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Abstract. In recent years, web services have become increasingly important
components of the scientific methodology of certain domains. Currently, how-
ever, the description and use of most these is purely ‘syntactic’; that is, the se-
mantics of the services are left to the human user to infer or acquire by other
means before deciding whether and how to use a service. Consequently, there
are opportunities to bridge this semantic gap through the application of emerging
semantic web and semantic web service technologies in these domains, thereby
enriching and expanding a user’s service interactions. This paper presents its au-
thors’ experiences of the application and use of these emerging technologies in a
displicine in which web services already play a key role: bioinformatics.

1 Introduction

As a discipline, bioinformatics is notable for its diversity of aims and methods, and the
heterogeneous nature of the computing resources applied to achieve them [13]. Bioin-
formaticians are accustomed to creating analysis pipelines [2] [16] [19] for, say, the
assembly of a complete gene sequence from a set of subsequences derived from a lab
experiment or the alignment of potentially homologous gene sequences. The dynamic
nature of the databases accessed in these steps — the rate of data production is such
that databases may be updated daily — creates a demand for automation in the analysis
process, with the explicit representation and storage of the workflow, its invocation, and
potentially, its exchange and reuse. Due to uncertainty of service availability, dynamism
in the selection of an active service must be taken into account. Finally, the bioinfor-
matician may wish to inspect the results as the workflow progresses to obtain feedback
and determine whether the processing parameters are correct.

Web services is one of the paradigms that has been adopted within bioinformat-
ics for exposing computational resources; these offer the advantages of providing an
open architecture using relatively standardised transport and communications layers.
However, these transactions occur at a syntactic level; there is, as yet, little semantic
description of the available services. Consequently, bioinformatics presents an opportu-
nity to apply emerging semantic web services technologies and standards to an existing
set of services, and, in so doing, to learn more about the engineering aspects of such an
enterprise. This paper presents our approach and experiences of an application of this
sort; this should be of interest those who are planning similar applications, or who are
involved in the design of these technologies and standards.
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Section 2 of this paper provides a discussion of the nature of current bioinformatics
web services, and presents one of a number of scenarios we have used to guide our
approach. Section 3 itemises some of the requirements we identify for a practical se-
mantic layer in this domain. This is followed by a description of how we have gone
about the task of introducing these semantics. Finally, following a brief discussion of
related work (section 5), some of the implications of this work are discussed and some
conclusions drawn in section 6.

2 Bioinformatics Web Services

Before proceeding, it is first necessary to say a little about the nature of extant web
services in bioinformatics. These resources are often provided by large bioinformatics
‘data centres’ such as the European Bioinformatics Institute (EBI)1, the Virginia Bioin-
formatics Institute (VBI)2, and the DNA Data Bank of Japan (DDBJ).3 Many commonly
used bioinformatics computational components are available over the web, through ei-
ther (or both) ‘manual’ web browser interfaces or conventional ‘programmatic’ web
services interfaces. ‘Manual bioinformaticians’ will create an analysis pipeline by cut-
ting and pasting data from one browser interface to another, often accompanied by an
arbitrary amount of editing and reformatting of the data. Here, though, we are primar-
ily concerned with the programmatic interfaces; for our purposes we assume that, in
general, the offered web services share the following characteristics:

– a web service can be considered an ‘information transformer’, converting one par-
ticular input into an output; values of other parameters may qualify this behaviour.

– a service will appear as a ‘black box’ to its user; that is, the transformation it effects
appears as a single atomic process.

– a web service will be ‘idempotent’; that is, no notion of state persists from one call
to the service to the next (exceptions to these last two points include certain EBI
services which have a notion of state that allows clients to query the current status
of a running service).

– a service will be independent, in that its operation does not depend on the existence
or availability of other services.

– the interface to a service will be through a SOAP [9] ‘remote procedure call’ over
HTTP; this interface will be described using a WSDL [4] document.

