
REDD: An Algorithm for Redundancy
Detection in RDF Models

Floriana Esposito, Luigi Iannone, Ignazio Palmisano,
Domenico Redavid, and Giovanni Semeraro

Dipartimento di Informatica,
Università degli Studi di Bari,

Campus, Via Orabona 4, 70125 Bari, Italy
{esposito, iannone, palmisano, d.redavid, semeraro}@di.uniba.it

Abstract. The base of Semantic Web specifications is Resource De-
scription Framework (RDF) as a standard for expressing metadata. RDF
has a simple object model, allowing for easy design of knowledge bases.
This implies that the size of knowledge bases can dramatically increase;
therefore, it is necessary to take into account both scalability and space
consumption when storing such bases. Some theoretical results related to
blank node semantics can be exploited in order to design techniques that
optimize, among others, space requirements in storing RDF descriptions.
We present an algorithm, called REDD, that exploits these theoretical
results and optimizes the space used by a RDF description.

1 Motivation

The realization of the Semantic Web (SW) vision [1] needs ontologies for generat-
ing or interpreting (semantic) metadata for resources. It is fundamental to have
ontology creation and integration steps in order to share structural knowledge
between ontology designers and users. Ontologies are to be expressed in RDF
according to SW specifications, using languages such as RDFS1 and OWL.2 It
is important to note that both RDFS and OWL ontologies can be expressed as
RDF graphs, so that ontologies can be treated exactly as other RDF models. In
RDF design, the least power principle was applied: data structures are to be kept
as simple as possible. This imposes to have very simple basic components, that
are URIs3, blank nodes and statements (or triples). These design decisions have
the drawback that RDF descriptions tend to grow fast as the complexity of the
knowledge they represent increases. This observation encourages SW research to
investigate toward the most effective storage solutions for RDF knowledge bases,
in order to minimize required space. Intuitively, the lesser the number of triples
a software (say, a query engine) has to examine, the faster it will process them.

1 http://www.w3c.org/TR/rdf-schema
2 http://www.w3c.org/2004/OWL
3 http://www.w3.org/Addressing/

A. Gómez-Pérez and J. Euzenat (Eds.): ESWC 2005, LNCS 3532, pp. 138–152, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

http://www.w3c.org/TR/rdf-schema
http://www.w3c.org/2004/OWL
http://www.w3.org/Addressing/


REDD: An Algorithm for Redundancy Detection in RDF Models 139

This issue has already been deeply investigated, as reported in the section 2.2;
recently, some theoretical results were issued by both W3C in [6] and by Gutier-
rez et al. in [4]. Actually, these results apply also to RDFS, but in this paper
we will refer only to blank node semantics. Relying on these results, we devel-
oped an algorithm to detect redundancies introduced by blank nodes in a RDF
Description. Such redundancies can be removed by mapping blank nodes into
concrete URIs or into different blank nodes, without changing or diminishing
the RDF graph semantics. In other words, some descriptions can be expressed
with lesser triples with no semantic loss.

Moreover, redundancy detection can turn out to be useful in higher level
tasks, such as ontology design and alignment. Let us suppose to have designed
some classes (say in OWL) and let one of them be a cardinality restriction. If
somewhere in the ontology it has a name (an URI), as depicted in Figure 1
(i.e.: ns:Test), and somewhere else we created the same restriction without using
a name (so using an anonymous restriction class), we would have defined this
class twice unnecessarily, so intuitively we introduced redundancy. This kind of
repetitions can be detected thanks to blank node semantics and removed, thus
simplifying the design of the ontology. The same situation occurs, obviously, if
both the restrictions are represented by blank nodes.

Another situation in which the algorithm can be useful is in ontology import-
ing, i.e. the use of the owl:imports directive. In this case, let A and B be two
ontologies, and A owl:imports B ; referring to the restriction example, if there is
an anonymous restriction in B, and A needs the same restriction, the designer of
A needs to define its own restriction (since a blank node cannot be identified from
outside the model in which it is defined). From the OWL point of view, however,
A contains every statement in B, so the complete model (i.e. the model contain-
ing A plus the import closure) is redundant. The problem can become serious
if there are multiple owl:imports. Suppose an ontology is imported more than
once, e.g. A owl:imports B, C and B, C owl:imports D ; in this latter case, D is

Fig. 1. Example of redundant Restrictions



140 F. Esposito et al.

imported twice, and this means that, unless the code used to resolve owl:imports
handles the case of multiple imports, every blank node in D is duplicated in the
resulting ontology. We will see an example of this situation in Section 5.

