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Abstract. We present and analyze in 2D an algorithm for extracting self-
consistent sets of boundary representations of interfaces from level set 
representations of many phase systems. The conformal voxel algorithm which 
is presented requires the use of a mesh generator and is found to be robust and 
effective in producing the extractions in the presence of higher order junctions. 

1   Introduction 

The level-set method [1] is used in a wide range of simulations in which evolving 
geometries are important. This method, in which the interface between two phases is 
represented implicitly as a contour (usually the zero contour) in a scalar field, has 
many advantages over explicit methods. The most notable advantage is that the 
geometric and topological complexities associated with updating explicit 
representations of interfaces are avoided, as level-set evolution is just a matter of 
solving an equation on the scalar field [1]. If and when an explicit representation is 
needed in order to perform part of the simulation, the interface can be extracted as a 
level of the scalar field (usually the zero level). When the geometry contains more 
than two phases that need to be tracked, such as for thin film grain structures 
simulations, the method extends quite naturally through the use of multiple scalar 
fields, identifying each phase with one field [2]. These fields can then be evolved 
independently using the same level-set equation and be periodically reconciled as 
shown by Merriman et al. [2]. However, the multiple level-set approach suffers from 
one setback that the standard level-set method does not: Recovering an explicit 
geometry by extracting the contours is not trivial because each interface is represented 
multiple times. At points near triple lines and higher order junctions, the explicit 
representations extracted from each field often disagree. These representations can 
differ even topologically.  

At such points it is difficult or perhaps impossible to construct a consistent 
boundary mesh without gaps or holes in order to perform a desired simulation on the 
explicit structure. Consistent meshes are required for an entire class of simulation 
tasks in which values need to be related across the interfaces, such as mass, 
momentum, or energy fluxes. This class of simulation includes stress-strain and 
electromigration calculations on grain structures, which are desireable to link to 
structure evolution simulations. Bloomfield et al. [3] proposed a partial solution for 
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this problem which employed rectilinear voxels and robustly arrived at extracted 
structures that were always consistent. However, these structures (as shown in Figure 
1) were problematic in that they had surface triangles with only a small number of 
normal directions (i.e., the structures were limited to “Manhattan geometries”). In this 
paper we demonstrate an algorithm that extends the voxel approach and removes the 
limitation of producing Manhattan geometries. By employing a mesh generator, we 
produce voxels that conform to the natural interfaces far from higher order junctions, 
and produce intuitive, topologically consistent, explicit boundary representations at 
higher-order junctions. 

  

Fig. 1. The voxel extractor reported on by Bloomfield et al. [3] solves the consistency problem, 
but is limited to producing Manhattan geometries 

2   Non-consistent Extraction 

Although for the purposes of this paper, we represent level-set scalar fields (φi) on 
triangular meshes using linear finite element basis functions, the ideas regarding 
representation and extraction may be extended to non-simplex and mixed-type 
meshes, higher-order basis functions, and finite difference grids in both 2 and 3D. We 
will maintain the convention that φi<0 inside phase i and φi>0 outside phase i and use 
the signed distance to the interface as the value of φi. Note that each phase has a 
distinct level set function (φ-field). Figure 2 illustrates the problem with representing 
even simple structures. We begin by initializing three φ-fields to be the signed 
distances from the explicit starting interfaces (solid lines) and represented the fields 
on the underlying triangular mesh (dotted lines). Finally, we “recover” the explicit 
interfaces by extracting line segments (dashed lines) from the φ-fields by interpolating 
the zeros along the triangles’ edges. We see that what would have been a slight 
rounding of a corner in the standard level-set method [1.], becomes an unphysical 
situation in the multiple level-set method, leaving a void behind in which no single 
phase is present. It should be noted that the term void as used here does not refer to a 
physical vacuum, which in this level-set formulation would be treated as a phase and 
have its own φ-field. Here, void refers to a region of space not associated with any 
single phase.  
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Fig. 2. An explicit set of interfaces (black solid lines) can be represented as contours in scalar 
fields, themselves represented on a finite element mesh (light dotted lines) or finite difference 
grid. However when an attempt is made to extract the interfaces, the extracted interfaces 
(dashed lines) do not come together at triple points and higher order junctions, leaving regions 
that do not correspond to any physical situation 

Each φ-field can be extracted separately, giving smooth boundary representations 
of each phase in the most of the domain. In these regions, a match for each boundary 
element can be found among the elements extracted from other fields, allowing the 
boundary elements to be classified as being a particular type of interface. Constrained 
meshes may be constructed that include these elements as internal or boundary 
entities, allowing for further simulations. However, voids of the type shown in 
Figure 2 are not uncommon, occurring at almost all higher order junctions, and 
typically are one to two mesh-lengths across. The boundary elements that make up 
this void do not have matches in the set of elements extracted from other φ-fields; this 
prevents further execution of a program that requires tracking quantities across 
interfaces, from one phase to another.  

