

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3516, pp. 171 – 178, 2005.
© Springer-Verlag Berlin Heidelberg 2005

DCP-Grid, a Framework for Conversational Distributed
Transactions on Grid Environments

Manuel Salvadores1, Pilar Herrero2, María S. Pérez2, and Víctor Robles2

1 IMCS, Imbert Management Consulting Solutions,
C/ Fray Juan Gil 7, 28002 Madrid , Spain

2 Facultad de Informática – Universidad Politécnica de Madrid,
Campus de Montegancedo S/N,

28.660 Boadilla del Monte, Madrid, Spain
mso@imcs.es

{pherrero, mperez, vrobles}@fi.upm.es

Abstract. This paper presents a Framework for Distribute Transaction
processing over Grid Environment, called DCP-Grid. DCP-Grid complements
Web Services with some OGSI functionalities to implement the Two Phase
Commit (2-PC) protocol to manage two types of Distribute Transactions,
Concurrent and Conversational transactions, properly in this kind of
environment. Although DCP-Grid is still under development at the Universidad
Politécnica de Madrid, in this paper, we present the design and the general
characteristics associated to the implementation of our proposed Framework.

1 Introduction

The introduction of Services Oriented Architectures (SOA) [1] [2], in the last few
years, has increased the use of new distributed technologies based on Web Services
(WS) [3]. In fact, e-science and e-business processes have adopted this technology to
improve the integration of some applications. The coordination of this type of
processes, based on WS, needs the transactional capability to ensure the consistency
of those data that are being handled by this kind of applications.

A transaction could be defined as the sequence of actions to be executed in an
atomic way. This means that all the actions should finish - correctly or incorrectly- at
the same time as if they were an unique action.

The four key properties associated to the transactions processing are known as the
ACID properties - Atomicity, Consistency, Isolation, y Durability[4]. The aim of our
proposal is to build a Framework, based on grid technologies, to coordinate
distributed transactions that are handling operations deployed as Web Services.

The Grid Technology, which was born at the beginning of the 90’s , is based on
providing an infrastructure to share and coordinate the resources through the dynamic
organizations which are virtually distributed[5] [6].

In order to make possible the development of DCP-Grid, we will take into account
the Grid Web Services (GWS) characteristics. The GWS, defined in the Open Grid
Service Infrastructure (OGSI) [7], could be considered as an extension of the WS.
The GWS introduce some improvement on WS, which are necessary to the

172 M. Salvadores et al.

construction of standard, heterogeneous and open Grid Systems. The OGSI
characteristics on which DCP-Grid has being designed and built are: Statefull and
potentially transient services; Service Data; Notifications; portType extension; Grid
Service Handle (GSH) and Grid Service Reference (GSR).

OGSI is just an specification, not a software platform, and therefore, we need a
middleware platform, supporting this specification, in order to deploy the DCP-Grid
Framework. From all the possible platforms to be used, we have decided to use the
Globus Toolkit [8] platform for this Project because in the most extended nowadays.
More specifically, we have being working with GT3 (version 3.2) for DCP-Grid due
to its stability.

In this paper we will start describing the state of the art in the dealing area as well
as their contributions to the DCP-Grid design, subsequently we will move to the
architectural design of our proposal and we will give some details related to the
framework implementation to finish with some conclusions, ongoing directions and
future work.

2 Related Work

The standard distributed transactional processing model more extended is the X/Open
[14] model, which defines three rolls (Resource Manager RM, Transaction Processing
Manager TPM and Application Program AP) [9] [14].

Based on the Web Service technology two specifications to standardize the
handling of transactions through open environments have arisen. These specifications
are WS-Coordination [10] and WS-Transaction [13], developed by IBM, Bea and
Microsoft. In them, the way to group multiple Web Services as a transaction is
exposed, but the form of coordination of the transactions is not specified. On the other
hand, the Business Transaction Protocol specification (BTP) [13], proposed by
OASIS, defines a transactional coordination based on workflows. This specification is
complex to handle and integrate [12]. Based on GT3 [8] we try to construct a simple
proposal for the implementation of a transactional manager adopting the X/Open
model. In the proposed design, the analogies are visible.

2.1 Two Phase Commit Protocol

The Two phase commit (2-PC) protocol is an ACID compliant protocol to manage
DTs. How 2-PC works is easy to explain. A Transaction with a 2-PC protocol does
not commit all the actions if not all of them are ready to be committed. This process
works in two phases, as its names indicates, first phase called Voting Phase and
second phase called Commit Phase.