In order to accomplish this, we will show a correct algorithm (in the sense that
it produces descriptions equivalent to the starting ones) without claiming for its
completeness (it is not guaranteed to find the minimal equivalent description)
called REDD (REDundancy Detection). This algorithm has been integrated in
our RDF management system, named RDFCore [2].

The remainder of this paper is organized as follows: Section 2 presents some
necessary notions on RDF semantics, together with a brief survey of related
work on RDF storage. In Section 3, the REDD algorithm is illustrated in detail;
Section 4 describes RDFCore, the system in which we implemented the REDD
algorithm. Some experimental results are presented in Section 5.

2 Preliminaries

2.1 Basic Notions

We collect here some definitions and theorems that will be useful in the rest of
the paper. Most of them have been taken from [6] and [4] and recalled here to
make this paper as self-contained as possible. However, we assume the reader
familiar with RDF Concepts and Syntax:4

Definition 1 (RDF-Graph). A RDF-Graph is a set of RDF statements. Its
nodes are URIs, literals or blank nodes (identifiable nodes with no intrinsic
names5) representing subjects and objects of the statements. Its edges are la-
beled by URIs and represent the predicates of the triples.

A small example can be found in Figure 2.

Fig. 2. A small example from http://www.w3.org/TR/rdf-syntax-grammar/

4 http://www.w3.org/TR/rdf-concepts/
5 http://www.w3.org/TR/rdf-concepts/#section-URI-Vocabulary

http://www.w3.org/TR/rdf-concepts/


REDD: An Algorithm for Redundancy Detection in RDF Models 141

Definition 2 (Mapping). Let N be a set of URIs, blank node names and liter-
als. A mapping is a function µ : N → N that changes a node name into another
one.

Definition 3 (Instance). Let µ be a mapping from a set of blank nodes to some
set of literals, blank nodes and URIs and G a graph, then any graph obtained
from G by replacing some or all of the blank nodes N in G by µ(N) is an instance
of G.

Definition 4 (Lean Graph). A RDF graph is lean if it has no instance which
is a proper subgraph of the graph.

The following results are proved in [6]:

Lemma 1 (Subgraph Lemma). A graph entails all its subgraphs.

Lemma 2 (Instance Lemma). A graph is entailed by any of its instances.

This means that every non-lean graph is equivalent to its unique lean sub-
graph [4]. Relying on these notions, in Section 3 we will present an algorithm
that reduces non-lean graphs under certain conditions.

2.2 Related Work

Effective storage of RDF has always been bound to another key issue: Querying
models. This was because no recommendation, at the time of writing, has been
completed by W3C for RDF description querying (SPARQL6 is at the Working
Draft stage of its evolution); thus, different solutions were developed, each one
with its own query language and related optimizations. Some members of RDF
Data Access Group issued a report7 in which six query engines were examined
aiming to compare different expressive power of the underlying query languages.
Actually, many different triple storage strategies are available. Among the sys-
tems implementing them, we remark the toolkit from HP Semantic Web Lab,
called Jena [8, 9]. At the time of writing, Jena supports RDQL as query language,
with support for SPARQL in a separate project, ARQ.8

Other interesting approaches to RDF data model optimization relies on prop-
erties of the RDF graph. One of them is described in [5], where the authors
present an approach based on an intermediate layer between application data
structures and the abstract triple syntax that uses hypergraphs. In this approach,
theoretical results on graph theory can be used to minimize graphs and to cast
application requests to well known graph problems, thus allowing to optimize
different usage scenarios for RDF graphs.

