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Abstract. Since meshfree particle methods are beneficial in simulating the 
problems involving extremely large deformations, fractures, etc., these methods 
become attractive options in multiscale modeling, especially when approaching 
a large number of atoms. In this paper, we propose preliminary research on ap-
plying meshfree particle methods to solve nanoscale problems. A quasicon-
tinuum technique, i.e. the Cauchy-Born rule, is implemented into the meshfree 
particle methods so continuum approaches for large deformation problems or 
fracture problems at the nanoscale can be performed. Furthermore, the mesh-
free particle methods can be coupled with molecular dynamics via the bridging 
domain coupling technique. The examples show that the meshfree particle 
methods can benefit either hierarchical or concurrent multiscale modeling at the 
nanoscale.  

1   Introduction 

With the development of nanotechnology, numerical simulation plays an important 
role in nanoscale material and device design. To develop a potential numerical 
method, which can efficiently model micro/nano systems, has been one of the fore-
front research topics of computational nanotechnology. 

Among a variety of numerical simulation techniques, molecular dynamics (MD) 
has become a powerful tool to elucidate complex physical phenomena [1-2]. Up to 
billions of atoms can be simulated by MD when studying the crack propagation [2] at 
the atomistic level with parallel computing techniques. However, most MD simula-
tions are still restricted on both small length and short time scales. Therefore, multis-
cale methods have been of more and more interest to simulate large nanoscale sys-
tems. The recently developed multiscale methods can be divided into two classes: 
hierarchical multiscale methods [3] and concurrent multiscale methods [4-7]. In hier-
archical multiscale modeling, the continuum approximation is based on the properties 
of a subscale model, such as a MD model. The intrinsic properties of materials are 
sought at the atomic level and embedded in the continuum model according to the 
quasicontinuum technique, which is also called the Cauchy-Born rule [8-9]. The 
Cauchy-Born rule states that the deformation is locally homogeneous.  

Concurrent multiscale methods use an appropriate model to solve each length scale 
simultaneously. Recently, some concurrent multiscale techniques [4-6], particularly 
coupling methods between the continuum model and the molecular model, have been 
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developed. One of the key issues the concurrent multiscale methods must overcome is 
the occurrence of spurious numerical phenomena, such as non-physical reflections on 
the interfaces between the molecular and continuum models. Most researchers use the 
Langevin equation [6] or other filtering processes to eliminate spurious reflections. 
Xiao and Belytschko developed a bridging domain coupling method [7], which can 
eliminate the spurious wave reflection automatically. 

Mostly, finite element methods are used in the hierarchical or concurrent multis-
cale methods with the implementation of the quasicontinuum technique. It is known 
that the meshfree particle methods [10] are more attractive for a variety of problems 
with moving boundaries, discontinuities, and extremely large deformations. There-
fore, the incorporation of the meshfree particle methods and the quasicontinuum tech-
nique will have much potential to solve the above problems at the nanoscale. Be-
lytschko and Xiao [11] found that the meshfree particle methods with Lagrangian 
kernels are more stable than those with Eulerian kernels. In this paper, only the mesh-
free particle methods with Lagrangian kernels are considered. With the implementa-
tion of the quasicontinuum method, the meshfree particle methods can be used to 
simulate large nano systems. Furthermore, based on the idea of the bridging domain 
coupling method [7], the meshfree particle methods can be coupled with molecular 
dynamics to accomplish a multiscale modeling for large nano systems.  

The outline of this paper is as follows: We will introduce the meshfree particle 
methods; The Cauchy-Born rule will then be implemented into the meshfree particle 
methods, which can also be coupled with molecular dynamics; Several examples are 
studied in the following section and the last section presents the conclusions. 

2   Meshfree Particle Methods at the Nanoscale 

2.1   Discrete Equations 

The physical princ iples governing the continuum are the conservation of mass, mo-
mentum and energy. A so-called total Lagrangian description is employed (see Be-
lytschko, Liu and Moran [12]); therefore, the linear momentum equations are 

ii
j

ji
ub

X

P
!!00 ρρ =+

∂
∂

 .         (1) 

where 0ρ  is the initial density, P  is the first Piola-Kirchhoff stress tensor, X  is the 

reference coordinates, b  is the body force per unit mass, u  is the displacement and 
the superposed dots denote material time derivatives. The weak form of the momen-
tum conservation equation is 
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where 0Ω  is the reference configuration, iuδ  is the test function, ijF  is the gradient of 

deformation and it  is the prescribed boundary traction. The particle approximation is 
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where ( )XIw  is a Lagrangian kernel function, which is the function of reference co-

ordinates. With a similar expansion for ( )Xuδ , the following discrete equations can 

be obtained: 
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where 0
IV  is the volume associated with particle I  in the reference configuration. 
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iIF  are the external and internal nodal forces, respectively, given by 
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If the nodal integration scheme [11] is used in the meshfree particle methods, the 
internal nodal forces in (5) can be calculated by 
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The Nodal integration scheme may result in one of instabilities due to the rank de-
ficiency. A stress point integration scheme [11] can be used to stabilize it. 

