholds until the num-
ber of clusters nc is equal to the number of real world objects (no) that were
identified by the user in the sample.
The underlying idea is that, if the similarity metric behaves correctly, each
cluster will contain values that represent a single real world object.

(b) Recall/precision computation
The usual approach to compute precision and recall requires user intervention.
In this approach queries are stated against the database and the user identifies
false positives and false negatives in the result set.
In our approach we aim at minimizing user intervention. Recall/precision will
be automatically computed by the procedure described below.
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Each value in the sample is used as the query value. This means that with a
sample of size 50, we will execute 50 queries. Each query will result in a set of
ranked values.
In order to estimate recall/precision the set of objects that should result from the
query must be identified. This would usually require user intervention. In our
approach we will use the cluster instead in which the query value is contained
as the set of values that should be returned. Therefore, we will use the clustering
result instead of users intervention.
Our approach is based on the assumption that the clustering process has par-
titioned the sample correctly in sets such that each one contains exactly those
values that represent one and only one real world object. Thus, the clusters are
used as the set of values that should be returned.
This way, recall and precision are computed for several thresholds. The av-
erage value of recall/precision considering all queries is regarded as the re-
call/precision for the similarity metric in several thresholds.

(c) Storage of meta-data
Recall/precision values for each threshold and each similarity metric are stored
as meta-data for usage during query optimization phase.

4 Experiments

In this section we describe the experiments performed in order to empirically evaluate
that the estimated recall/precision values hold also for the entire database.

4.1 Data Sets

For the experiments two data sets were chosen. Data set City-DS contains city names
and data set Street-DS contains street names. These sets were taken from a real world
database that contains information about students that are candidates to enrolment in a
Brazilian University. Both data sets refer to the student’s address. Most of these can-
didates come from a single Brazilian state. In both data sets data was entered directly
by the candidates themselves. Thus the names of cities and streets may appear spelled
in several ways due to several factors, like misspelling, different ways of abbreviation,
etc.

The main characteristics of these data sets are shown in Table 1. The number of real
world objects in each data set was counted by an human expert.

Table 1. Main characteristics of the data sets used for the experiments

Number of Number of Average number
Data set instances in the real world of instances

database objects in a cluster
City 10180 387

Street 3500 2377 1.4724  

 
26.3049  
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The value distribution in both sets presents several differences:

– The City-DS contains relatively few (387) real world objects represented. As most
of the students come from the same Brazilian state, their addresses concentrate city
names of this state. Approximately 45% of the values correspond to a single real
world object, the largest city in the state. In the average each city appears times
in the database.

– The Street-DS contains many different real world objects (2377) as the number of
different street names is much bigger than the number of cities. In average, each
street is represented 1.4 times in the database.

4.2 Similarity Functions and Clustering Algorithm

As similarity metrics we have applied three well known metrics for comparing strings:
Levenshtein or Edit Distance (Edit) [1], Guth [31] and N-grams [1] with 3 characters in
each gram. Additionally we have applied a similarity metric (Acronyms) developed in
our group that is adequate for the comparison of strings that contain abbreviations and
acronyms [32].

The results of all similarity metrics applied are normalized between 0 and 1.
Clustering was performed using the Hierarchical Agglomerative Clustering Method [33].
The SLINK [34] Algorithm was used to implement clustering process.

4.3 Sample Generation

Due to the fact that the user must count the real world objects represented by the values
in a sample we need to be careful with the sample size. Very small samples are not
trustworthy to represent the database content but large samples are inappropriate to
user interaction.

We have experimented with two sample sizes: 50 instances for the City-DS and 15
instances for the Street-DS. As the experimental results show, a sample size around
50 values leads to correct results compared to the whole database. The values in each
sample were randomly selected in the database.

4.4 Clustering Results

As mentioned above, our approach is based on the assumption that the clustering pro-
cess has partitioned the sample correctly in sets such that each one contains exactly
those values that represent one and only one real world object.

To empirically validate this assumption we extracted 40 samples (each with 50 in-
stances) from the City-DS.

In each sample each cluster was compared to the set of values that a user would
consider as representing a single real world object. In these 40 samples 352 cities were
represented. Two types of errors of the clustering process could be identified:

– The number of clusters does not converge to the number of real world objects. Even
with small variations in the threshold (0.01) either the number of clusters exceeds
the number of objects in the sample or the number of clusters is lower than the

26
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Table 2. Clustering errors found considering 40 samples clustered and validated by the user

Number of clusters Content of cluster
Metric is incorrect is incorrect

Edit none none
Guth 1.6% 2%

N-Grams 0.4% 0.4%
Acronyms none none

number of objects in the sample. This probably is an indication that the similarity
metric is not adequate for the set of values.

– The correct number of clusters has been identified but their content is not correct,
i.e., values that should appear in one cluster appear in the other.

The number of errors found in this process was very low and is summarized in
Table 2.

For Edit and Acronyms similarity metrics no errors were found. The clustering pro-
cess gave exactly the same results as expected by the user.

For Guth and N-gram similarity metrics a small percentage (around 1%) of clusters
were incorrectly identified.

Those results show an high percentage of correct clusters. We can conclude that it
is acceptable to use the clusters for recall/precision evaluation.

4.5 Recall/Precision Estimation

The other premise in which our approach is founded is that the values of recall/precision
that were calculated for the sample apply also to the entire database. In this section we
will show experimental results to validate this premise.