3   Solution Methods 

Carefully constructed meshes can potentially capture a single junction, allowing a 
consistent extraction, but this advantage is lost after the first time step in which the 
interfaces move. Alternatively, an approach may be taken to “fix” the non-physical 
situations after they occur, by locating their occurrence, localizing them, and then 
collapsing vertices and entities in such a way as to achieve a topologically consistent 
set of boundary representations. This approach, although fraught with special cases 
and tortuous decision trees, has been successfully implemented for extractions in two-
dimensions [4]. We are unaware of a successful attempt to perform the three-
dimensional analog. It is worth remarking that in three dimensions, the problem areas 
are not polygons, but are networks of long, thin “void wires” that meet at higher order 
junctions. Because of the daunting complexity of the problem in 3D, this approach 
does not appear promising.  
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3.1   Voxel Extraction  

Voxel extraction has been employed as a partial solution to this dilemma by 
approaching the problem of extraction by constructing explicit phases before 
attempting to extract the interfaces between them. Bloomfield et al. [3] proposed 
filling the domain with regular rectilinear (i.e., squares or cubes) and using the 
information embedded in the φ-fields to identify each of there volume elements 
(voxels) as a part of the explicit representation of the phases. They then looked for 
neighboring voxels that belonged to different faces and identified the elements 
between them as boundary elements of both faces. This generated a set of faces in 
three dimensions and a set of segments in two dimensions that were both consistent 
and located on or near the intuitively identified interface. Figure 1 shows and example 
of faces extracted using this voxel method. The results are completely consistent and 
each boundary element is identified from both sides of the interface. 

The clearest drawback of this voxel method is the so-called Manhattan geometry of 
the results. Because the voxels have a limited set of directions for their faces, the 
extracted interfaces, which are made up of a subset of these faces, do not reflect the 
smoothly varying normals associated with most of the systems being represented. 
Two further improvements can be made to these output. The first approach is to apply 
a smoothing operator to the results, such as the volume-conserving algorithms 
reported on by Kuprat et al. [5.]. The downsides to this approach are that smoothing 
operations do not preserve shape global shape, tend to be motivated by aesthetic 
considerations rather than physical ones, and can be complicated to apply to very 
unsmooth surfaces. The second approach is to project onto each face a “pseudo-
normal” calculated to be the unit direction along the gradient of the appropriate φ-
field, similar to the technique used in Phong shading [6]. Such a projection method 
may be useful for tasks that require normals that more accurately represent the 
system, such as surface scattering calculations. 

Conformal-Voxel Extraction. We demonstrate an extension of the above voxel 
extraction method that avoids the limitation of producing Manhattan geometries. By 
extending the concept of a voxelation to include not just tessellations of regular, 
identical shapes, but any set of polyhedra that space-fill a domain, we remove the 
constraint of having only a small number of distinct normals. With this definition, any 
geometric mesh that fills a volume (or fills an area in 2D systems) is a voxelation, and 
we can create a custom voxelation, using a ready-made meshing code and information 
about the structure in the φ-fields, that will have voxels optimally placed to give 
extractions that are consistent and are true to the implicit representation away from 
junctions. 

Pulling information from the φ-fields is very important. Without providing 
guidance to the mesher, the voxel faces are as likely to be transverse to the zero 
contours in the implicit representation as to conform to them. The simplest way to 
provide this information is to use the parts of the directly extracted boundaries that do 
have matches in the other extracted boundaries. In two dimensions this is a set of 
segments and in three dimensions it is a set of faces, internal to the domain to be 
meshed. We call these internal elements model entities, and provide them to the area 
or volume mesher as constraints to be included as segments or faces in the resulting 
voxelation. As is shown below, this will cause the conformal-voxel extracted 
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boundary representation to coincide with the directly extracted version in regions 
more than a few mesh lengths from triple points and higher order junctions. 

