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Abstract. Validation of 3D finite element model for free-surface flow
is conducted using a high quality and high spatial resolution data set.
The present research finds its motivation in the increasing need for ef-
ficient management of geophysical flows such as estuaries (multiphase
fluid flow) or natural rivers with the complicated channel geometry (e.g.
strong channel curvature). A numerical solution is based on the un-
steady Reynolds-averaged Navier-Stokes equations without conventional
assumption of hydrostatic pressure. The model uses implicit fractional
step time stepping, with the characteristic method for convections terms .
The eddy viscosity is calculated from the efficient k−ε turbulence model.
The RANS are solved in the multi-layers system (suitable for the verti-
cal stratified fluid flow ) to provide the accurate resolution at the bed
and free-surface. The model is applied to the 3D curved open channels
flows for which experimental data are available for comparison. Good
agreement is found between numerical computations and experiments.

Keywords: Validation; Characteristic method; 3D Curved open chan-
nel; secondary currents; Non-hydrostatic pressure.

1 Introduction

Nowadays with the increasing computer power, several 3D computations have
been successfully conducted for geophysical flows modeling. Most of these mod-
els have used the conventional hydrostatic pressure assumption. However, the
natural rivers mostly have complicated geometry with the strong channel curva-
ture. Such flows are of more importance for environmental hydraulic engineering
and some related important features such as the secondary flows generated by
the channel curvature and the related background turbulence effects, need to be
well understood while a 3D description of the velocity field is required. Thus it
is useful to resort to a more accurate model in which the hydrostatic assumption
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is removed. Nevertheless, the importance of non-hydrostatic pressure in com-
putational fluid problems was demonstrated and many researchers have applied
3D non-hydrostatic models to simulate the curved open channel flows. Wu et
al. [13] and Olsen [10] used 3D numerical models to study the flow structure
and mass transport in curved open channel. Xiabo et al. [2] have simulated the
3D unsteady curved open channel with standard k − ε turbulence model and
the non-hydrostatic pressure on the conformal mesh, but conformal mesh could
poorly performed for some complicated bathymetry. Lai et al. [4] have used
finite volume method on the unstructured grid to simulate 3D flow in meander-
ing channel. For the free surface treatment, most of these 3D models employed
the rigid-lid approximation, which have some weaknesses especially in strongly
curved open channel flows (see [5]).

Based on the novel approach developed by Leupi et al. [6], the present model
adopts the finite element conservative formulation in the multi-layers system for
providing an accurate resolution at the bed and the free-surface.

The present work aims at validating the 3D finite element model against
well-known non-uniform and unsteady flows in curved open channel flows using
a high quality and high spatial resolution data set. The model uses the non-
hydrostatic pressure and the state-of-art k− ε turbulence model closure to solve
the Reynolds-averaged Navier-Stokes equations (RANS).

In this study, the free-surface movement is controlled through the so-called
integrated continuity equation. The full 3D governing equations are solved using
implicit fractional time marching stepping where final velocity field and pressure
term are computed from the hydrodynamic correction. Euler or Runge-Kutta
scheme is used to obtain a set of algebraic equations from discretization. An effi-
cient fractional step algorithm from Mohammadi and Pironneau [9] is introduced
for the k − ε model. This paper deals with the simulation of the 3D turbulent
flow in the open curved channel for which experimental data are available.

2 Governing Equations

Let us consider an incompressible fluid body in a three-dimensional time varying
domain ̂Ω (see also [6]) with Ω the projection of ̂Ω on the xy horizontal plane. ̂Ω
is bounded by the free-surface Γs given by z = η(x, y, t), the bottom topography
Γb given by z = −h(x, y), the open boundary denoted by Γo. Where h(x, y) is
the distance between the bottom and the reference plane xy and η(x, y, t) the
elevation of the free-surface with the respect to the horizontal plane xy. For
description of the turbulent motion, the pressure p can be written as the sum of
an hydrostatic term ph and an hydrodynamic correction pnh = ρp̃,

p (x, t) = ph + pnh = pa + gρo (η − z) + g

∫ η

z

∆ρdz + ρp̃ (x, t) (1)

The 3D non hydrostatic Reynolds Averaged Navier-Stokes (RANS) equations
reads
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∂η
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+ ∇H ·

∫ η

−h

Udz = 0 (5)

where U = (u, v)T is the horizontal velocity vector , Fxy = (fv,−fu)T is vector
of body forces with f the Coriolis parameter, g is the gravitational acceleration,
νT is the eddy viscosity, (see Rodi [12]). (∇·) is the 3D divergence operator,
D
Dt represents the material derivative, and (∇H ·) stands as the 2D horizontal
divergence operator. ∆ρ = ρ − ρ0 ; ρ, ρ0 are respectively the fluid density and
the basic water density.

In eq.(3), the vertical eddy viscosity is defined as

νT = ν + cµ
k2

ε
(6)

in which ν is the kinematic viscosity.

The k − ε trubulence equations read ([9]),

Dk

Dt
−∇ ·

[

cµ
k2

ε
∇k

]

= cµ
k2

ε
G − ε (7)

Dε

Dt
−∇ ·

[

cε
k2

ε
∇ε

]

=
c1

2
kG − c2

ε2

k
(8)

The turbulent constants are given: c1 = 0.126, c2 = 0.07, cµ = 0.09, cε = 1.92.
The production is represented by the squared shear frequency, G, (see [7]),

such as :

G =
1
2

(‖∇V‖ + ‖∇V‖T
)2

(9)

where ‖.‖ stands as the Euclidian norm, V = V (u, v, w) is the 3D velocity
vector.

