
Managing Heterogeneity in a Grid
Parallel Haskell

A. Al Zain1, P.W. Trinder1, H-W. Loidl2, and G.J. Michaelson1

1 School of Mathematical and Computer Sciences, Heriot-Watt University, Riccarton,
Edinburgh EH14 4AS, UK

{ceeatia, trinder, greg}@macs.hw.ac.uk
2 Ludwig-Maximilians-Universität München, Institut für Informatik, D 80538

München, Germany
hwloidl@informatik.uni-muenchen.de

Abstract. Grid-GUM is a distributed virtual shared-memory implemen-
tation of a high-level parallel language for computational Grids. While
the implementation delivers good speedups on multiple homogeneous
clusters with low-latency interconnect, on heterogeneous clusters, how-
ever, poor load balance limits performance. Here we present new load
management mechanisms that combine static and partial dynamic infor-
mation to adapt to heterogeneous Grids. The mechanisms are evaluated
by measuring four non-trivial programs with different parallel properties,
and show runtime improvements between 17% and 57%, with the most
dynamic program giving the greatest improvement.

1 Introduction

Hardware price/performance ratios and improved middleware and network tech-
nologies make cluster computing and computational Grids increasingly attrac-
tive. These architectures are typically heterogeneous in the sense that they com-
bine processing elements with different CPU speeds and memory characteristics.
Parallel programming on such heterogeneous architectures is more challenging
than on classical homogeneous high performance architectures.

Rather than requiring the programmer to explicitly manage low level issues
such as heterogeneity we advocate a high-level parallel programming language,
specifically GpH, where the programmer controls only a few key parallel coordi-
nation aspects. The remaining coordination aspects including heterogeneity are
dynamically managed by a sophisticated runtime environment, GUM. GUM has
been engineered to deliver good performance on classical HPCs and clusters [6].
Grid-GUM is a port of GUM to computational Grids using the Globus Toolkit,
the de-facto standard. As Grid-GUM implements a virtual shared-memory over
a wide-area network, it is perhaps surprising that it gives good performance
in some instances, e.g. on homogeneous low-latency multiclusters [1]. However
for heterogeneous architectures load management emerges as the performance-
limiting issue.

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3515, pp. 746–754, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Managing Heterogeneity in a Grid Parallel Haskell 747

This paper presents Grid-GUM2, incorporating new load management mech-
anisms for heterogeneous architectures. The new mechanisms are decentralised,
obtain complete static information during start up, and then cheaply propa-
gate partial dynamic information during execution. The existing load manage-
ment techniques in Grid-GUM are described in Section 2. The design of the new
thread, load and communication management mechanisms is given in Section 3.
The effectiveness of the new mechanisms for heterogeneous clusters is investi-
gated using four non-trivial programs from a range of application areas, and with
varying degrees of irregular parallelism and using both data parallel and divide-
and-conquer paradigms in Section 4. Related work is discussed in Section 5, and
we conclude in Section 6.

2 GpH and Grid-GUM

GpH (Glasgow parallel Haskell) [7] is a modest and conservative extension
of Haskell 98 with very high level coordination, i.e. control of parallel execu-
tion. Parallel and sequential composition primitives introduce and synchronise
threads. Evaluation strategies are polymorphic higher-order functions that ab-
stract over the primitives to provide parameterisable, reusable high level coor-
dination control.

Grid-GUM Grid-GUM extends the existing GUM memory management, and
thread management techniques. In particular, it implements a virtual shared
heap over a wide-area network [8]. The communication management in Grid-GUM
is similar to GUM, but uses MPICH-G2, a Grid-enabled implementation of the
MPI standard [5], and hence the Globus Toolkit as middle-ware.

PE 1

run

spark activate

run

spark

PE 2

FISH

activate

Spark Pool

Thread Pool

CPU

awake

block

Closure

Blocking Queue

Spark Pool

Thread Pool

CPU

awake

block

Closure

Blocking Queue

SCHEDULE

Fig. 1. Interaction of the components of a GUM processing element

Grid-GUM uses an evaluate-and-die thread management model with sparks,
i.e. pointers to graph structures, to represent potential parallelism. Sparks are
generated by an explicit par construct in the program and maintained by the
runtime-system in a flat spark pool. A sparked expression may be executed by an
independent thread. However, if a thread needs the value of the expression, and



748 A. A Zain et al.

no other thread is evaluating it, the demanding thread will perform the compu-
tation itself. This behaviour is called thread subsumption because the potentially
parallel work is inlined by another thread.