6 http://www.w3.org/2001/sw/DataAccess/rq23/
7 http://www.aifb.uni-karlsruhe.de/WBS/pha/rdf-query/rdfquery.pdf
8 http://cvs.sourceforge.net/viewcvs.py/jena/ARQ/

http://www.w3.org/2001/sw/DataAccess/rq23/
http://www.aifb.uni-karlsruhe.de/WBS/pha/rdf-query/rdfquery.pdf
http://cvs.sourceforge.net/viewcvs.py/jena/ARQ/


142 F. Esposito et al.

3 Redundancy Detection

3.1 REDD Algorithm

Our redundancy detection algorithm is based on the notion of lean subgraph
of a RDF graph. The lean subgraph is a subset of the RDF graph, and, as a
consequence, is a subset of the set of statements of the original graph, having
the property of being the smallest subgraph that is instance of the original
graph. A pseudo code version of it can be found in Figure 3. The output of this
algorithm has as a requirement the characteristic of expressing the same content
of the original RDF graph (though in a more compact way). The output can be
obtained from the original graph leaving untouched the ground part of the graph

ConnGraph{Set blanks, Model submodel, Map bToVarNames}

Set FindRedundancies(Model m){
Set redundancies
Set connGraphs =

CreateConnGraphs(m)
FOR EACH graph in connGraphs{

Query q = CreateQuery(graph)
Set redundancy = ExecuteQuery(m,q)
ADD redundancy to redundancies

}
RETURN redundancies

}

Query CreateQuery(ConnGraph g){
Query q
FOR EACH s in g.statements{

IF (s.subj is blank) AND
(s.subj is not in g.bToVarNames){

create a variable name vn
PUT(g.bToVarNames, s.subj, vn)
ADD vn to q

}ELSE{ vn = s.subj }
IF (s.obj is blank) AND

(s.obj is not in g.bToVarNames){
create a variable name o
PUT(g.bToVarNames, s.obj, o)
ADD o to q

}ELSE{ o = s.obj }
ADD (s, s.pred, o) condition to q

}
RETURN q

}

Set CreateConnGraphs(Model m){
Set cg
Map blanksTocg
FOR EACH s in m{

IF s.subj is blank{
IF exists g in blanksTocg

mapped by s.subj{
add s to g

}ELSE{
create g for s.subj
add s to g
put g in cg
PUT(blanksTocg, s.subj, g)

}
IF s.obj is blank{

add o to g.blanks
PUT(blanksTocg, o, g)

}
}

}
RETURN cg

}

Set ExecuteQuery(Model m, Query q){
Bindings b = QUERYON(m, q)
Set redundancy
FOR EACH binding in b{

PUT binding.values in redundancy
}
RETURN redundancy

}

Fig. 3. Pseudo-code description of the REDD algorithm



REDD: An Algorithm for Redundancy Detection in RDF Models 143

(i.e. every node that is not blank and any edge connecting non-blank nodes), and
mapping from blank nodes to nodes already existing in the graph (blank nodes
or URIs). The result is bound to be a subset of the original graph, apart from
the identifiers of blank nodes.

Our algorithm searches for redundant blank nodes by looking at the graph
and trying to find blank nodes that do not contain any additional information
w.r.t. other nodes in the graph. Therefore, a blank node b is redundant if there
is a node n that is involved in a set of statements that would be equal to the set
of statements involving b if we replaced the occurrences of b with occurrences
of n.

This is a special case of a more general view: taking as reference a subgraph
built up of statements with blank nodes as subject and object, it is possible to
search for a different subgraph of the model, isomorphic to the given subgraph
(i.e. with the same properties between the nodes). On these two graphs, the
algorithm can be applied considering the set of edges minus the edges already
considered in the graph.

Our approach consists in finding a mapping from the original blank nodes of
the graph to URI in the graph or to different blank nodes already in the graph
(i.e. we do not introduce any new blank node). As an example, let us consider a
simple graph containing two statements, say:

:X ns:aGenericProperty ns:b
ns:a ns:aGenericProperty ns:b

we can determine that the graph is not lean by considering the mapping

: X → ns : a

The result is a graph with a single statement

ns:a ns:aGenericProperty ns:b

which is lean by definition (being a graph with no blank nodes).
More formally, called:

– ORIGIN the original graph
– RESULT the new graph we are going to build
– X the anonymous node we want to map

we define:

Definition 5 (SUBMODEL). All the statements in ORIGIN in which X is
the subject.

Definition 6 (SUPERMODEL). All the statements in ORIGIN in which X
is the object.