The depth-integrated continuity equation eq. (5) allow the model to follow
the free-surface position. This equation is obtained by integrating the (local)
continuity equation (2) in the z direction using the suitable kinematic free-surface
and bottom boundary conditions.
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The horizontal velocity is approximated combining the lowest order Raviart-
Thomas element (RT0) in xy plane with the P1 elements along the vertical
direction (see [6], [8], [11]). To discretize the convective term a method based
on a Lagrange-Galerkin (or characteristics Galerkin) approach is considered (see
[8], [9]) using either Euler scheme or more accurate Runge-Kutta. At each time
step it is only required to solve a set of the positive definite symmetric and
tridiagonal matrices for the fluxes using the conjugate gradient solver. For the
turbulence modeling, the combinaison of the characteristics method with the
fractional time stepping algorithm from Mohammadi and Pironneau ([9], [6]) can
allow to preserve the positivity of k, ε as well as the stability of the scheme (see
[9], [12]). To avoid spurious numerical oscillations, the source term, G, has been
discretised explicitly while the sink term has been discretised using the quasi-
implicit forms with the consequence that linear terms are linearized (see [9]).

3 Numerical Results

The present model has been applied for simulating a 3D curved open channel flow
in Figure 1, for which experimental data are available (see Blanckaert [1]). The
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Fig. 2. Experiments versus computed free-surface solutions at section α = 120o using

linear k − ε Turbulence model : Experiment (♦) ; Hydrostatic (dashed line) ; Non

hydrostatic (solid line)

discharge is set to Q = 0.089[m3/s], the bed slope (i.e. channel bottom slope) is
S0 = 0.000624 . The rough bed is characterized by an equivalent roughness height,
ks = 0.0022[m]. The flow depth at the outflow (downstream end of the flume) is
0.159[m]. The grid is composed of 50.000 elements and 30.000 nodes. The time
step is set to 0.1 [s], and the computation is performed till the flow is well devel-
oped at T=1300 [s]. Computations were conducted with the hydrostatic pressure
assumption for different cross-sections with the curvature increasing, to determine
the conditions where the non-hydrostatic pressure component become significant.
Computed solutions predict the gross flow features, whereas the water surface pro-
file is under-estimated at the out bank, and over-estimated at the inner bank.

Figure 2 shows the cross-section at α = 120o , where are found theweaknesses of
the hydrostatic pressure solution. Hence agreement with experiments is rather bet-
ter for non-hydrostatic solutions particularly with the increasing curvature. This
suggest that the separation may occur in the vertical flow and the the pressure-
driven secondary effects are important. Thus the free surface must be more accu-
rately computed to accounts for its damping effects on the turbulent flow. As ob-
served in figure 3, both hydrostatic and non-hydrostatic pressure solutions show
only one secondary flow circulation rotating clockwise from inner bank to outer
bank. These predictions do not capture sufficiently the magnitude of the secondary
motion. The maximum under prediction in the secondary currents for each ver-
tical examined in this cross-section is ranged between 25 and 95% for the non-
hydrostatic solutions andbetween 30 and105% for the hydrostatic pressure. InFig-
ure 3 the center of vortex is located at about z = 0.25[m] for the hydrostatic, about
z = 0.35[m] for the non hydrostatic solutions which is more closed to experiments
located at z = 0.4[m].The predicted secondary currents intensities areweaker than
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Fig. 3. Experiments versus computed solutions of the of cross-stream velocity vector

at section α = 120o : A) Experiment ; B) Hydrostatic ; C) Non hydrostatic
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measured, and the transverse velocities are under predicted. The anisotropic stress
caused by walls and the junction region is not captured by the model, and the re-
duced momentum is transfered towards the outer region of the bend as well as the
position of the longitudinal velocity maximum. This suggest that the turbulence-
driven secondary effects are non-linear. Consequently, as shown by Gatsky et al.
[3], the related weaker turbulence-driven secondary motion cannot be reproduced
by linear and isotropic eddy-viscosity turbulence models. It should be pointed out
that the major flow features such as the presence and rotational sense of the ma-
jor secondary currents are reproduced and agrees well with experiments. The non-
hydrostatic pressure influence is found to be more significant with the increasing
curvature region, and although being more expensive, it become useful. This sug-
gest that the pressure-driven secondary currents is relatively important for the ac-
curated description of the velocity field and the use of anisotropic turbulence mod-
els is prerequisite to more accurate flow field prediction.

4 Conclusion

Validation of the 3D finite element solver for the RANS equations with the Effi-
cient k − ε turbulence model is conducted successfully using a high quality and
high spatial resolution data set. The convection terms have been discretized using
the Lagrange-Galerkin approach with advantage that, the CFL restriction is well
performed. Moreover, addition of this characteristic method to the conservative
form of the PDE and the implicit fractional step time stepping, allow to preserve
the mass balance, the positivity of k and ε, as well as the stability of the scheme.
In computed solutions, the weaker secondary currents were not reproduced, but
it shlould be noticed that more refine turbulence modeling can produce im-
provement for such problem. Computations with and without non-hydrostatic
are compared for the same trench to test the validity of the conventional hydro-
static pressure assumption. The model predicts reasonably the complex major
features and the 3D flow tests were performed successfully against well-known
unsteady non-uniform curved open channel flows.The non-hydrostatic pressure
influence is found to be more significant with the increasing curvature region
(e.g. cross-section α = 120o). This suggest that the non-hydrostatic pressure
may be useful and well suited for complicated geometry flows where its influ-
ence is thought to be significant. Further study is needed to improve the general
applicability of the model, and the next stage of this work will be focus on the
anisotropic turbulence-driven secondary motion.
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