2.2   Implementation of the Quasicontinuum Technique 

In a continuum model, the potential energy depends on the elongations and angle 
changes of the bonds at the atomistic level. The total potential of the continuum 
model can be written as  

∫
Ω
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where Cw  is the potential energy per unit volume. Then, the first Piola-Kirchhoff 

stress can be obtained from the potential of the continuum by 
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where F  is the deformation gradient. In this paper, it is assumed the molecular struc-
ture in the volume associated with each particle is under a constant deformation gra-
dient. Therefore, the first Piola-Kirchhoff stress at each particle can be evaluated 
through (8). In other words, (8) serves as the constitutive equation for meshfree parti-
cle methods at the nanoscale. For curved monolayer crystalline membranes such as 
nanotubes, an extension of the Cauchy-Born rule, called the exponential Cauchy-Born 
rule, can be used (see Arroyo and Belytschko [9]).  
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2.3   Coupling with Molecular Dynamics 

Belytschko and Xiao [7] proposed a multiscale method called the bridging domain 
coupling method, in which, the molecular model and the continuum model overlap at 
their junctions in a bridging domain.  

In this paper, molecular dynamics and the meshfree particle method are coupled 
via the bridging domain coupling technique. The complete domain in the initial con-
figuration is denoted by 0Ω . The domain is subdivided into the subdomain treated by 

continuum mechanics, C
0Ω , and the one treated by molecular dynamics, M

0Ω . The 

intersection of these two subdomains is called the bridging domain denoted by int
0Ω  in 

the initial configuration. The bridging domain multiscale modeling of a molecular 
chain is shown in Figure 1. 

 

Fig. 1. A Bridging domain coupling model for a molecular chain 

In expressing the total Hamiltonian of the system we employ a scaling parameter 
β  in the bridging domain as shown in Figure 1. The scaling parameter β  vanishes at 

one end of the bridging domain and is unity at another end. Therefore, the Hamilto-
nian for the complete domain is taken to be a linear combination of the molecular and 
continuum Hamiltonians 
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where MW  is the potential in the molecular model, and CW  is the strain energy in 
the continuum model. The discrete equations can be obtained via the classical 
Hamiltonian mechanics. The details can be found in [7]. 

3   Examples 

3.1   Bending of a Nano Beam 

The bending of a nano cantilever beam is considered in this example. The nano beam 
contains 5,140 atoms and the dimensions are: length nmL 270=  and height 

nmH 6.15= .  
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A pair potential function is used to approximate the interaction between nearest 
atoms, 

( ) ( )2
05.0 llklU −=   (10) 

where mNk /10000=  and nml 10 = .  

     
(a) The meshfree particle method (b) The molecular mechanics calculation 

Fig. 2. Deformed configurations of the nanobeam 

 

Fig. 3. Convergence of the nanoscale meshfree particle method 

We use the meshfree particle method with 250 particles to simulate the bending of 
this nano beam. The prescribed displacement is applied on the right upper corner of the 
beam. The final configuration of the nano beam is shown in Figure 2(a). Figure 2(b) 
shows the deformed beam when performing the molecular mechanics calculation, and it 
supports the meshfree particle method result. As shown in figure 3, the convergence is 
also studied by using the 2l  error in displacement for the meshfree particle method. 

3.2   A Nano Plate with a Central Crack  

Meshfree particle methods are advantageous to simulate fracture problems. In this 
example, the meshfree particle method is used to study the stress concentration of a  
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(a) The molecular mechanics calculation (b) The meshfree particle method  

Fig. 4. Comparison of stress concentration at the crack tip 

nano plate containing an central crack. This nano plate contains 86,915 atoms with the 
triangular molecular structure. The dimensions are: nmL 270=  and nmM 280= , and 
the crack length is nm135 . The crack is initialized by taking a number of bonds out. 
The meshfree particle model has 400 particles, and a visibility criterion is used to 
construct the kernel functions for the particles near the crack or around the crack tip. 
Figure 4 shows the comparison of the stress ( yyσ ) contour obtained from the molecu-

lar mechanics calculation with the one from the meshfree particle method. It can be 
seen that they are in accord.  

3.3   Wave Propagation in a Molecular Chain 

In this example, the wave propagation in a molecular chain, which contains 2001 
atoms, is simulated. The LJ 6-12 potential function is used as the interatomic potential 
function between the nearest atoms, and it is 

( ) ( )[ ]612 //4 rrwM σσε −=  .     (11) 

where the constants are chosen as: me 104.3 −=σ  and Je 2165.1 −=ε . The mass of 
each atom is set to be kg10108.3 −× . 

In the bridging domain coupling modeling of this molecule chain, there are 1001 
atoms in the molecular domain and 200 particles in the continuum domain. The initial 
wave is the combination of high frequency and low frequency waves and starts to 
propagate from the molecular domain. A non-physical phenomenon, shown in Figure 
5(a), can be observed if using a handshake coupling technique [4] without the applica-
tion of the artificial viscosity. It is possible to see that the high frequency wave is 
reflected while the low frequency wave passes the continuum domain. Such a phe-
nomenon is also called the spurious wave reflection. However, with the bridging 
domain coupling technique, the spurious wave reflection can be eliminated as shown 
in Figure 5(b).  
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(a) The handshake method     (b) The bridging domain coupling method 

Fig. 5. Multiscale simulations on the wave propagation in a molecular chain 

4   Conclusions 

In this paper, the quasicontinuum technique (the Cauchy-Born rule) was implemented 
into the meshfree particle methods. Therefore, numerical simulations in nanotechnol-
ogy can be valuable in regards to the meshfree particle methods. This progress makes 
it possible to treat extremely large deformation problems and the problems involving 
discontinuities, such as fractures, at the nanoscale. The examples showed that the 
nanoscale meshfree particle methods can give accurate results when compared with 
the molecular mechanics calculation outcomes. In addition, the meshfree particle 
methods can be coupled with molecular dynamics via the bridging domain coupling 
technique. The spurious wave reflection can be eliminated without any additional 
filtering processes.  
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