– the WSDL document will not introduce any complex (XML Schema) typing of
inputs or outputs; instead, it will rely on the use of ‘simple’ types such as “string”.

This last point raises the question of data formats for bioinformaticians. As has been
noted (by, for example, Stein [18]) there are no agreed formats within bioinformatics
for the formats used by services; typically they will return results represented in some
ad hoc format, containing, say, a mixture of search results, hand-crafted natural lan-
guage annotations and references to third-party publications and other data sources. As

1 http://www.ebi.ac.uk/xembl/XEMBL.wsdl
2 http://staff.vbi.vt.edu/pathport/services
3 http://xml.nig.ac.jp
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a result, much time is expended by the users of on-line services in writing code for
‘screen-scraping’ (for extracting data from standard web browser pages) or for convert-
ing data from the format produced by one service into the format expected as the input
for the next. (Indeed, the realisation of this latter fact has led to the establishment of
the Open Bioinformatics Foundation4, whose goal of supporting bioinformatics pro-
gramming has involved the creation of code libraries for a number of different pro-
gramming languages for this sort of data manipulation.) This characteristic of services
makes workflows in the domain particularly brittle: if a provider alters a result format,
these translators must be re-engineered.

There are few universal standards for data represention. However, there are efforts
to create standard representations in specific areas, for example, the MIAME (Mini-
mum Information About a Microarray Experiment) initiative [3] aims to standardise
both the recording and the reporting of microarray-based gene expression data. In the
ontology arena, the Gene Ontology consortium has established a flat-file format for sim-
ple ontologies, and is moving to a more flexible format (the OBO format5). Currently,
however, each web service (provider) will generally use its own manner of representing
data, and, in the absence of standards, an alternative approach to automating service
workflows is to make conversion programs — termed shims, following [11] — avail-
able as web services like any other. (In general, a shim service might be thought to
perform a purely syntactical manipulation of its input. However, its effects might be
more subtle; for instance, a shim service which selects a subset of some data might
better be thought of as performing some semantic winnowing of this data.)

2.1 Scenario

To motivate this work, we have considered a number of real scenarios in which bioin-
formaticians achieve their aims by interacting with existing web services. These sce-
narios include: the assembly of a complete gene sequence from a set of subsequences;
the alignment of homologous gene sequences; and the search for tissue homologies by
identifying homologous genes. (These are comparable to the ‘use cases’ that are being
developed under the BioMOBY initiative.6)

By way of a concrete example of the use of bioinformatics web services, we here
present a sequence alignment scenario. This scenario is illustrated in Figure 1 where
part a) represents the three major steps in the workflow from the user’s perspective, and
part b) shows the mapping into web services. The steps are:

1. given the ID of the gene find the protein sequence that corresponds to the gene;
2. find those sequences that are potentially homologous with this sequence, i.e. find

those with a high degree of similarity, and;
3. place those sequences into a relative alignment. The degree of alignment reflects

the closeness of molecular function.

This corresponds to the following sequence of web service invocations:

4 http://www.open-bio.org
5 http://www.geneontology.org/GO.format.html
6 http://www.biomoby.org
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Fig. 1. Workflow and web services for the sequence alignment scenario

1. a protein sequence is obtained through a database lookup service using the supplied
gene identifier;

2. a BLAST (Basic Local Alignment Search Tool) search for similar sequences in the
sequence database is performed. (Since this is a search of a database of protein
sequences, specifically it is the “blastp” variant program that is required here.) This
is a pairwise comparison.

3. The most similar sequences are then input to the multiple sequence alignment pro-
gram ClustalW. Multiple sequence alignment considers the entire set of matching
sequences, and identifies regions of common structure.

A significant transformation of the output of the BLAST search was required to cre-
ate the input to ClustalW. There are alternative ways of performing this transformation;
here it was done by writing code to extract the identifiers of matching protein sequences
from the BLAST output report, and then querying the database using these identifiers
to retrieve the actual sequences.