Figure 1 illustrates the load management mechanism in Grid-GUM, depicting
the logical components on each Processing Element (PE) of the Grid-GUM ab-
stract machine. When activated a spark causes a new thread to be generated.
Threads that are not currently being executed reside in the thread pool. When
the CPU is idle, and the thread pool is empty, a spark will be activated to gen-
erate a thread. If a running thread blocks on unavailable data, it is added to the
blocking queue of that node until the data becomes available.

The thick arrows between the PEs in Figure 1 show load management mes-
sages exchanged in Grid-GUM. Initially all processors, except for the main PE,
will be idle, with no local sparks available. PE2 sends a FISH message to a
random-chosen PE. On arrival of this message, PE1 will search for a spark and,
if available, send it to PE2. This mechanism is usually called work stealing or
passive load distribution, since an idle processor has to ask for work. Grid-GUM
also improves load distribution by using Limited Thread mechanism which in-
cludes specifying a hard limit on the total number of live threads, i.e. runnable
or blocked threads in the thread pool. To summarise, the Grid-GUM load mech-
anism deals with both locating work (Figure 2.a), and handling work requests
(Figure 2.b), where these activities are performed in the main scheduler loop
between thread time slices.

IF idle THEN IF received fish THEN

IF runnable thread THEN IF sparks available THEN

execute runnable thread send spark

ELSE to fishing PE

IF spark in spark pool then ELSE

create runnable thread forward fish to random PE

execute runnable thread

ELSE

send fish to random PE

Fig.2a. Work locating Fig.2b. Work request handling

Grid-GUM performance In earlier work we have investigated the perfor-
mance of GpH programs on Grid-GUM, with varying numbers of clusters and in-
terconnection latencies [1]. We find that Grid-GUM delivers good and predictable
speedups for several configurations, e.g. multiple homogeneous clusters with a
low-latency interconnect, or programs that perform little communication on mul-
tiple clusters with a high latency interconnect. However other configurations,
including heterogeneous clusters, Grid-GUM gives poor performance due to poor
load management.

Fig. 2. Grid-GUM Load Management

l



Managing Heterogeneity in a Grid Parallel Haskell 749

3 Grid-GUM2

Distributed load management assigns processes (or threads) to PEs in a multi-
PEs system and can be classified as depicted in Figure In static load manage-
ment, PEs are assigned tasks at compile time, i.e. before the execution begins.
In contrast, dynamic load management assumes that limited knowledge about
the processes and PEs is available a priori, and load management decisions are
made during execution. Dynamic scheduling is subdivided into two categories:
a)centralised where a single PE is responsible for scheduling, and b)decentralised
where all PEs participate in the scheduling. Distributed techniques can either
operate in a passive mode where idle PEs request work, or in an active mode
where PEs are assigned work without a prior request. This section presents

Distributed Load Management

Dynamic

Passive

Decentralised Centralised

Active

Static

Grid-GUM2, a new adapted load scheduling to improve Grid-GUM performance.
Grid-GUM2 load management is dynamic, decentralised and mostly passive us-
ing complete static and partial dynamic information about PEs, processes and
network. The salient features of Grid-GUM2 are as follows.

Targeted Load Management: The challenge in load managment is to effi-
ciently and effectively distribute the available work using dynamic information
about PE CPU speed and loads, with minimal overheads. In Grid-GUM, if a PE
is idle, it sends a FISH message to a randomly-chosen PE. However, given the
increased heterogeneity of computational Grids, Grid-GUM2 sources work from
a PE that has a high load relative to its speed.

Load information must be maintained dynamically, but it is prohibitively
expensive to regularly broadcast complete load information to every PE in a
large computational Grid. Grid-GUM2 uses a lightweight approach maintaining
partial dynamic PE information at almost no cost. Each PE maintains a table
PEDynamic that contains partial timestamped dynamic information about the
PEs, currently just their loads as depicted in Figure The PEDynamic table
is included with every message sent between PEs, and the receiving PE updates
its table with more recent information. The additional cost of sending the table
is minimal for the high bandwidth interconnects in typical computational Grid.

Specialised Thread Management: Grid-GUM has a parameter that specifies
the minimum number of sparks that should be available in each PE, the low-

3.

Fig. 3. Classifying Grid-GUM2 Load Management

5.



750

watermark. If the number of sparks in a PE falls below the low-watermark it
issues a FISH message to obtain more work. Such a uniform strategy for all
PEs must be adapted for heterogeneous clusters. Our design is to maintain a
local low-watermark for each PE, with higher watermarks for fast PEs. This en-
courages fast PEs to be more aggressive about obtaining work than slower PEs.
However, local low watermarks are not get implemented in the system measured
in the next section.

