

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 623–632, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Semantic Web-Based Document:
Editing and Browsing in AktiveDoc

Vitaveska Lanfranchi1, Fabio Ciravegna1, and Daniela Petrelli2

1 Department of Computer Science, University of Sheffield, Regent Court,
211 Portobello Street, S1 4DP, Sheffield, United Kingdom

{vita, fabio}@dcs.shef.ac.uk
http://www.dcs.shef.ac.uk/

2 Department of Information Studies, University of Sheffield,
Regent Court, 211 Portobello Street, S1 4DP,

Sheffield, United Kingdom
d.petrelli@shef.ac.uk

http://www.shef.ac.uk/~is/

Abstract. This paper presents a tool for supporting sharing and reuse of
knowledge in document creation (writing) and use (reading). Semantic Web
technologies are used to support the production of ontology based annotations
while the document is written. Free text annotations (comments) can be added
to integrate the knowledge in the document. In addition the tool uses external
services (e.g. a Semantic Web harvester) to propose relevant content to writing
user, enabling easy knowledge reuse. Similar facilities are provided for readers
when their task does not coincide with the author’s one. The tool is specifically
designed for Knowledge Management in organisations. In this paper we present
and discuss how Semantic Web technologies are designed and integrated in the
system.

1 Introduction

In the current form of the Web, content is designed and published for human readers
and it is not typically tractable by machines; the Semantic Web, SW, is expected to
make content processable in an automatic way via the addition of annotations.
However, besides supporting automatic processing, the rich annotations behind the
SW can improve the user’s experience when dealing with documents and knowledge.
Several methods of enriching Semantic Web documents have been proposed. One is
to insert ontology-driven annotations that identify ontological instances in the
document [8]. This type of annotation enables the capturing of document content,
empowering better retrieval and reasoning.

A second method of enriching a document is to attach services: they can be
associated to ontological instances and made available directly from the document in
an automatic way [5]. Annotations and services can create a personalised view of the
document, so that the reader can directly access its content (via ontology based
annotation) and the additional information concerning it (i.e. the ontology and its

624 V. Lanfranchi, F. Ciravegna, and D. Petrelli

knowledge base can connect concepts in the document with external knowledge or
documents -provided by the ontological-based services [7]).

A further way to enrich documents is to incorporate free text annotations in the
form of comments [9]. They have become quite a standard feature1, especially in the
Knowledge Management (KM) world. Comments are used to integrate the text,
adding information and knowledge not explicitly mentioned within the document: this
is called braindump. For example, a lawyer could add explanations about referring to
a specific regulation in a document (e.g. a EU directive), rather than others that could
seem more relevant in the context of the document. In this case, comments are used
for explaining the reasons that led to a specific formulation of the document itself, i.e.
they are used to complement the knowledge in the document with knowledge about
the process that generated it. A fundamental difference between braindump and
ontology-based annotation is related to privacy. Typically, braindump is confined
within an organisation’s boundary as it contains the history, methodologies and
motivations of a document; these are generally considered internal knowledge not to
be shared with the outside world. As an example during the writing of this paper
many comments were introduced by the authors as a way to discuss the paper content;
however the form you are reading does not include it. The reader’s braindump can
comment not just the document itself, but even the author’s annotations and
comments. In this way it adds a further layer to the document knowledge.

All types of annotations, besides their different nature, share the same view of
supporting “knowledge addition” by the different agents involved in the document
lifecycle: e.g., the author(s) and the reader(s). Differences in the agent’s role imply, in
our view, a difference in management. Reader’s tasks are different from the author’s
ones; for example, the ontology used for annotation can differ: inside an organisation
a document may be written by the legal department using a legal ontology and
accessed by the commercial department; the two departments are unlikely to share the
same ontology.

In this paper, we propose to adapt and use SW technologies in order to support
users during the lifecycle of a document, from production (writing), to consumption
(reading) and maintenance (revision). By integrating the modalities of knowledge
sharing offered by Semantic Web technologies, it is possible to create new
opportunities for supporting users that can dramatically change the way document are
written and read.