The conformal-voxel extraction algorithm can be performed as follows: 

1. Begin with discretizations of the n (assuming n phases) φ-fields that implicitly 
represent the structure to be extracted in a D dimensional domain Ω. 

2. Extract a list Bα of entities from each field φα, α∈ [1,n] by interpolating along the 
level set contour of each. 

3. Mark each entity which appears in exactly two of the extracted sets, Bα , as a model 
entity and add to list B′.. 

4. Invoke an area (D=2) or volume (D=3) mesher to fill the simulation domain, 
providing the model entities in B′ as internal constraints. Call this mesh the 
voxelation, V. 

5. Assign each voxel, V ∈ V, a phase α(V), by an appropriate calculation referencing 
the fields φα,.  

6. For each voxel V, visit the voxel U = V.neighbor(k) (k∈ [1,D+1]) on the other side 
of each segment k (D=2) or face k (D=3). If α (V)≠ α (U), add entity k to the set of 
conformal voxel extracted boundary entities, B″α (V). 

Each entity in B″α  should now have a match in some other B″α′≠α or be on the 
domain boundary ∂Ω and the extraction is complete.  

The algorithm is straightforward, with only two tasks left up to the discretion of the 
implementer. The first is the invocation of the mesher in step 4. Although this point is 
discussed in detail in section 4 of this work, in this work we use the freeware 2D 
quality mesh generator triangle [7] from the netlib repository [8] and find that no 
quality constraints on the mesh have to be specified as long as the maximum area of 
the triangles in the mesh is less than the average area of triangles in the finite element 
mesh that we use to represent the φ-fields. The second choice that must be made is 
how the identification of the voxels in done in step 5. Any heuristic that robustly 
determines in which phase the voxel is located should work; in this work we use the 
phase associated with the φ-field that has the lowest value at the voxel centroid as the 
identity of that voxel. This choice is intuitively pleasing, is easy to implement, and 
empirically works well. 

3.2   Examples  

In Figure 3, we show the various steps of a conformal voxel extraction of the same φ-
fields that produced the void in Figure 2. First, from the directly extracted sets (left), 
model entities are identified (solid lines). Next, a voxelation (middle) is created using 
the model entities as internal constraints and each voxel is assigned to a phase 
(shading). Finally, the conformal voxel extraction (solid blue line, right) is derived by 
comparing neighboring voxels, and compared to the structure used to initialize the 
implicit representation (dashed line, right). The resulting extraction is consistent and 
faithfully captures the normals and positions of the initializing structure. 
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Fig. 3. The conformal voxel extraction procedure applied to the implicit representation shown 
in Figure 2. First, from the directly extracted sets (left), model entities are identified (solid 
lines). Next, a voxelization (middle) is created using the model entities as internal constraints 
and each voxel is assigned to a phase (shading). Finally, the conformal voxel extraction (solid 
blue line, right) is derived by comparing neighboring voxels, and compared to the structure 
used to initialize the implicit representation (dashed line, right) 

In Figure 4, we show two more examples, the first (left) being a conformal voxel 
extraction of a higher order junction (a quadruple point). The extraction of the 
quadruple point indicates one aspect of voxel approaches, conformal or regular, which 
is that the topology of the extraction can be different that the topology of the structure 
the implicit representation is meant to represent. Here, the quadruple point present in 
the initializing structure (solid black lines) is present as a pair of triple points in the 
extraction. Further discussion of this phenomenon is given in the next section. 

The second example in Figure 4 is a conformal voxel extraction (middle) of an 16-
phase test structure (right), demonstrating the method’s ability to robustly handle 
 

 

   

Fig. 4. (left) Drawing showing a conformal voxel extraction (dashed blue line) of a quadruple 
point (solid black line). Note that the extraction contains a pair of triple points instead of a 
single quadruple point. (middle) A conformal voxel extraction of (right) a complex 16-phase 
test structure containing significant fine detail, below the resolution of the underlying finite 
element mesh used 

complex, many-phase structures. In this test structure, there are a variety of small and 
large geometric features. The extraction faithfully reproduces these geometric features 
underlying finite element mesh used for the implicit representation. (The input 
structure is 1x1; the bar in upper right corner of the right figure is 0.025 in length.) 
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Features smaller than this, such as the oscillations near some of the junctions in the 
test structure do not appear in the extraction. 