In general, bioinformatics web services can be invoked by any client able to parse
their WSDL descriptions, and handle SOAP messages over HTTP. Hence, using conve-
nient libraries, sequences of service interactions and data transformations such as that
outlined above can be embodied in a conventional computer program. Currently, how-
ever, this can be done only if the locations and data formats of the services are known
to the programmer. Alternatively, a higher level interface and more flexibility is offered
by a number of tools (such as the Taverna Workbench [15], which is aimed specifically
(but not exclusively) at bioinformaticians) that allow their users to construct workflows
and then, by handling the interactions with services, invoke them.

3 Desiderata for a Semantic Service Environment

By considering scenarios such as that above, we can identify the principal steps that the
bioinformatician undertakes when constructing a workflow of services:

1. the identification and expression of the goal of the workflow. This will be deter-
mined by the immediate and long-term goals of the scientist’s research. Ideally,
this externalisation of scientific goals would be made directly at a semantic level;
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2. the identification of the major processing tasks, that is, developing (at the semantic
level) a practicable sequence of tasks for arriving at the goal given the data currently
available. This will necessarily involve some awareness of the types of service (and
data) that are available so as to construct a description of this desired sequence;

3. the identification of actual (and currently active) services able to enact this se-
quence, including any necessary shim services. This will involve discovery of ser-
vices, with perhaps a selection from among competing matching services. The dis-
covery will typically involve searching for instances of a specified type of service
and/or which produce some specified output;

4. the invocation of the workflow. At this point, the semantic description must be
bound to the underlying ‘syntactic’ computational description of the services in-
volved (this need not be exposed to the scientist);

5. the storage of the workflow for later reuse. For this purpose, some language rich
enough to capture the semantics of the developed process would be required.

Steps 1–3 are unlikely to be wholly independent and to conform strictly to this or-
dering; identification of the major tasks in step 2, for instance, is likely to be influenced
by and determined to some extent by knowledge of the services that are available. How-
ever, if our aim is to faciliate and enrich workflow construction of this sort, the above
steps allow us to outline the semantic properties we would like in this domain, namely
service description, discovery, selection and invocation, along with the capture of work-
flow process.

Currently, however, the WSDL descriptions of services are primarily syntactic in
nature, inasmuch as they describe the types of the service inputs and outputs but not
the semantics of these parameters or of the task that the service performs. This means
that prospective clients usually need to gain an understanding of the behaviour of and
interface to the service from some other source (for example, by emailing its authors or
reading their web pages) in order to use the service. Furthermore, it restricts the possi-
bilities for dynamic discovery of appropriate services to meet a client’s needs (Taverna,
for example, provides its users with lists of ‘known’ web services from which to choose;
this list can be augmented if the user knows of the URIs of other services, but no auto-
matic discovery is attempted).

Given these requirements, and the desire to apply emerging semantic web technolo-
gies rather than invent new ones for this domain, in the following sections we outline
our approach to introducing semantics to bioinformatics web services.

4 A Semantic Bioinformatics Service Environment

In order to introduce semantics into the current practice of service-based bioinformatics
and satisfy the above desiderata, we have introduced the following:

– The semantic description of services using OWL-S, plus a dedicated domain ontol-
ogy described in OWL (described below in sections 4.1– 4.3);

– An automated discovery service using a description logic reasoner (section 4.4);
– A semantic workflow tool, which acts as a user interface to the discovery service,

and allows the invocation of services (section 4.5).
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4.1 Introducing Semantics: OWL and OWL-S

In an attempt to move towards a more ‘semantic’ environment, we have chosen to intro-
duce OWL-S descriptions of the existing services. OWL-S [5] is a generic upper ontol-
ogy for specifying web services; it is intended to allow providers to describe (using an
XML document) their services in such a manner as to allow their discovery, selection,
composition and invocation; and, where appropriate, allow for monitoring, mediation
and failure recovery. OWL-S is specified in OWL, the Web Ontology Language [7],
which provides a language (built on the RDF data model) for specifying Description
Logic (DL) constructs in the syntax of XML. DLs form a subset of first-order logics
that are particularly suited to the description of hierarchical ontologies of entities, and
possess appealing tractability characteristics.