During de Voting Phase, each and every action notifies to the system their
intentions to commit theirs operation. This phase terminate when all the actions are
ready to be committed. Then starts the Commit Phase, during this phase the system
notifies to each and every action to be finished, the conclusion of the operation takes
place when the commit message arrives from the system to each and every action.

 DCP-Grid, a Framework for Conversational Distributed Transactions 173

These two components work in two different phases, during the Voting Phase
when an application requests to the DTC to commit a Transaction, the DTC sends
PREPARE_TO_COMMIT to all the RM that have uncommitted actions of the
Transaction, then the DTC waits for a period to receive all the RMs responses.

There are two possible responses READY_TO_COMMIT or
UNABLE_TO_COMMIT. If all the RMs responses to the DTC are
READY_TO_COMMIT message then the DTC sends a COMMIT message to all
RMs, but if any of the resource managers sends a UNABLE_TO_COMMIT or not
response in a limit time then the DTC sends a ROLLBACK message to all the RM. In
Figure 1 we can appreciate the successfully scenario of a commit transaction over 2-
PC protocol.

Fig. 1. 2-PC messages intereaction

Distributed Transactions and 2-PC protocol will be the pillars of our Framework
because DCP-Grid will provide 2-PC protocol to support transaction processing.

2.2 Classification of Distributed Transactions

We assume two categories Concurrent Distributed Transactions and Conversational
Distributed Transactions:

• Concurrent Distributed Transactions: are the transactions formed by actions that
have not dependencies between. In this case, the different actions can be sending
by the application layer in a concurrent way improving the service time processing.

• Conversational Distributed Transactions: are the transactions composed by
dependent actions. An example of this kind of transaction could be the following.
This scenario refers for any transaction in which action N depends on, at least, one
or more actions previously executed, being N-i the maximum number of actions to
be included in this dependence, and i a natural number representing the position.

Application DTC RM 1 RM 2 RM 3

begin_transacction

do_action_1

do_action_2

do_action_3

commit

PREPARE_TO_COMMIT

READY_TO_COMMIT

COMMIT

Voting
Phase

Completion
Phase

174 M. Salvadores et al.

3 Scenarios

As we mentioned in previous section of this paper, there is two different kinds of
categories regarding to each proposed scenario.

3.1 Scenario 1: Concurrent Distributed Transactions

In this scenario we will concentrate on the logical operation of the Framework
regarding transactions composed by independent actions.

Let’s imagine a scenario composed by two actions A and B, and a client
application which wants execute these actions in a Transactional way. In this case it
would necessary define a transaction like Tx {idTx, coordinator, A, B} where idTx is
transaction id and A, B are the actions that compose the transaction. The element
coordinator references to the DTC process that coordinates the phases of the
transaction.

Fig. 2. Scenario for Concurrent Distributed Transactions

Figure 2 shows how the transaction starts, first the client applications sends to each
RM the respective action and the idTx associated with the Tx. At same time, the
client, sends to the coordinator all the information of the Tx, with this information the
coordinator register in the DTC all the actions of the Tx and sends a message to each
RM for start their associated actions.

Once each and every action is ready to be committed, it will send a message to the
DTC notifying the current state (PREPARE_TO_COMMIT), as it were mentioned
previously this is the Voting Phase. After all RMs have sent their status message the
DTC will decide about finish the transaction sending a COMMIT message to each
RM. The stage meanwhile the DTC is sending the COMMIT message is the Commit
Phase of the 2-PC protocol.

The case of ROLLBACK in this scenario will given by the overcoming of period
(TIMEOUT) or if any RM sends a fail message (UNABLE_TO_COMMIT) to the
DTC, in this situation a ROLLBACK message will be send to each RM.

COORDINATOR

actionA

actionB

A

B

DTC

RM

RM
Client Application

Do actionA part
of the Tx idTx

Do actionB part of
the Tx idTx

You are the coordinator of

Tx {idTx, coordinator, actionA, actionB}

Start actionA

OK

OK

Start actionB

Client messages, beginning of the Tx.

Coordinator register each RM.

COORDINATOR

actionA

actionB

A

B

DTC

RM

RMClient Application

actionA
PREPARE_TO_COMMIT

Completion Phase

Voting Phase

actionB
PREPARE_
TO_COMM
IT

COMMIT

COMMIT

COMMITED

COMMITED

Succesfully fin
ish Tx

 DCP-Grid, a Framework for Conversational Distributed Transactions 175

COORDINATOR

DTC

actionA

A
RM

actionB

BRM

Client Application

Client / Coordinator interaction

Secuencial invocation of actions

Begin TX

Commit Tx

Invoke an action
and recover
results

Invoke an action
and recover
results

2-PC

2-PC Voting and completion phases

It is easy to see a small modification over the previous explication of 2-PC, in this
scenario due to the concurrency, are the RM’s who sends the message
PREPARE_TO_COMMIT not the DTC.