Variable Latency Communication Management: The interconnects be-
tween PEs in a computational Grid have varying static and dynamic latencies,
e.g. the latency between PEs in the same cluster is much less than that be-
tween PEs on different clusters, and both are affected by network traffic. Our

PE

550 MHz

550 MHz

350 MHz

350 MHz

Time Stamp

350 MHz

13:40:01

13:45:00

12:40:03

13:44:03

14:40:03

A

D

C

B

F

CPU Speed Load time_stamp

2000 14:13:49

3000 14:13:59

10000 14:12:22

PE

A

B

D

PE

0.75 msec

Last Update

12:45:20F

Latency

C 10.00 msec 12:50:25

G 2.05 msec 12:24:50

mechanism prefers to obtain work and hence data from PEs that currently have
low communication latency. Grid-GUM2 maintains communication information
at almost no cost. Each PE has a table Communication that contains partial
timestamped dynamic information about the communication, currently just the
latency to each PE as depicted in Figure The latency of every message is esti-
mated, timestamped and recorded in the Communications table with the startup
messages initialising the table. The problems of maintaining synchronised dis-
tributed clocks is minimised by measuring message send and receive times as
time elapsed since the program start.

Grid-GUM2 introduces a novel mechanism to deal with cases where there is
no work available on local, i.e low-latency, PEs. When an idle PE requests work
from a PE residing outside its cluster, then a scheduling decision is automat-
ically taken on the basis of minimising intra-cluster communication. One can
distinguish two scenarios: a) if the request originated from relatively powerful
cluster, then multiple sparks, i.e. several work items, are returned in a Super-
Schedule message; b) if the request originated from a relatively weak cluster
then the request is served as usual, i.e. as a single spark. Note that the idea of
Super-Schedule is not evaluated in this work since it is under implementation.

The core of Grid-GUM2 load management can be summarised as work location
(Figure 3.a), and work request handling (Figure 3.b).

A. A Zain et al.

Fig. 4. PEStatic Table Fig. 5. PEDynamic Table Fig. 6. Communic. Table

6.

l



Managing Heterogeneity in a Grid Parallel Haskell 751

IF idle THEN IF received fish THEN

IF sparks < local-watermark THEN update tables with data

send fish+local data from fishing PE

to busiest PE from tables IF sparks available THEN

IF runnable-thread THEN IF fishing PE is local THEN

execute runnable-thread send spark in schedule

IF spark in the spark-pool THEN to fishing PE+local data

create runnable-thread Else

execute runnable-thread send spark(s) in super-schedule

ELSE to fishing PE+local data

send fish+local data ELSE

to busiest PE from tables IF another PE has spark

forward fish+local data

to busiest local PE

Fig.3.a. Work locating Fig.3.b. Work request handling

4 Performance Comparison

Table 1 compares the runtime for four GpH programs with different paradigms,
and parallelism regularities, on multiple heterogeneous clusters with moderate
latency interconnect. The four programs are measured in this experiment are:
queens which places chess pieces on a board; sumEuler which computes the sum
of the Euler totient values of a list; linSolv which finds an exact solution of a
linear system of equations; raytracer which calculates a 2D image of a given
scene of 3D objects by tracing all rays in a given grid, or window. All run-times
are the median of three executions to ameliorate the impact of the operating
system and shared network interaction. The experiments were performed on
eight machines: four machines with fast CPU speed (1395 MHz) and four with
slow CPU speed (534 MHz).

Overall, the dynamic adaptive scheduling of Grid-GUM2 consistently shows
the best performance on heterogeneous Grid multi-clusters.

Due to limited space we focus on investigating the behaviour of one bench-
mark program, raytracer. In particular, raytracer has highly irregular execu-
tion, and consequently is very sensitive to changes in parallel environment.

Table 1. Programs characteristics and performance

Program Application Paradigm Regularity Runtimes & Improvement %
Area Grid-GUMGrid-GUM + Grid-GUM2

Basic Thread Limi.

queens AI Div-Conq. Regular 668 333 50% 310 53%

sumEuler Nume. AnalysisData Para.Limit irreg. 570 343 39% 279 51%

linSolv Symb. algebra Data Para.Limit irreg. 217 306 −40% 180 17%

raytracer Graphic Data Para.High irreg. 1340 814 39% 572 57%

Fig. 7. Grid-GUM2 Load Management



752

Fig. Runtimes for raytracer

Fig. per-PE activity profile for raytracer

Figure compares the runtime achieved for the raytracer using different
load management mechanisms on a heterogeneous environment, where there are
the same numbers of slow and fast machines. For more than 4 PEs the best results
are achieved for Grid-GUM2 with better scalability and decreasing runtime than
basic Grid-GUM and Grid-GUM with thread limitation.