The OWL-S ontology is divided into three principal areas: the Profile, Model and
Grounding. The Profile is used to describe the purpose of the service, and so primar-
ily has a role in the initial discovery of candidate services for a particular task. The
Model describes how the service is performed, and is intended to allow simulation of
and mediation with the service, to enable the execution of the service to be monitored,
etc. Finally, the Grounding specifies in concrete terms how the service is actually in-
voked.

The role of the Profile, then, is to describe the essential capability of the service
by characterizing it in functional terms (in addition, non-functional aspects of the ser-
vice can be specified through ‘service parameters’). This functional characterisation is
expressed by specifying the class of the service and by detailing the inputs it expects,
the outputs it produces, the preconditions that are placed on the service and the effects
that the service has. The description of preconditions and effects presents something
of a problem for OWL-S; their expression requires, in effect, variables and rule-like
constructs, which are outside the expressive capabilities of DLs (and hence, outside the
capabilities of DL reasoners). In this domain, however, as noted in section 2 above,
we assume that web services are essentially stateless; accordingly we do not need to
model preconditions and effects, but this will not be the case for all domains. As well
as characterising services, the Profile has an additional use: to allow potential clients to
specify their desired services (the descriptions of which may be partial or more general
in nature where certain specifics are irrelevant to the client).

Since the OWL-S ontology is essentially domain independent, in order to provide
this sort of ‘semantic typing’ of both services and queries, we need to extend the ontol-
ogy with ontological concepts from, in this case, the domain of bioinformatics.

4.2 A Bioinformatics Ontology Extension

The approach taken is to extend the basic generic description of an OWL-S Profile,
hierarchically subclassing it with the various types of bioinformatics service that can be
identified (figure 2). In addition, we also generated a hierarchy of the various conceptual
data types that describe the inputs and outputs.

Being essentially simple taxonomies of services and data, these ontology extensions
are not as rich as one might expect, due in part to the practicalities of expressing these
concepts in DLs. For instance, when coming to define the class ProteinSearchService,
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Fig. 2. A fragment of the bioinformatics ontology showing the hierarchical arrangement of some
types of service. Note that the root of this subtree is the (OWL-S) Profile concept

one might reasonably attempt to express as restrictions on this class the features of its
inputs and outputs that are common to all service instances of the class:

ProteinSearchService ≡ SearchService �∃ hasInput.ProteinSequence �∃ hasOutput.Report

In other words, that instances of ProteinSearchService have some input of class
ProteinSequence and give some output of class Report. Now, one might want use this
definition to define the more specialised service concept BlastP:

BlastP ≡ ProteinSearchService �∃ hasInput.DatabaseName �∃ hasInput.ProgramName

�∃ hasOutput.BlastSearchReport

Now, unless we introduce appropriate disjointedness axioms and cardinality con-
straints, from this definition it is impossible to infer how many inputs and how many
outputs a BlastP service should have. Introduction of these appropriate axioms and
constraints can have implications for the tractability of automated reasoning (e.g., the
assertion of cardinalities other than 0 or 1 takes us from the OWL-Lite subset of the
language to OWL-DL). A more practical concern, though, is the engineering implica-
tions of these sort of definitions; for a bioinformatician wishing to describe his service
(who cannot be assumed to be familiar with DLs), complex definitions of this sort are
unwieldly and difficult to use, and can result in inappropriate conceptualisations having
unintended implications. The client who wishes to state her requirements will face sim-
ilar difficulties. To a certain extent, these problems are due to the unsuitability of DLs,
with their lack of arbitrary variables and rule expression, for representing processes.7

As a consequence, the ontology extensions we have created are relatively sparse, being
little more than definitions of taxonomies of concepts. The intention is that the service
provider and client are able to use these ‘naively’ to express the service and data types
they provide or require.