3.2 Scenario 2: Conversational Distributed Transactions

This scenario describes a DT composed by the same two previous actions A and B
which can’t working currently, due to this, these actions are sent sequentially because
of its dependencies, the client recovers the partial results and it invokes other actions
with these results. Due to this, is the client who decides when the transaction must
finalize, and when the 2-PC protocol must begin their commit phases (Voting and
Completion).

Fig. 3. Scenario for Conversational Distributed Transactions

The Figure 3 shows the process in this scenario. First the client application invoke
the coordinator to start the transaction Tx, after, call sequentially the necessary
actions and to finish the transaction invoke the coordinator with a COMMIT message.
At this moment, the DTC manages the 2-PC protocol to cross the Voting and
Completion phases like in scenario 1. In case of failure of some action, the DTC will
send a ROLLBACK message to the rest of them.

In addition, if some RM does not respond in a time limit then a ROLLBACK
message will be sent by the DTC to each RM. By this way, we avoided blockades of
long duration. The problem of blockades and concurrency access will be explained in
more detail in section 4.1.

4 Our Approach to Grid Environments

Taking advantage of the OGSI characteristics, we propose a DCP-Grid to be
introduced in a Grid Environment. As our first approach at the Universidad
Politécnica de Madrid (UPM), we have decided to introduce a new interface which

176 M. Salvadores et al.

we have called ITransactionSupport. This new interface provides to Grid Services
with operations that provides “rollback” and “commit” functionality. Every Grid
Service which wants take part of a transactional execution will extend this interface,
this solution could be achived thanks to the PortType Extension, provided by OGSI.

On the other hand, we have defined the element Distributed Transaction
Coordinator (DTC), key concept for DCP-Grid. Our solution proposes to the DTC
like a Grid Service, we assigned to this service the name of TXCoordinationService,
with this design we took advantage of all features of Grid Service to develop the
DTC.

In order to separate the interface of the logical behavior our proposal introduce a
new component, the engine that manages all the process around the commit protocol.
This component is the TXManagementEngine. We can look inside the coordinator in
the next figure:

Fig. 4. DTC building blocks Architecture

The TXManegementEngine makes its decisions in function from the information
updated by the TXCoordinationService, for example, when the
TXCoordinationService receives a message PREPARE_TO_COMMIT it update the
correspondent OperationStatus. When the TXManagementEngine detects that all
OperationStatus are in PREPARE_TO_COMMIT then sends a COMMIT message to
all remote resource managers.

Each remote RM can commit their operations because it implements
ITransacctionSupport. In case of some message received by the
TXCoordinationStatus will be a UNABLE_TO_COMMIT message then the
TXManegementEngine will make a rollback sending the corresponding message to
each remote RM.

The RM is another Grid Service deployed in each system that contains
transactional Grid Services due to this the TXManagementEngine contained in the
DTC can invoke the TXResourceManagerService for the commit or rollback interface
operations and a situation of blockade will occur.

TXCoordinationService Transaction

RemoteOperation

RemoteResourceManager

GridService
(with Transaction Support)

Operation

Commit Protocols

2pc

3pc

pz

�

OperationStatus

TXManagementEngine
(Decisions for rollback and commit
transactions)

Interface GWSDL

Architectural Component

Component Interface

ITransactionSupport

begin commit �..backuprollback

 DCP-Grid, a Framework for Conversational Distributed Transactions 177

4.1 Solutions to the Situations of Blockade

A key point to be taken into account is the resolution of the interblockades; this factor
could be critical in some scenarios as the following: a client application invokes a
service and this execution is part of a transaction. At a certain moment, this service
not finished yet because of another action associated to the same transaction is not in
the commit phase. At this same moment, another client application sends the
execution of a transaction in which there is the same action blocked before. If this
action is not released, another execution will not be able to enter and a situation of
blockade will occur.

In order to solve this situation our proposal establishes a time limits of delay to
process commit once the service has been processed, this timeout will be a parameter
to be established by each and every service. In future versions of DCP-Grid, we will
tackle the problem deeply.