Figure shows per-PE activity profile for raytracer, with execution on
four fast machines (0,2,4,6), and four slow machines (1,3,5,7). A per-PE activity
profile shows the behaviour for each of the PEs (y-axis) over execution time
(x-axis). Each PE is visualised as a horizontal line, with darker shades of gray
indicating a larger number of runnable threads. Gaps in the horizontal lines
indicate idleness. Figure .a depicts the performance on Grid-GUM using a limit
of 1 for the number of live threads. This small limit is chosen because it is the
only one that has any impact on a heterogeneous architecture. Figure .b depicts
the performance on Grid-GUM2. All PEs in Figure .b are uniformly loaded, and
finish at the same time, in contrast to the PEs in Figure .a have numerous idle
periods. Figure .a also shows long idle periods at the middle of the computation,
where only a small amount of parallelism is available. Here, blocking on data

A. A Zain et al.

8.

9.

8

9

9
9

9

9

9

l



Managing Heterogeneity in a Grid Parallel Haskell 753

that is evaluated in the PEs with slow CPU speed will cause the PEs with fast
CPU speed to remain idle until new work is obtained. Note that the runtime
drops from 814 s to 572 s, which almost (30%) improvement.

5 Related Work

The most closely related work is the ConCert system [4], which translates a
subset of ML to machine code, for execution on a Grid architecture. In con-
trast to our work, parallelism is expressed via explicit synchronisation. Alt et
al apply skeletons to computational Grids [3]. This work focuses on providing
the application user with skeletons to capture common patterns of Grid ab-
stractions. However, our aim is to provide more general programming language
support for parallelism through an implementation that incorporates new im-
plicit dynamic coordination-management strategies. Aldinucci et al also apply
skeletons to computational Grids [2].This work focuses on providing a skeleton
to centralise load management in the Grid environment. However, our aim is to
solve load scheduling on the Grid by developing a dynamic decentralised load
schedule.

6 Conclusion

The Grid-GUM2 extension to the Grid-GUM runtime environment has been pro-
duced to efficiently and automatically manages data and work on a multi-cluster
Grid environment. Achieving good performance was made possible by using a
high-level parallel language and completely managing distribution at the run-
time environment level . As future work we plan to measure the behaviour of
Grid-GUM2 using varying number of clusters and interconnect latencies. We are
also considering building an analytic model of Grid-GUM2.

References

1. A. Al Zain, P. Trinder, H-W. Loidl, and G. Michaelson. Grid-GUM: Towards Grid-
Enabled Haskell. In IFL’04 — Intl. Workshop on the Implementation of Functional
Languages, Draft Proceedings, Lübeck, Germany, September 2004.

2. M. Aldinucci, M. Dnelutto, and Dünnweber. Optimization Techniques for Imple-
menting Parallel Sckeletons in Grid Environments. In CMPP’04 — Intl. Workshop
on Constructive Methods for Parallel Programming, Stirling, Scotland, July 2004.

3. M. Alt, H Bischof, and S. Gorlatch. Program Development for Computational
Grids Using Skeletons and Performance Prediction. In CMPP’02 — Int. Workshop
on Constructive Methods for Parallel Programming. Dagstuhl, Berlin, June 2002.

4. B-Y. Evan Chang, K. Crary, M. DeLap, R. Harper, J. Liszka, T. Murphy VII, and
F. Pfenning. Trustless Grid Computing in ConCert. In In Proceedings of the GRID
2002 Workshop, volume 2536 of LNCS. Springer-Verlag, 2001.

5. N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A grid-enabled implementation
of the message passing interface. J. of Parallel and Distributed Computing, 2003.



754

6. H-W. Loidl, F. Rubio, N. Scaife, K. Hammond, S. Horiguchi, U. Klusik, R. Loogen,
G. J. Michaelson, R. Pe na, Á. J. Rebón Portillo, S. Priebe, and P. W. Trinder.
Comparing Parallel Functional Languages: Programming and Performance. Higher-
order and Symbolic Computation, 16(3), 2003.

7. P.W. Trinder, K. Hammond, H-W. Loidl, and S.L. Peyton Jones. Algorithm +
Strategy = Parallelism. J. of Functional Programming, 8(1):23–60, January 1998.

8. P.W. Trinder, K. Hammond, J.S. Mattson Jr., A.S. Partridge, and S.L. Peyton
Jones. GUM: a Portable Parallel Implementation of Haskell. In PLDI’96 — Conf.
on Programming Language Design and Implementation, Philadephia, USA, 1996.

A. A Zain et al.l


	Introduction
	GpH and Grid-GUM
	Grid-GUM2
	Performance Comparison
	Related Work
	Conclusion