We then can check every possible mapping from X to an URI or to a blank node
identifier already occurring in ORIGIN for applicability to obtain an instance of
ORIGIN which is both an instance and a proper subgraph (an approximation



144 F. Esposito et al.

Fig. 4. Chained redundant blank nodes

of the lean subgraph) simply by checking that SUBMODEL of X is contained
in SUBMODEL of the candidate node and SUPERMODEL of X is contained in
SUPERMODEL of the candidate node. In fact, it can be easily proved that such a
mapping does not produce any statement not contained in ORIGIN ; RESULT
then is a graph containing the same ground statements and a subset of the
statements containing blank nodes. The missing statements are those containing
the X node we just mapped. From the logical point of view, the information
expressed by the graph is unchanged, since the mapping is equivalent to changing
from:

∃X.p(X, b) and ∃a.p(a, b)
to

∃a.p(a, b)

which are equivalent, not being stated that X is different from a. This mapping
can be built for every redundant blank node in ORIGIN, but in some situations
it is not guaranteed to find all redundancies. In fact, as in Figure 4, it is possible
to have a chain of redundant blank nodes which cannot be spotted with a one-
level visit of the RDF graph. In fact, in Figure 4, the two blank nodes represent
the same structure as the two nodes labeled b and c. To find this redundancy,
it is necessary to switch from a single node view to a multi node view.

For ease of reference, let us use an N-TRIPLE-like notation for the example
in Figure 4:

ns:a ns:p :X
ns:a ns:p ns:b
ns:b ns:p ns:c
ns:c ns:p ns:d

:X ns:p :Y
:Y ns:p ns:d

considering the subgraph
:X ns:p :Y

named BLANKS for future reference, its structure can be described with a query
like (using RDQL as query language, for the example)

SELECT ?a, ?b WHERE (?a, ns:p, ?b)



REDD: An Algorithm for Redundancy Detection in RDF Models 145

This query offers two results when executed against the model in the example:
the first result is the mapping ?a → : X and ?b → : Y , while the second is
?a → ns : b and ?b → ns : c. Actually, the results are two graphs; checking every
incoming edge and outgoing edge of the two graphs, we can determine if the
graphs are equivalent, in analogy with the previous particular case in which the
graph degenerates to a single blank node. This can be done adding conditions
to the original query:

SELECT ?a, ?b WHERE (?a, ns:p, ?b)(ns:a ns:p ?a)(?b ns:p ns:d)

This can be done in a general way starting from the subgraph built consid-
ering every triple involving the BLANKS subgraph, and then generating the
query with a condition for every triple and a variable for each blank node, keep-
ing track of the blank node → variable name association. The resulting query,
executed on the model, will surely produce one resulting graph (the subgraph
used to generate it); any other result is a graph that respects the constraints we
imposed on the single node case: on any node, the set of incoming edges includes
the set of incoming edges of the corresponding node in the BLANKS graph
(the corresponding node is the node that grounds the same variable), excluding
the edges already included in the graph (i.e. where both subject and object are
variables in the query).

For ease of future reference, we give the following definition:

Definition 7 (CONNECTED SUBGRAPH). A connected subgraph of a
graph G is a subgraph of G containing at least one blank node (as subject or
object); if more than a blank node is contained in the graph, then the blank nodes
make up a chain (i.e. it is possible to navigate from a blank node to another
following the predicates). The connected subgraph is made up of all the triples in
G that involve at least one of these blank nodes.

As an example, in Figure 4 there is one chain of blank nodes; the correspond-
ing connected graph is:

ns:a ns:p :X
:X ns:p :Y
:Y ns:p ns:d

This algorithm has been implemented in two steps: first, the special case
in which we consider only single blank nodes (i.e. no chain redundancies are
detected) has been implemented both as a Java class (built on top of the Jena
API) and directly in the storage layer of RDFCore with stored procedures in
the Oracle DB. The second step, i.e. the implementation of both single nodes
and chains detection, has been completed as a Java class (again using the Jena
API), and at the time of writing we are implementing it in the storage layer.

3.2 REDD Computational Complexity

In this subsection we will shortly carry out an a priori evaluation of computa-
tional cost required by REDD algorithm. We will keep as reference the pseudo



146 F. Esposito et al.

code version of REDD in Figure 3. Obviously, the actual implementations work-
ing both in memory and natively on the storage layers (see Section 4) underwent
some optimizations, not shown in the pseudo code for sake of brevity; hence
calculations in this section represent only an upper theoretical limit for the
computational cost of REDD. In section 5, the reader can find some empirical
evaluations.

We start defining some metrics on RDF descriptions on which, as shown
below, REDD complexity depends.