4.2 Solutions to Concurrent Access Situations

During the investigation of DCP-Grid a problem with the concurrent access appear.
What happens if an RM has deployed a service that allows parallel access to different
client execution, if two clients invoke the service simultaneously when the respective
DTCs want to process COMMIT or ROLLBACK? How the RM knows which is the
message (COMMIT / ROLLBACK) associated to each execution?

To solve this situation our proposal generates a unique ID that will be propagated
in corresponding messages to the respective DTCs and RMs. With this ID the two
components (DTCs and RMs) will be able to associate the message received with the
corresponding operation. This session ID identifies uniquely each transaction.
Another problem appear with this solution How can generate unique IDs across
different RMs in separated system?

 To solve this new problem DCP-Grid will negotiate the session ID between the
RMs. The internal operation is as it is described to continuation, the DTC associated
to the transaction generate the transaction ID based on the system address, after the
DTC sends the start message to each RM. If some RM detects that it has an active id
with same value, then this RM will send a CHANGE_ID message to the DTC, the
DTC will generate a new ID only for this RM. Internally the DTC will store this
information for future messages.

5 Conclusions and Future Work

In this paper we have presented our approach to implement an architecture supporting
transactional Grid WS execution. This approach is based on some of the main
properties of OGSI specification [7]. As ongoing work, currently we are developing a
similar framework for concurrent distributed transactions on grid environments which
will be presented in the Workshop on KDMG'05. So many future research lines has
been opened for DCP-Grid but maybe the most interesting would be the building of
an environment to support transactions on distributed and heterogeneous databases
based on the concepts and ideas that we have presented in this paper.

178 M. Salvadores et al.

References

[1] Douglas K. Barry, Web Services and Service-Oriented Architecture: The Savvy
Manager's Guide, Morgan Kaufmann Publishers 2003

[2] Mark Endrei, Jenny Ang, Ali Arsanjani, Sook Chua, Philippe Comte, Pal Krogdahl, Min
Luo, Tony Newling, "Patterns: Service Oriented Architecture", IBM RedBook SG24-
6303-00

[3] "Web Services Main Page at W3C", http://www.w3.org/2002/ws/, Worl Wide Web
Consortium, (consultado en dic/2004)

[4] Berntein, New Comer "Principles of Transaction Processing", Editorial: Kaufman, 1997
[5] I. Foster, C. Kesselman. The Physiology of the Grid: An Open Grid Services Arquitecture

for Distributed System Integration . 2002. http://www.globus.org/research/papers/ogsa.pdf
[6] Miguel L. Bote-Lorenzo, Yannis A. Dimitriadis, Eduardo Gómez-Sánchez "Grid

Characteristics and Uses: A Grid Definition", LNCS 2970, 291-298
[7] S. Tuecke, K. Czajkowski, I. Foster. Grid Service Specification. Technical Report. Jun

2003. www-unix.globus.org/toolkit/draft-ggf-ogsi-gridservice-33_2003-06-27.pdf
[8] "Globus Toolkit Project", The Globus Alliance, http://www.globus.org (consulted

2004/12)
[9] I. C. Jeong, Y. C. Lew. DCE "Distributed Computing Environment" based DTP

"Distributed Transaction Processing" Information Networking (ICOIN-12) Jan. 1998
[10] F. Cabrera et al., "Web Services Coordination (WS-Coordination)" Aug. 2002,

ww.ibm.com/developerworks/library/ws-coor/
[11] F. Cabrera et al., "Web Services Transaction (WS-Transaction)" Aug. 2002,

www.ibm.com/developerworks/library/ws-transpec/.
[12] Feilong Tang, Minglu Li, Jian Cao, Qianni Deng, Coordination Business Transaction for

Grid Service. LNCS3032 pag. 108-114 (Related Work Section)
[13] OASIS BTP Committee Specification 1.0, 3 June 2002, Business Transaction Protocol,

http://www.choreology.com/downloads/2002-06-03.BTP.Committee.spec.1.0.pdf
[14] X/Open Specification, 1988, 1989, February 1992, Commands and Utilities, Issue 3

(ISBN: 1-872630-36-7, C211); this specification was formerly X/Open Portability Guide,
Volume 1, January 1989 XSI Commands and Utilities(ISBN: 0-13-685835-X,
XO/XPG/89/002).

	Introduction
	Related Work
	Two Phase Commit Protocol
	Classification of Distributed Transactions

	Scenarios
	Scenario 1: Concurrent Distributed Transactions
	Scenario 2: Conversational Distributed Transactions

	Our Approach to Grid Environments
	Solutions to the Situations of Blockade
	Solutions to Concurrent Access Situations

	Conclusions and Future Work
	References