We have performed experiments with both data sets.

Experiments wi ht City-DS. Using the City-DS we first executed the estimation of re-
call/precision by applying the aforementioned process (Section 3). More specifically
the following steps were executed:

1. We took 4 samples each containing 50 values from the cities data set.
2. For each sample an human expert determined the number of real world objects

(cities in this case) represented by the values in the sample. This corresponds to the
user intervention that should be executed by the database administrator during the
pre-processing phase.

3. The samples were clustered as described above.
4. Each value in a sample was used as a query value in that sample. For each query,

recall and precision were computed by the procedure aforementioned. We took the
following values for the thresholds 0.9, 0.8, 0.7, 0.5 and 0.3. This resulted in 4
tables, one for each sample, containing recall/precision values for each threshold.

5. We took the average of the samples resulting in a single table with estimated re-
call/precision values for each threshold.
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In order to evaluate these results we compared them to the results of queries against
the complete data set. Each of the values in the samples (4 samples ∗ 50 values per
sample = 200 values) was taken as a query value against the database. Again a table
plotting recall/precision for each of the thresholds above was computed. This procedure
was repeated for each of the four similarity metrics.

The results are shown in Figure 1. In this figure each graph corresponds to one
similarity metric. The x-axis corresponds to the thresholds and the y-axis corresponds
to similarity values. The values plotted are recall and precision. Dotted lines represent
actual recall/precision values obtained for the entire data set, whereas continuous lines
represent the estimated recall/precision values obtained from the samples.

As can be seen in the figure, estimated recall/precision follows similar curves to
actual recall/precision for all four similarity metrics.

The results show also that some similarity metrics are more adequate than others. In
this case, Edit and N-Grams are better metrics, since the values of recall and precision
tend to be higher and less dependent from the threshold values. Guth and Acronyms are
less adequate as precision decreases faster whit smaller thresholds.

In order to evaluate how close the estimated results for the sample are to the actual
results calculated over the database, we computed the Mean Square Deviation (MSD)

Fig. 1. City-DS – Comparing sample and database recall/precision

as defined by Equation (1).
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Fig. 2. City-DS: Mean Square Deviation between samples and database
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M,n) is a similarity value of the sample.

In Figure 2 the values of MSD obtained from Equation 1 using thresholds 0.9, 0.8,
0.7, 0.5 and 0.3 with each similarity function are shown. The values shown in that figure
present the mean MSD (MSDm) for all four samples.

As can be seen the values are low showing that the estimated values are close to the
actual values for the database.

We have observed that some clusters contain many duplicate values. This leads to
higher similarity values. We repeated the experiment described above removing the dupli-
cate values from the clusters. In this case similarity values are lower but still the estimated
recall/precision values are similar to the actual recall/precision values for the database.
Due to space restrictions the detailed results of this experiment are not shown here.

Experiments with Street-DS. To test the limits of our approach we also evaluated a
data set much harder to handle, the Street-DS.
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Fig. 3. Street-DS – Comparing sample and database recall/precision

The Street-DS was chosen because the relation between data values and real world
objects is different from that in the City-DS. The number of real world objects is similar
to that of values in the database, i.e. clusters tend to be small, many of them containing
just an instance. In this case the quality of the results depends much more on the ability
of the similarity metric to handle data from this domain. As few values represent each
real world object every false positive or false negative changes the values of recall and
precision by a considerable amount.

The results are shown in figure 3. We have used two metrics, Edit, that gave the best
results in the previous experiment and Guth that gave the worst results. We have also
used smaller samples (15 values) than in the previous experiment.

As can be seen in the figure, in this example the precision that was estimated is
much smaller than the actual precision measured on the database. This difference is due
to the inability of these similarity metrics to correctly identify which values represent
the same real world object and which do not. This inability appears more clearly in the
database than in the sample, because the sample contains less instances and the query
value is part of those instances.

5 Concluding Remarks

This paper presents a contribution to the problem of query execution and optimization in
a query engine that handles vague queries. Specifically we have presented an approach
for estimating recall/precision values for queries with several thresholds. These values
are important for query engines like that described in [8, 9].

The estimation process is to be started by a database administrator when he esti-
mates that the distribution of values in the database has changed. We tried to minimize
user intervention. The database administrator enters just a single information, namely
the number of different real world objects that are represented in a small sample of
the database. Based on our experiments, we can improve the sampling process through
learning methods in future works.
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We have described the experiments that empirically validate our approach. Specifi-
cally the experiments corroborate two premises.

– In order to estimate recall and precision we need to identify the set of values in a
sample that represent a single real world object. In our approach these sets corre-
spond to the result of the clustering process. The experiments show that the result
of the clustering process may be used instead of the identification of values by a
user.

– When the sample is big enough and similarity metrics are adequate for the column
domain the recall/precision results are very similar to the actual recall/precision
values obtained when querying the database.

However, several problems are still open.
As identified by the experiments (and also by other authors [28, 3]) some similarity

metrics are more adequate than others for handling a specific column. We are working
on heuristics that use the recall/precision estimations to identify what the best similarity
metric for a column is.

Further, the size of the samples obviously affects the results of the estimation pro-
cess. We are working on the problem of identifying what the minimum sample size for
a given data set is.
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