First and foremost, we claim that annotations (and especially ontological-based
ones) must be generated as part of the document production step (i.e. editing) rather
than during a separated step, as it happens in many of current approaches [8][11][5].
As a matter of fact, if annotations are added while documents are written, it is
possible to use them to retrieve relevant content, moving from a situation in which
they passively mark up the document content for future use (e.g. retrieval and
reasoning), to one in which they contribute to reuse and sharing of knowledge during
writing. This direction of research was preliminary explored by Carr et al [1] in the
WickOffice editor, where knowledge about the domain of academics aided filling a

1 Editorial tools like Microsoft Word and Adobe Acrobat provide tools to add comments.

 Semantic Web-Based Document: Editing and Browsing in AktiveDoc 625

pre-defined form (part A of an EPSRC project proposal). In that case, the knowledge
used was static, i.e. its use was specified a priori by the application via the definition
of the domain (knowledge about academics) and the form to be filled. The support
was limited to filling pre-determined fields, while no additional knowledge was
provided for writing the rest of the project proposal, especially its free text parts.

The system and the methodology we discuss here go one step further than that
initial proposal. Conversely from the current technology our approach:

1. Supports all types of enrichment mentioned above (comments, ontologically-
based and associated services, hyperlinking) both for author(s) and reader(s).
Annotations can be added in layers, i.e. on top of other annotations.

2. Is able to automatically suggest ontological-based annotation so that
annotations are immediately available and no separate annotation step is
required.

3. Is able to monitor user actions while editing and to provide automatic
suggestions about relevant content; support is not limited to filling forms and
other pre-determined structures, but it is extended to free text as well; this
enables timely reuse of existing knowledge when available.

The result is, in our view, a system that helps sharing and reusing existing
knowledge. Its intended use is mainly for KM, in order to support sharing and reusing
knowledge within an organisation. The system is called AktiveDoc and is discussed in
the next section.

2 AktiveDoc

AktiveDoc is a system for supporting knowledge management in the process of
document editing and reading. Its main feature is to support users (both readers and
writers) in timely sharing and reusing relevant knowledge. In particular, document
content and existing annotations are considered in the context of the user’s previous
knowledge; then further annotations and content are suggested for insertion. Proposals
are gathered from different sources, i.e., from:

- Information extraction processes applied on the document itself: possible
ontology-based annotations are automatically identified and proposed to the
user. If accepted, they become part of the enriched document. Such annotations
can be used again to connect to the KB and ontology as mentioned below.

- Available structured knowledge: existing annotations enable connections to
knowledge bases and ontologies, so that part of the knowledge stored there
can be proposed for inclusion in the document;

- Querying the Web or other external repositories, including querying both
other documents in a repository and their annotations. Examples of tasks
covered here are using a search engine or a SW harvester (e.g. Armadillo
[2]) or retrieving pictures.

While many current systems modify the original document to add annotations,
AktiveDoc saves them in a separate database. This is in order to allow levels of
security and privacy: as mentioned above, there can be different levels of

626 V. Lanfranchi, F. Ciravegna, and D. Petrelli

confidentiality associated to the document enrichment. Therefore, annotations are
stored in a database and superimposed to the document during the process of rendering
according to a user profile. Annotations can be (1) public, (2) private or (3)
confidential: only the ones for which the user has permission are actually displayed.
An export facility allows producing a version of the document containing the required
level of enrichment. For example, when the document is published (like the document
you are reading now), only the annotations labelled as public are included. Documents
are saved in a KM system that acts as a knowledge base: every document is logically
associated to its annotations.

AktiveDoc’s architecture is composable so that it can accommodate different user
scenarios. Composition is done by integrating different Semantic Web technologies
and functionalities via SW Services. The rest of the section presents the system
architecture and its main functionalities.

Fig. 1. The AktiveDoc interface during editing: the name (Fabio Ciravegna) has been annotated
(in the centre); content suggestions from the system are displayed in the lower frames

2.1 User Interface

The actual appearance of the editor depends on the application it is used for. In
general, the interface is composed by (Figure 1):

 Semantic Web-Based Document: Editing and Browsing in AktiveDoc 627

• An editing window (top right) with formatting commands organized in
toolbars;

• The ontology on a side panel (left);
• A set of lower frames that visualise system suggestions, contributions and

proposed annotations (in Figure 1 the results of searching a proper name
with a search engine, and a set of pictures from a database);

• Braindumps presented in a way similar to MS Word (shown in Figure 3).