7 Note that the most recent version of OWL-S (version 1.1) includes the concept of a variable,
and suggests ways by which to introduce rule-like expressions; however, it is not entirely clear
how these should be used or reasoned with.
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There are now several tools available which enable the user to create and extend
OWL ontologies; here we use the Protégé ontology editor.8 The extensions were cre-
ated by an informatics researcher who also has experience of bioinformatics, and since
we restricted ourselves to modelling only certain — but hopefully representative —
scenarios, these extensions represent partial views of the domain for this purpose. The
creation of the ‘right’ ontologies is an issue of obvious importance, not only here but
throughout the semantic web community and beyond. A good ontology in this case
would both allow service providers an appropriate degree of expression to capture ac-
curately and completely the behaviour of their services and enable clients to express
their needs in as specific or as general a manner as is appropriate. In this sense, as-
sessing the value of an ontology is a pragmatic question. Moreover, the use of domain-
specific ontologies in this manner places certain practical obligations on agents in this
domain: for service discovery to be possible, there must be a certain degree of con-
sensus in the content and use of ontologies by both the service providers and potential
clients.

4.3 Describing Bioinformatics Services

Now we can use the ontology extensions outlined above to describe the Profiles of bioin-
formatics web services in the manner suggested. Each particular service is an instance
of the appropriate subclass of BioinformaticsService, and each of its inputs and outputs
are typed9 with the appropriate data class expressions. We do not, however, make use
of OWL-S service parameters to try to capture the non-functional qualities of these ser-
vices; factors such as trust, efficiency and availability of services will undoubtedly play
a major role in service selection, but remains an area of future research.

Now we need to consider how to express the other constituents of an OWL-S de-
scription, namely the model and the grounding. In each case, this is relatively straight-
forward. Since, as discussed in section 2, these services are generally modelled as ‘black
box’ atomic processes, this naturally leads us to describe their models using the OWL-S
concept of AtomicProcess. However, note that, while appropriate for the existing web
services, this choice means that the services have rather inexpressive models, and as
a result the possibilities for simulation, mediation, monitoring, etc. of services is lim-
ited. As also stated in section 2, the interfaces to these services are usually described
using WSDL documents; hence this becomes the obvious choice for their OWL-S
grounding.

The construction of an OWL-S document describing a particular service is a semi-
automatic process. From its WSDL description, the OWL-S API [6] allows the auto-
matic construction of a basic OWL-S outline document, having a grounding that refers
to its WSDL, an atomic process model, and a profile which has the appropriate number
of inputs and outputs. Using the bioinformatics ontology extension, these inputs and
outputs, along with the class of profile itself must then be manually annotated with the
appropriate semantic terms from the extended ontology.

8 http://protege.stanford.edu/
9 Through the use of the OWL-S parameterType relationship.
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Although in this case we have provided the OWL-S descriptions of others’ web
services,10 ideally it would be the service providers who would generate these. This
would require appropriate tools to be available and, since the task is always likely to
have a manual component, the ontological descriptions to be ‘usable’ (a subject touched
upon in the previous section).

4.4 Semantic Discovery

Among the fundamental capabilities of DL reasoning engines are the subsumption of
class terms and the classification of individuals into their appropriate categories or
classes. The use of OWL-S and OWL allows us to exploit their underpinnings in DLs
to construct discovery services for this domain. Here, we have constructed a simple
generic discovery service based on the RACER DL engine [10], which loads and main-
tains the current Profile ontology (including its bioinformatics extensions) in memory.
On receipt from a service provider of a service advertisement in the form of (the URL
of) an OWL-S document, the Profile of the service is used to classify this instance into
its appropriate location in the ontology.