Definition 8 (RDF Description metrics). Be G a RDF description and n
a generic node in G then

– NG
T stands for the number of RDF triples within G

– NG
TB

stands for the number of RDF triples within G containing at least a
blank node

– NG
TNB

stands for the number of RDF triples within G with no blank nodes
(it is equal to NG

T − NG
TB

)
– #G

CG stands for the number of connected subgraphs with blank nodes within
G

Referring to Figure 3, complexity of FindRedundancies CFR is:

CFR = CCCG + #G
CG ∗ CCQ + #G

CG ∗ CEQ (1)

where

– CCCG is the complexity of the CreateConnGraphs operation, which is O(NG
T )

(linear in the size of the model); more in detail, the main cycle of Create-
ConnGraphs depends on NG

T , while each operation executed in the cycle
does not depend on NG

T (depending on the implementation, map and set
operations can vary their complexity; assuming an hash implementation for
both of them, every operation can be considered O(1)). On the other hand,
the number of mappings in the blanksTocg map depends on the degree of
connectedness in the graph: at worse, there will be no more than NG

T map-
pings (because the number of mappings cannot exceed the number of triples
in the graph), in the case that every statement has at least a blank node as
subject or object;

– CCQ is the complexity of the CreateQuery operation, which depends on the
number of triples in the connected subgraph it is operated onto; since the
connected subgraphs are disjoint set (if two connected subgraphs overlap,
i.e. they have some common blank node and in consequence some common
triple, they are actually one connected subgraph by definition, and they are
built in this way), the whole group #G

CG ∗ CCQ has complexity O(NG
TB

);
– CEQ is the complexity of the ExecuteQuery operation, which depends on the

QUERYON operator and on the number of results the query finds in the
model. In the worst case (very unlikely to happen), the number of results
can be equal to the number of resources in the model, which is at worst



REDD: An Algorithm for Redundancy Detection in RDF Models 147

3 ∗ NG
T (again, very unlikely to happen - in particular, since in the query

the predicate URI is never a variable, if the second situation is the case
then the number of results will be exactly one, and no redundancies will be
possible). Hence, this portion is O(NG

T ). The QUERYON operator complex-
ity depends on the query facility, that in the actual implementation relies
on Jena RDQL support. An upper limit for the complexity of this operation
can be calculated considering each condition in the query and verifying them
one by one against the model. There is a condition for each statement in the
connected graph, and each one of them requires (in an implementation with
no optimizations) at most NG

T checks on the model; under these assumptions
(which are surely an underestimation of the real performances), the whole
group #G

CG ∗ CEQ has complexity O(#G
CG ∗ NG

T + NG2
T )

As a result, CFR has complexity O(NG2
T ); in particular, the quadratic complexity

depends on the query phase of the algorithm, since the other two main sections
are O(NG

T ), and it comes from a deliberate overestimation of the query perfor-
mances. As an example, in an hypothetical implementation a simple indexing
on statement predicates P reduces the complexity of the search from O(NG

T ) to
O(#P ). In real models, it can reasonably be assumed that #P << NG

T .
In the next sections we will briefly present the RDFCore system, where

REDD has been implemented, and, in section 5, we will show some empirical
results for the algorithm.

4 The RDFCore Component

The RDFCore component, presented in [2, 7], is based on two classes, Descrip-
tionManager and TripleManager, and an interface, RDFEngineInterface.

RDFEngineInterface is an interface that enables the managers to abstract
from the physical persistence details. Thanks to this design, based on the well
known Strategy pattern [3], the system can use one or more persistence imple-
mentations (with different performance or scalability tradeoffs) whenever needed,
on the basis of the needs of the external applications, without the programmer
having to bother about different APIs. Currently, there are four implementa-
tions of RDFEngineInterface, two based on the well-known Jena Semantic Web
Toolkit, one with MySQL RDBMS 9 and another with SQL Server10 as per-
sistent storage; a third implementation is based on RDF/XML files. The last
implementation, called RDFEngineREDD, is the one in which we embedded the
REDD algorithm natively in the storage level. It uses Oracle11 as RDBMS. The
database has been chosen because of the availability of stored procedures and

9 http://dev.mysql.com/doc/mysql/en/index.html
10 http://www.microsoft.com/sql/
11 Oracle 9.2.0.1.0 (Oracle 9i Release 2) http://otn.oracle.com/documentation/

oracle9i.html

http://dev.mysql.com/doc/mysql/en/index.html
http://www.microsoft.com/sql/
http://otn.oracle.com/documentation/
oracle9i.html


148 F. Esposito et al.

the ability to execute Java code directly on the database, avoiding the overhead
of data transfer that would have arisen using different solutions.