4   Discussion and Conclusions 

As mentioned in section 3.1, step 4 of the conformal voxel algorithm allows for 
discretion on the part of the implementer. It is essential that the voxelation include the 
internal constraints represented by the model entities, or at least alternative constraints 
based on them. That is, it may be permissible to adjust the coarseness of the model 
entities using a mesh coarsener to relieve some of the burden on the mesher to be used 
or to condition the elements in the set of extracted boundary entities. Any changes 
made to the information represented by the model entities will show up in the 
extracted boundary entities. However, we have observed in our 2D studies that the 
mesh quality of the voxelation is not of key importance in obtaining extractions that 
are true to the input structure. This is true providing that the mesher respects the 
constraints of the model entities and that the mesh size near the interfaces is less than 
or equal to the mesh size of the underlying discretizations of the field. In fact, we find 
that it is the mesh in the underlying finite element representation of the fields that has 
a determining effect on the amount of detail that is recovered using the conformal 
voxel extractor. In particular, the locations of triple and higher order junctions 
produced by the conformal voxel extractor deviate from the location of these 
junctions in the initializing structure by no more than the characteristic mesh size of 
the underlying finite element mesh.  

This is a powerful result given that there is an implicit upper limit on the amount of 
detail retained about spatial variations in a field represented on a mesh or a grid with 
linear interpolants. By making a parallel to Nyquist’s sampling theorem [9], we can 
say that the upper limit on the spatial resolution, i.e., the smallest spatial variation 
represented is about twice the mesh length. For unstructured grids, this length is 
someone nebulous, but can be gauged within about a factor of 2, perhaps as a function 
of position. This agrees with what can be seen in the extraction of the complex test 
structure show Figure 4, indicating that the conformal voxel method is able to extract 
a large fraction of the information about the structure implicit in the finite element 
representation of the φ-fields. 

The phenomenon of junction splitting seen in Figure 4 is also a matter of 
resolution. Although the implicit representation was initialized from an explicit 
structure with a quadruple point, it cannot be distinguished from the conformal voxel 
extracted version with two triple points within the resolution of the implicit 
representation. This situation highlights a characteristic of the comformal voxel 
method: a particular extraction from a given implicit representation is not unique. By 
using a voxelation produced by a different mesh algorithm or with different 
parameters, different extractions can be produced from the same implicit 
representation. However, in our experience, they will all be the same within the 
spatial resolution of implicit representation. 

The computational complexity of this algorithm is difficult to analyze precisely, 
because of the use of a separate mesher to produce the voxelation, which will have its 
own complexity as a function of desired mesh size and number and type of internal 
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constraints. However, if there are N mesh elements in the discretizations of the M 
input φ-fields, O(N(D-1)/D) entities in the union of Bα. Matching up these entities is 
done pairwise, taking O(D) integer comparisons each, giving an overall complexity of 
O(D⋅ N2(D-1)/D), or O(N) for 2D and O(N4/3) for 3D for step 2. The complexity of step 5 
is simply O(N⋅M), leaving the overall complexity for the algorithm system dependent 
based on the number of phases and the external mesher used. 

We have shown several examples of the use of the algorithm in 2D. A 
demonstration of its use in 3D [10] is beyond the scope of this paper for reasons of 
brevity. The number of meshers available that can robustly handle the complex 
internal constraints in an automated fashion is much lower for 3D than for 2D. It 
should be pointed out that although we use triangular mesh elements for our 
voxelations, quadrilateral element should work just as well. In 3D, tetrahedral, 
wedges, and brick elements should be able to be used with equal facility. 

This method is highly robust, given a reliable mesher. The only caveat is that if the 
voxel size is noticeably larger than the resolution of the implicit representation, then 
the resulting extraction may depend heavily on the voxelation. However, the method 
will not fail to complete even for very large voxel sizes, happily producing spurious 
results. 

Finally, we note that there is a relationship between the voxelation mesh and the 
conformal voxel extracted result, namely that the former is a body-fitted mesh for the 
latter, and potentially can be used as the mesh for further simulation on the extracted 
system. Should this be desired, more attention should be paid to the quality of the 
voxelation as it is being produced. 
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