Subsequent queries (also in the form of OWL-S descriptions) can be interpreted
as defining a class of services; the instances of those classes that are equivalent to or
subsumed by this class are considered to satisfy this query. Note that queries can be as
specific or as general as required, and there may be any number of services that meet a
particular query, details of all of which are returned to the client. (Others have proposed
similar reasoning mechanisms for discovering services — for example, see [12].) It is
easy to imagine applying more elaborate reasoning here, perhaps involving aspects of
automated composition to formulate and return sequences of services. In addition, the
discovery service described above will miss potential service solutions that are more
general than (i.e., that subsume) the current query. While this functionality could easily
be provided, it raises a problem with the interpretation of the intended semantics of
services: should the claim of a service to take input of some class I be interpreted as
meaning it can handle every instance of (every subclass of) I, or merely some of these
instances, of which I represents the ‘least general generalisation’? (While the former
interpretation would allow for more definitive reasoning about services and is proba-
bly the more ‘correct’ approach, at a pragmatic level the latter use would appear more
natural.) Another difficulty surrounds queries which stipulate, for example, a relatively
general input class and a relatively specific output class (as would be used when ‘prob-
ing’ the available services for methods that produce a particular desired output). In this
case, any particular service (with, say, more specific input and more general output typ-
ings) is unlikely to either subsume or be subsumed by the query: a more sophisticated
matching algorithm would be required, one which considers these different constituents
of the profile description separately. Problems such as these suggest that service discov-
ery based on the simple subsumption of Profile descriptions is unlikely to be adequate
for many domains (and undermines some of the rationale for expressing OWL-S in a
DL-based language).

10 A task which presented some difficulties, since — of course — these services lacked any
semantic description!
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Notwithstanding these shortcomings, we have chosen to construct and deploy the
relatively simple algorithm described above to provide a basic functioning discovery
service for our environment. This discovery service is itself implemented as a web ser-
vice, with a WSDL description specifying the appropriate SOAP messages for publish-
ing services and posting queries (these functions can also be performed through a web
browser form). Hence, a further assumption about this environment is that the location
of this service is known a priori to clients and providers alike.

4.5 Semantic Workflow Tool

The architecture outlined above can be used by clients that are able to parse WSDL and
generate, send, receive and parse SOAP messages over HTTP, and, for the purpose of
semantic discovery and invocation, generate and parse OWL-S descriptions. However,
provision of these abilities currently places quite a burden on any prospective user.
Consequently, we decided that, in order to ease this burden and provide a means to
construct the workflows of services in the manner described in section 3, we would also
provide a client-side interface to this architecture, in the form of a domain-independent
semantic workflow tool.

Through a graphical interface, this tool allows its users to specify, using the ontology
extensions of the domain in question, their (perhaps partial or general) service needs at
a semantic level; these are used to generate the appropriate OWL-S queries, which are
then sent to the discovery service. If matching services are returned, their descriptions
are then used to fill in details (such as additional inputs and their characterisations). By
specifying that the output document of one service is to form the input document of the
next, ‘pipelined’ sequences of services can be constructed dynamically. Finally, values
can be provided for inputs to the systems, and outputs channelled into specified outputs
and the created workflow can be invoked. (This tool is domain-independent; among its
parameters are details of the domain ontology extensions to use.)

Fig. 3. Using the semantic workflow tool to define a BlastP service step



704 S. Potter and S. Aitken

As an example of the use of this tool — and of the use of the semantic environ-
ment — we now describe the construction of a sequence alignment workflow as in
the scenario of section 2.1. For reasons of brevity, however, we restrict this example
to the definition of only the first two service steps in this sequence. The aim of this
workflow, then, is to perform a BLAST search over a protein sequence database. Ac-
cordingly, the user first introduces a generic service node, and then, using the bioin-
formatics ontology extensions, browses the hierarchy to specify the class of desired
service (figure 3). Having done this, the user then places a call to the discovery ser-
vice to find if there are any services available which conform to this (partial) service
definition.

The response indicates that there is a single available instance of a BlastP service
(called “SEARCHSIMPLE”), and the user selects this to instantiate this step. This has
the effect of elaborating the workflow with the three inputs and single output of this
particular service, all named and typed appropriately (figure 4).