The actual appearance for a specific application is decided during a setup phase
where the different services are connected (mainly using Semantic Web Services) and
assigned a portion of the editor for outputting results or receiving input. Input is
provided by highlighting portion of text in the main pane and activating a service (e.g.
search with a search engine).

2.2 Ontology-Based Enrichment

Concerning ontology based enrichment, the following kinds of services are provided:
manual and semi-automatic annotation, and association of services. Manual
annotations requires users to associate (portions of) documents to the ontology or KB
in a way similar to what required by tools like Cream. Like in Melita [3], a graphical
interface is provided where colours are associated to entities; a mouse click is needed
to associate the selected text to a concept. The ontology used to annotate the
document is chosen by the user uploading it in RDF format.

Fig. 2. (part of the) the interface for browsing a document showing one suggestion for
additional content. No editing facilities are provided, except for comments and adding
annotations

When working in a semi-automatic approach, the system learns from previous
annotations how to suggest annotations while the document is edited. Again, the

628 V. Lanfranchi, F. Ciravegna, and D. Petrelli

reference model is Melita’s. Users can accept or reject annotations. User reactions to
suggestions are used for further learning. The automatic detection provides efficiency
(i.e. annotation is instantly available) while user corrections provide precision (i.e.
only the truly important information is actually included in the annotation). Learning
is based on a machine learning system connected to the interface. The current
implementation connects to Amilcare [4]. The cycle annotation, correction and retrain
is imported from Melita and the same strategy for avoiding intrusivity is used here
[3]. The difference is that in the original implementation, Melita did not allow editing
of document. This required implementing a specific annotation step. Moreover, it
prevented the implementation of the strategies for content suggestion during editing
mentioned below.

2.3 Inserting Unstructured Annotations (Braindumps)

AktiveDoc accommodates insertion of free text comments into the document. As
mentioned before, braindump can be done at any stage of the document lifecycle, both
while editing and while reading. As in other tools, to insert a comment, the portion of
document is highlighted and a button “Add Comment” is pressed. The comment will
then be shown as a “plus” in the editor window (Figure 3). The comment can be
expanded by clicking on the “plus”.

Fig. 3. The AktiveDoc interface while comments are inserted: a “+” marks a comment (related
to the concept Fabio Ciravegna); in the lower-right frame all the comments are listed

 Semantic Web-Based Document: Editing and Browsing in AktiveDoc 629

Comments are organized in layers: a user may add comments to other users’
comments; they can also add annotations to their or other people’s comments. Finally,
they can add System-suggested content (see next subsection) directly into comments.
As for any type of annotation comments are stored in the database with authorship
and level of confidentiality, to guarantee privacy and security.

2.4 Supporting Content Generation

As mentioned, one of the main features of AktiveDoc are active suggestions of
relevant content to authors and readers in order to enable knowledge sharing and
timely reuse. Knowledge is retrieved by external composable Web Services that
exchange knowledge with the editor via the ontology.

When a portion of document is selected, services are made available depending on
the annotations contained in the portion of text (if any) and on the string. For
example, in Figure 3 in the lower-left frame the services associated to the annotated
string “Fabio Ciravegna” are shown. Information about the individual are retrieved
from a KB and other services are made available. Services are associated to types in
the ontology and depend on the specific application.

A similar process was proposed in Magpie [5]. The difference with Magpie is that
in Magpie annotation is not provided while editing but only in displaying the
document. As mentioned, providing services during editing enables retrieving new
content to be added to the document, therefore knowledge sharing and reuse is
possible for the author and not only for the reader. Also, in Magpie annotations are
generated only using a named entity recognizer (eSpotter [12]), therefore they are
quite shallow; moreover, a rule based Named Entity ecognizer is used, and any
addition of coverage to the recognizer requires rule writing by an expert. In
AktiveDoc, annotations are either produced automatically by a system that learns
from examples (Amilcare) or manually by the user. Also annotation is not limited to
generic named entity recognition. In the current implementation connections to
Armadillo (knowledge harvester) [2], Search engines (e.g. Google) and to structured
resources (databases and knowledge bases [6]) are provided as shown in Figure 3 in
the lower-left.