Currently RDFCore is a central component within the core infrastructure
of the software architecture that will result out of the 6th Framework Project
VIKEF (Virtual Information and Knowledge Framework Priority 2.3.1.7. Se-
mantic Based Knowledge Systems Contract no.: 507173).

5 Experimental Results

To evaluate the scalability of our implementation of the REDD algorithm in
the RDFEngineREDD implementation of RDFEngineInterface, we built a set
of Models to check some situations inspired by real models; the results are in
Table 3. The models come from different sources: the first two, lean and nolean,
are from [6], where they are presented as basic examples of lean and non-lean
graphs. nolean2B is a slight variation of nolean, with two redundant blank nodes.
cycleTest is used to check the behavior of the algorithm when dealing with com-
plex cyclic situations in graphs, while blankChain contains a chain of redundant
blank nodes like in the Figure 4. restriction contains a redundant restriction
class definition (as in Figure 1) together with a redundant union class definition
(in OWL); the last Model, daml, contains a sketch of a DAML ontology, with
some class definitions including both Restriction, Union and Intersection types.
For each model, we recorded the number of statements, the number of blank
nodes present in the graph, the elapsed time to insert the models in our per-
sistence (in milliseconds), the elapsed time to execute REDD (in milliseconds)
and the number of removable blanks in the graph. Since the size of these models
is way too small to evaluate scalability on model size and complexity, we kept
these test cases as correctness checks while developing the algorithm, and then
created a parametric method to generate bigger models with known structure,
in order to scale the size and complexity without having to check the correctness
of the results (which can be a time consuming task for models with more than
some tens of nodes). The parameters we used are: the number of blank nodes in
a graph, the number of incoming/outgoing edges for each node, and the number
of redundancies for each blank node (i.e. a blank node can be found redundant
with one or more nodes in the graph). The test models were built scaling on the
three parameters independently (showed in Table 1); in the last section, both the
number of blank nodes and the number of redundancies per node is augmented.

These tests were performed on the database implementation, that, as said
earlier in the paper, still does not handle the blank node chains.

In order to give a preliminary evaluation of the complete algorithm, we used
some models built from a real ontology, as said in Section 1. The ontology is the
BM Ontology12, that aims to describe the domain of business process description.
In this ontology, we tried to artificially increase the number of blank nodes and
of blank nodes chain.

12 http://www.bpiresearch.com

http://www.bpiresearch.com


REDD: An Algorithm for Redundancy Detection in RDF Models 149

Table 1. Fake models scaling on ingoing / outgoing edges, blank node number and

redundancy number

Model id Triple #
Blank

node #
Storing

time (ms)
REDD (ms) Redundancies #

Removable
blanks #

Ingoing/
outgoing

edges
0 120 1 1469 62 5 1 10
1 240 1 2469 94 5 1 20
2 360 1 3438 141 5 1 30
3 480 1 4515 188 5 1 40
4 600 1 5266 234 5 1 50
5 720 1 6328 297 5 1 60
6 840 1 7109 360 5 1 70
7 960 1 8172 437 5 1 80
8 1080 1 9203 594 5 1 90
9 1200 1 11016 625 5 1 100

10 200 5 1953 78 1 5 10
11 400 10 3766 125 1 10 10
12 600 15 5406 250 1 15 10
13 800 20 7203 219 1 20 10
14 1000 25 10000 281 1 25 10
15 1200 30 10860 375 1 30 10
16 1400 35 12828 407 1 35 10
17 1600 40 14844 469 1 40 10
18 1800 45 15969 563 1 45 10
19 2000 50 18047 750 1 50 10
20 120 1 2235 453 5 5 10
21 220 1 2235 93 10 10 10
22 320 1 3188 156 15 15 10
23 420 1 3828 188 20 20 10
24 520 1 4485 234 25 25 10
25 620 1 5047 266 30 30 10
26 720 1 5813 297 35 35 10
27 820 1 6907 546 40 40 10
28 920 1 7360 406 45 45 10
29 1020 1 8188 437 50 50 10
30 600 5 4906 234 5 5 10
31 2200 10 18328 922 10 10 10
32 4800 15 39141 2187 15 15 10
33 8400 20 69578 4203 20 20 10
34 13000 25 118031 6078 25 25 10
35 18600 30 171563 10031 30 30 10