The user’s next task is to acquire the desired protein sequence that forms one of
these inputs; the user does not have this data directly, and so would like to search for a
service that will supply it; hence, the user replaces the input with a new generic service
concept, and places a call to the discovery service. This corresponds to a request for
any service that produces an output of type ProteinSequence. This time, the response
indicates that two alternatives are available, namely “GETFASTA SWISSENTRY” and
“GETFASTA PIRENTRY”, look-up services which access the PIR and the SwissProt
protein databases respectively. Since, in this case, the user wishes to use the SwissProt
database, the latter of these is selected, and its input added to the model.11

Now, the user can associate appropriate values with each of these inputs (or else read
the values from files) and invoke the workflow; the results are displayed to the screen
and written to a file (figure 5).

To encourage interoperability and reusability, the workflow is also saved as a file
conforming to the SCUFL XML workflow language used by the Taverna Workbench,
into which it may then be loaded, executed, modified, etc.

4.6 Summary

It will be useful at this point to reiterate the steps that we performed in order to create
this bioinformatics semantic web service-oriented environment from existing computa-
tional resources:

11 Inevitably, the description of services is more complex than is suggested by this example. In
particular, the ‘pipelining’ of services, as in this example, is complicated by the variety of
formats used to describe what are conceptually the same input and output data, and frequently
results in the need to resolve these mismatches using shim services. (In this example, the
pipelined data is — conveniently enough — in the same format.) Ideally, since we are trying to
operate at a ‘semantic’ level, we would like to defer consideration of such ‘syntactic’ questions
until invocation-time. However, since the absence of even a single necessary shim service will
prevent successful execution the entire workflow, such matters cannot be so easily ignored.
Consequently, we currently model them as first-class semantic services, but the appropriate
manner of describing and reasoning with data formats remains an open question.
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Fig. 4. A service instantiation of the BlastP step

Fig. 5. Finally, the workflow is invoked and the results can be inspected

1. Analysis of existing web services and of their use by bioinformaticians has allowed
us to define the desirable properties of any such environment to act as drivers for
the engineering effort;

2. An OWL bioinformatics ontology extension to the OWL-S ontology was engi-
neered; this step involves deciding how best to characterise the domain and dif-
ferentiate services, from the perspectives of both service providers and potential
clients.

3. Using this ontology and the WSDL description of an available service, an OWL-S
description of the service is generated (in part manually).

4. Using an existing DL reasoner, a semantic discovery (web) service was constructed.
This uses the ontology to classify available services, whose OWL-S descriptions
can now be published to this service.

5. In this case, we provided a client-side workflow tool interface that would allow its
users to interact with this environment.



706 S. Potter and S. Aitken

By way of an aside, one might expect many of the characteristics noted above to be
found in other domains in which existing computational resources are invoked from the
command-line using UNIX-pipelines. In its embrace of web services, bioinformatics
is a relatively advanced domain; when considering how to ‘servicify’ similar but less
evolved domains, there are a number of issues that arise. These include deciding what
should constitute a service in the domain (a convenient rule of thumb might be to con-
sider what constitutes a ‘minimal unit of reusability’), how best to expose its inputs and
outputs (since command-line programs will often refer to local files and directories)
and how to provide the appropriate computational (HTTP, SOAP, WSDL) wrapping
around the service. (With others we have addressed some of these issues when creating
a semantic environment similar to that described in this paper for the domain of natural
language processing; see [8] for details.)

5 Related Work

In this section we highlight some current work that is closely related to that presented in
this paper. Within the bioinformatics community, the myGrid project12 has investigated
the use of DAML-S (the precursor to OWL-S) for service description, and one thread of
the BioMOBY project mentioned above concerns the semantic description of services,
with, as here, the use of OWL ontologies of service and data types. Rather than using the
kind of service-oriented architecture adopted here, though, this work is experimenting
with an alternative model in the form of the joint development between agents of a
‘negotiated’ service description. This approach is intended to help counter some of the
problems that would occur whenever ontologies or service descriptions alter. However,
since this work is still under development, it is not yet possible to judge the merits of
this approach.