The activation of services is not automatic, but it requires a user action. This is
done in order both to avoid spending CPU time on irrelevant tasks (that is one of the
requirements for non intrusivity for automatic annotation [2]) and to avoid
overwhelming users with (possibly irrelevant) suggestions (another requirement for
automatic annotation).

Suggestions are presented to the user in a frame different from the one used for the
document (and on which the user is working), so to avoid distracting the user
attention when they appear. The interface currently allows both textual content (as in
content retrieved from Google Web Service or Armadillo RDF repository) and
multimedia content to be displayed (e.g. images retrieved by Armadillo see Figure 1).

Visualised suggestions can be inserted either directly into the document or as
comment by dragging them in the wanted position.

R

630 V. Lanfranchi, F. Ciravegna, and D. Petrelli

3 Architecture and Implementation

AktiveDoc is a client-server application integrated in a Web Based KM System. The
system is based on an interface that interacts with user’s actions and timely calls the
appropriate modules for executing the actions. The main system’s components are:
(1) Annotation module and (2) Information module.

The information module (IM) is in charge of connecting to the appropriate
information source and retrieving content to be suggested to the user; when the user
selects a portion of document, the IM extracts the string and the contained annotations
(if any) and sends them to the available services. Then it collects their results and
presents it into the user interface. The annotations module is responsible for saving
the annotations inserted by the user and for retrieving the automatic annotations
provided by the system via Amilcare. Both modules are integrated in the user
interface and are active only when a user's action requests them.

The system contains also an Ontology Module that is in charge of interpreting the
RDF ontology the user loads and of visualizing it using appropriate style sheets. The
editor interface is based on HTMLArea, a free, open source utility developed by
interactivetools.com to convert a <textarea> field into a WYSIWYG editor. In this
way HTML documents can easily be opened and visualized correctly in the system
and new documents can be created using the formatting facilities offered by HTML.
Several frames are inserted in the main interface to allow displaying the ontology, the
available services and the retrieved content. The interface is based on Javascript and
JSP functions. Documents and annotations are saved in a MySQL database. Support
for Semantic Web Services is provided by the Armadillo infrastructure [10].

Fig. 5. An example of AktiveDoc application architecture

4 Discussion and Conclusions

In this paper we have presented a tool for supporting users during the lifecycle of a
document, from production (writing) to consumption (reading and publishing). The
tool integrates Semantic Web technologies to support users in adding knowledge to
the document. In particular, writers can receive suggestions on relevant content
(enabling reuse of knowledge) and can be supported in producing ontology-based
annotations (that will empower the Semantic Web). Also textual comments are

 Semantic Web-Based Document: Editing and Browsing in AktiveDoc 631

enabled in order to add further knowledge to documents. Potentially2 the system is
also able to suggest relevant content after the document is published, in order to allow
document maintenance (e.g. newly available content could be communicated to the
author even after the release of the paper).

Readers are able to access the enriched document produced by the authors using
AktiveDoc. Moreover, in case their task differs from the author’s one (e.g. they use a
different ontology), they receive the same kind of support authors receive (relevant
content suggestion, ontology based annotation, etc.); this enables reading in the
context of their knowledge rather than in the author’s one.

AktiveDoc has been designed mainly with Knowledge Management in mind,
specifically in order to help reusing and sharing knowledge. These are fundamental
needs in enterprises: according to some recent statistics, knowledge workers spend
between 15% and 35% of their time in searching for knowledge3. Also, “lack of
efficient publishing capabilities for digital content costs organizations $750 billion
annually due to wasted time spent by knowledge workers seeking and capturing
information necessary for them to do their jobs4”. By providing both ontology-based
annotations and the suggestion of relevant content, we enable knowledge reusing.
Knowledge sharing is empowered by layered comments and also by the searching
capabilities provided by ontology-based annotations.

Annotations and services are stamped with authorship and are not saved in the
document, so to allow confidentiality when needed. Marking authorship has also
two other positive side effects. On the one hand it can contribute to identifying
experts, a well known problem in large organizations. Associating annotations to
documents means having coped with a problem, therefore it is possible to identify
who works on specific problems by inspecting what documents a person has
worked on. In traditional environments only the author can be tracked, not the
readers On the other hand, it allows implementing strategies of company
management that rewards who shares knowledge within the company. The amount
of sharing can be counted starting from the value and quantity of annotations
provided to documents.