Our use of the BM Ontology was as follows: we loaded the ontology in a
Jena OntModel, with no reasoning in order to use only the original triples,
and then wrote out the complete model, obtaining a RDF model containing
the BM Ontology and the import closure. Then, we reloaded this new model
(that we will call BMO1) in an OntModel. The resolution of owl:imports di-
rective in this admittedly pathological model produces a new inferred model in
which every blank node and blank node chain is duplicated, and this produces
redundancies that REDD can discover (model BMO2). We repeated the pro-
cedure and obtained the models BMO3 and BMO4. The results are shown in
Table 2.

As can be seen in Table 1, the insertion of new descriptions in RDFCore
roughly scales linearly with the size of the descriptions. The performance over-
head due to index updating, however, increases when the number of triples in
a description increase, so the total complexity is more than linear. The heavy
indexing, on the other side, enables us to obtain very good results when running



150 F. Esposito et al.

Table 2. Models with blank node chains

Model id Triple # Blank node # Redundant triples # REDD (ms) Chain #

BMO1 12267 1416 16 3294 804
BMO2 16487 2832 8440 5258 1608
BMO3 20707 4248 12660 18146 2412
BMO4 24927 5664 16880 102648 3216

Table 3. Some real-world models tests

Model id Triple # Blank node # Storing time (ms) REDD (ms) Removable
blanks #

lean 2 1 140 32 0
nolean 2 1 62 31 1
nolean2B 3 2 46 47 2
blankChain 7 2 94 31 0
cycleTest 15 2 204 31 1
restriction 35 17 500 93 7
daml 38 33 718 282 16

the REDD algorithm on the data. About the real size reduction of the model
after the removal of the blank nodes (which means the removal of every triple
referring to these nodes), it is not possible to draw general conclusions since the
number of triples strongly depends on the graph; the only reasonable lower limit
is two triples per blank node, since it is quite unusual to have a dangling blank
node or a graph rooted in a blank node, and in these cases it is unlikely that the
nodes are redundant (e.g. ns:a ns:aProperty :X means that ns:a has a filler
for the role ns:aProperty, but nothing else is known about this filler; adding an-
other statement, ns:a ns:aProperty :Y, would assert the same thing; unless
stating that :X is different from :Y, REDD signals the nodes as redundant).

About the implementation running in memory, the test data shows an inter-
esting behavior: while BMO1 only contains 16 redundant triples, BMO2 contains
8440 redundant triples. What happens here is that the BMO1 model contains
4 redundant restrictions (that are anonymous cardinality restrictions similar to
the one represented in Figure 1), each built up of 4 triples; the other 1412 blank
nodes are arranged in 800 chains (with different chain length), usually RDF lists,
that are not redundant with any structure in BMO1. In BMO2, however, the
duplication of these structures produces 1608 blank node chains, and each one of
them is redundant with at least one structure. Same explanation for the further
increase in BMO3 and BMO4.

From this information, it is possible to infer what would be the results of
querying a reduced model: in fact, BMO1 is only 12 triples bigger than the
smallest model that REDD can produce. Since every blank node chain produces
a RDQL query to be executed on the model, from the data it is possible to deduce
that the time required for a query on BMO4 is bigger than the time required for a
query in BMO1 (from about 4 ms in BMO1 to more than 26 ms in BMO4). This
huge difference between query performance can be partially attributed to lack of
optimization in the current algorithm implementation (e.g., two redundant blank



REDD: An Algorithm for Redundancy Detection in RDF Models 151

node chains produce two queries, but the queries are equal; this is recognized
only in some cases by our implementation), but it is an empirical confirmation of
our initial intuitive claim that queries on a smaller model are faster than queries
on a larger model.

Our aim in the ongoing work (i.e. pushing down into the persistence layer the
chain redundancy detection) is to match the performances of the first version of
the algorithm. Moreover, we plan extensions to the algorithm applications, e.g.
recognition of Alt and Bag structures in order to be able to detect duplications.
Another extension (based on OWL semantics) is the recognition of the use of
Lists in the declaration of union and intersection classes; while differently ordered
lists are different at the RDF level, they express the same meaning at the OWL
level, and this should be detected as redundancy. Also, it is necessary to establish
ordering criteria when choosing the blank nodes to be removed from the graph: in
fact, detecting a redundancy corresponds to finding of set inclusion relationships
between SUPERGRAPHS and SUBGRAPHS ; the choice can be made freely
only when SUPERGRAPHS and SUBGRAPHS are equal, while in other cases
an ordering criterion must be used.