The work presented here has some overlap with the Task Computing project [14],
at least in terms of the underlying semantic web technologies that are adopted, and that
project’s STEER interface is somewhat similar to the workflow tool developed here.
However, there are differences: Task Computing is an ambitous project concerned with
pervasive computing, and adopts an appropriate non-centralised architecture for service
discovery; moreover, it is aimed at a wider range of potential users than the work here,
which is focused on the needs of a particular community.

The WSMO working group13 is directly concerned with providing semantic ser-
vice environments, and in some respects represents an alternative to the OWL-S ap-
proach and the architecture that it suggests; however, its work is still at a relatively
early stage, and does not yet allow a full appraisal of its applicability to this domain. The
METEOR-S/WSDL-S [17] project is an attempt to integrate semantic ‘type’ descrip-
tions (expressed using OWL constructs) more directly into WSDL documents. This sort
of approach might be appropriate in this particular case, since the assumptions we make
about bioinformatics services mean that, in effect, OWL-S is used for little more than
typing of this sort.

12 http://www.mygrid.org.uk
13 http://www.wsmo.org
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6 Conclusions

The environment described above supports the interactive construction and execution of
workflows, i.e., their realisation in an orchestrated sequence of web services. From the
user’s perspective, the creation of a workflow can take place at the ‘knowledge level’
of service types, with calls to the discovery service used to try to ground the workflow
in actual computational resources. The choice of a particular candidate service for a
given workflow step also has the effect of introducing any additional input and out-
put parameters associated with it into the model. Data flow is achieved by ‘pipelining’
an output of one service into the input of another. When actual services instantiate all
the steps, the workflow input values can be supplied, either as literals or from files,
and the workflow can be invoked. Hence, the discovery of services plays an important
role in providing access to active services. In comparison with conventional look-up
approaches such as UDDI [1], which rely on generic service taxonomies, our discov-
ery mechanism can perform more detailed matching using subsumption over service
requests and advertisements. This mechanism, the workflow tool and the underlying ar-
chitectural aspects of the environment are essentially domain-independent; the specifics
of the domain are expressed through the ontology extensions and their use in OWL-S
service descriptions.

We conclude with some remarks about the engineering aspects. The need to wrap
services with a SOAP messaging layer, and generate the corresponding WSDL and (in
particular) OWL-S documents remains an obstacle to those trying to ‘re-purpose’ ex-
isting resources as web services.14 The end-user tools for doing this are not yet readily
available, and until such time as they are, take-up of these technologies will necessarily
be limited. At a more general level, the suitability of the OWL-S ontology and OWL
itself, and, more specifically, their underlying grounding in DLs, for the purpose of de-
scribing services remains questionable. As discussed in section 4.2, DLs do not readily
lend themselves to the description of processes. Furthermore, as seen in section 4.4,
service discovery based simply on the subsumption of Profiles is not always going to
be adequate. The workflow tool that we have developed currently has a rather limited
vocabulary for specifying workflows; for instance, iterations over resources cannot be
specified in the language, but must be encapsulated in a composite process. In part, this
is a result of the desire to provide a simple graphical interface, which does not lend it-
self to subtleties of this sort (and, of course, users with more advanced needs could
always revert to a conventional programming language to specify their workflows).
However, another factor is that the contents of an appropriate workflow language(s)
for bioinformatics (and for e-Science more generally) are, as yet, not entirely clear.
Indeed, this — along with other aspects of this environment — is something that one
might expect to evolve as semantic web services are assimilated into scientific research
methodologies.

14 To address part of this problem, the myGrid project has developed Soaplab, to help provide a
SOAP wrapper for programs; see http://industry.ebi.ac.uk/soaplab/.
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