Future work on AktiveDoc will include the extension of the base of services
provided and a field user test in a KM environment.

References

1. L. Carr, T. Miles-Board, A. Woukeu, G. Wills and W. Hall. The Case for Explicit Knowl-
edge in Documents. In Proceedings of ACM Symposium on Document Engineering ,
pages pp. 90-98, Milwaukee, Wisconsin.

2. Fabio Ciravegna, Sam Chapman, Alexiei Dingli, Yorick Wilks. Learning to Harvest
Informa-tion for the Semantic Web. In Proceedings of the 1st European Semantic Web
Symposium, Heraklion, Greece, May 10-12, 2004

2 This is a potential feature because it has not been implemented yet.
3 KMWorld Volume 13, Issue 3, March 2004.
4 A.T. Kearney, Network Publishing study, April 2001.

632 V. Lanfranchi, F. Ciravegna, and D. Petrelli

3. Fabio Ciravegna, Alexiei Dingli, Daniela Petrelli and Yorick Wilks. User-System
Coopera-tion in Document Annotation based on Information Extraction. In Asuncion
Gomez-Perez, V. Richard Benjamins (eds.): Knowledge Engineering and Knowledge
Management (Ontologies and the Semantic Web), Proceedings of the 13th International
Conference on Knowledge Engineering and Knowledge Management (EKAW02), 1-4
October 2002 - Sigüenza (Spain), Lecture Notes in Artificial Intelligence 2473, Springer
Verlag

4. Fabio Ciravegna and Yorick Wilks: Designing Adaptive Information Extraction for the
Semantic Web in Amilcare, in S. Handschuh and S. Staab (eds), Annotation for the
Seman-tic Web, in the Series Frontiers in Artificial Intelligence and Applications by IOS
Press, Amsterdam, 2003.

5. M. Dzbor, J. Domingue and E. Motta: Magpie: Towards a Semantic Web Browser. In
Proc. of the 2nd Intl. Semantic Web Conf. (ISWC). 2003. Florida, USA.

6. Hugh Glaser, Harith Alani, Les Carr, Sam Chapman, Fabio Ciravegna, Alexiei Dingli,
Nicholas Gibbins, Stephen Harris, M.C. Schraefel, and Nigel Shadbolt CS AKTiveSpace:
Building a Semantic Web Application. In Proceedings of the 1st Euro-pean Semantic Web
Symposium, Heraklion, Greece, May 10-12, 2004

7. C. A.Goble, S. Bechhofer, L. Carr, D. De Roure, W. Hall. Conceptual Open Hypermedia
= The Semantic Web?. In Proc. Of The Second International Workshop on the Semantic
Web, Hong Kong, 2001.

8. S. Handschuh, S. Staab. CREAM - CREAting Metadata for the Semantic Web. Computer
Networks. 42, pp. 579-598, Elsevier 2003

9. J. Kahan, M. Koivunen, E. Prud'Hommeaux, and R. Swick. Annotea: An Open RDF Infra-
structure for Shared Web Annotations. In Proc. of the WWW10 International Conference.
Hong Kong, 2001.

10. Barry Norton, Sam Chapman and Fabio Ciravegna. Developing a Service-Oriented Archi-
tecture to Harvest Information for the Semantic Web. In Proc. Of 1st AKT Workshop on
Semantic Web Services, 2004.

11. Maria Vargas-Vera, Enrico Motta, John Domingue, Mattia Lanzoni, Arthur Stutt and
Fabio Ciravegna "MnM: Ontology Driven Semi-Automatic and Automatic Support for
Semantic Markup", The 13th International Conference on Knowledge Engineering and
Management (EKAW 2002), ed Gomez-Perez, A., Springer Verlag, 2002.

12. Jianhan Zhu, Victoria Uren, and Enrico Motta. ESpotter: Adaptive Named Entity Recogni-
tion for Web Browsing. To appear in Proc. of Workshop on IT Tools for Knowledge
Management Systems at WM2005 Conference, Kaiserslautern, Germany, April 11-13,
2005.

	Introduction
	AktiveDoc
	User Interface
	Ontology-Based Enrichment
	Inserting Unstructured Annotations (Braindumps)
	Supporting Content Generation

	Architecture and Implementation
	Discussion and Conclusions
	References