6 Conclusions

In this paper we started from the consideration that SW is based on a particu-
lar language for metadata description, RDF, whose semantics has been recently
thoroughly investigated by W3C and other researchers. This initial effort pro-
duced some valuable results in terms of theoretical foundations for entailment
in RDF. We examined, in particular, results concerning blank node semantics
and their effects on the problem of compacting RDF graphs. We presented a
correct algorithm for spotting out redundant blank nodes in RDF graphs and
we provided a pseudo code implementation. We discussed its complexity prov-
ing it is tractable (polynomial). Afterward we presented its actual prototypical
implementation within our RDF management system (RDFCore). From em-
pirical evaluation we found out that these initial results are encouraging (being
it a prototype). Furthermore, redundancies can be also referred to a vocabulary.
In fact this work did not take into account RDFS (and its derivatives) semantics
that can be deeply exploited for compacting descriptions.

Acknowledgments

This research was partially funded by the European Commission under the 6th

Framework Programme IST Integrated Project VIKEF - Virtual Information
and Knowledge Environment Framework (Contract no. 507173, Priority 2.3.1.7
Semantic-based Knowledge Systems; more information at http://
www.vikef.net), and under the DELOS 2 Network of Excellence on Digital
Libraries started on January 1, 2004 Priority IST-2002-2.3.1.12 Technology-
enhanced Learning and Access to Cultural Heritage - Contract no.: G038-507618
(http://www.delos.info/).

http://
www.vikef.net
http://www.delos.info/


152 F. Esposito et al.

References

1. Berners-Lee, T.: Semantic Web Road map (1998) http://www.w3.org/

DesignIssues/Semantic.html.
2. Esposito, F., Iannone, L., Palmisano, I., Semeraro, G.: RDF Core: a Component

for Effective Management of RDF Models. In Cruz, I.F., Kashyap, V., Decker, S.,
Eckstein, R., eds.: Proceedings of SWDB’03, The First International Workshop on
Semantic Web and Databases, Co-located with VLDB 2003, Humboldt-Universität,
Berlin, Germany, September 7-8, 2003. (2003)

3. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. 1st edn. Addison-
Wesley (1995)

4. Gutiérrez, C., Hurtado, C., Mendelzon, A.O.: Foundations of Semantic Web
Databases. In: Proceedings of ACM Symposium on Principles of Database Sys-
tems (PODS) Paris, France, June 2004. (2004)

5. Hayes, J., Gutiérrez, C.: Bipartite graphs as intermediate model for rdf. In: Inter-
national Semantic Web Conference. (2004) 47–61

6. Hayes, P.: RDF semantics (2004) W3C Recommendation 10 February 2004
http://www.w3.org/TR/rdf-mt/.

7. Iannone, L., Palmisano, I., Redavid, D.: Optimizing RDF storage removing re-
dundancies: an algorithm. In Ali, M., Esposito, F., eds.: Proceedings of the 18th
International Conference on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, Bari, Italy, June 22-25 2005. Lecture Notes in
Artificial Intelligence, Springer (2005) (to appear).

8. McBride, B.: JENA: A Semantic Web toolkit. IEEE Internet Computing 6 (2002)
55–59

9. Wilkinson, K., Sayers, C., Kuno, H.A., Reynolds, D.: Efficient RDF storage and
retrieval in jena2. In Cruz, I.F., Kashyap, V., Decker, S., Eckstein, R., eds.: Pro-
ceedings of SWDB’03, The first International Workshop on Semantic Web and
Databases, Co-located with VLDB 2003, Humboldt-Universität, Berlin, Germany,
September 7-8, 2003. (2003) 131–150

http://www.w3.org/
DesignIssues/Semantic.html
http://www.w3.org/TR/rdf-mt/

	Motivation
	Preliminaries
	Basic Notions
	Related Work

	Redundancy Detection
	REDD Algorithm
	REDD Computational Complexity

	The RDFCore Component
	Experimental Results
	Conclusions



