
Semi-automated Simulation Transformation
for DDDAS

David Brogan, Paul Reynolds, Robert Bartholet, Joseph Carnahan,
and Yannick Loitière

Computer Science Department,
University of Virginia, Charlottesville, VA 22901, USA

{dbrogan, pfr, bartholet, carnahan, ycl2r}@virginia.edu

Abstract. Ultimate DDDAS success demands that DDDAS simulations
be increasingly reconfigurable and adaptable to a growing variety of run-
time sensor feedback. Because we expect a simulation’s requirements to
change during its lifetime, a new emphasis is placed on designing simula-
tions that are prepared for transformation. In this paper, we address this
new interest in designing for transformation. Our technology combines
the specialized insight of simulation designers with the principled appli-
cation of automation techniques to capitalize on untapped human and
computational resources. In addressing simulation transformation issues
that arise at design time, composition time, and runtime, we demon-
strate how a semi-automated process impacts the entire simulation life
cycle. The resulting suite of simulation transformation tools supports the
crosscutting needs of DDDAS practitioners.

1 Introduction

Dynamic, data-driven application systems (DDDAS) pose challenges that re-
flect the core of simulation technology’s hardest problems: composition, design
for reuse, multiresolution modeling, interoperability, and scenario-driven adap-
tation. DDDAS’s complexity, compounded by the uncertainty with which data
and resources will be available, requires adaptability - a capability to adjust to
match runtime conditions. Many DDDAS research efforts have produced adapt-
ability results suitable for the application under study, and some span even a
wider set of applications. We are investigating critical crosscutting adaptabil-
ity issues that are independent of any particular application. We report on the
COERCE effort now underway at the University of Virginia, where our primary
focus is a semi-automated transformation process intended to support dynamic
simulation modification and refinement to match runtime conditions.

We are exploring simulation transformation because the anticipation of and
provision for all specific uses of a simulation, over its lifetime, is generally
unattainable. A better method for addressing the uncertainty inherent in DDDAS
is to identify effective means to control a simulation and to explore and model the
impact of those controls. Because there are so many things that can impact sim-
ulation behavior, a designer must identify the specific attributes that permit the

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3515, pp. 721–728, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



722 D. Brogan et al.

greatest exploration of “structural uncertainty” [1] using semi-automated meth-
ods. These explorations can be cataloged using machine learning and utilized
at runtime to adapt to unexpected conditions. Because we anticipate DDDAS
applications will routinely combine multiple simulation components to achieve
a larger DDDAS objective, we are also investigating the design of components
with transformation in mind.

We first describe a method for capturing designer knowledge in language con-
structs at the outset of a simulation’s design in order to enable the creation of
logically tractable and easily transformed instances of a simulation. We differen-
tiate between capturing the nature of unexpected conditions, which we believe is
possible, and the specifics of those conditions, which experience has shown to be
difficult to impossible. We argue that capturing the nature of abstract conditions
is useful in many ways: 1) Later users can knowledgeably review applicability of a
simulation to a specific set of DDDAS conditions, 2) If new conditions merit sim-
ulation transformation, those involved will have the best information available
to support the effort, and 3) If future transformation is possible, DDDAS simu-
lations can be instantiated to accommodate narrow conditions, thus increasing
expectations for cost savings.

Next we present our investigation of “applied component synthesis” - our ap-
proach to component-based simulation that keeps the practitioner’s objectives
in mind. We specifically consider the synthesis of transformable components. All
of the component synthesis cost analyses we have seen to date do not take the
potential for transformation into account when considering the cost of synthesis.
We do. We present our work in the context of contemporary composition and
software reuse results from the software engineering and simulation communi-
ties. Our analysis of contemporary results identifies the sources of complexity
when dynamically composing or reusing simulations and motivates the need for
adaptable simulations.

Lastly, we describe a simulation transformation tool that automatically steers
a simulation towards desired outputs. These desired outputs typically come from
external observations and they serve as corrective feedback for simulations. With-
out anticipation of such observations, the simulation will not have a preconfig-
ured feedback loop to meet the desired outputs. We demonstrate that offline
experimentation can produce an abstraction of simulation behavior that serves
to chart a course from the runtime simulation’s current output to a desired
output.

Our results align well with the four classes of DDDAS research challenges
identified by Darema [2]: applications, mathematical algorithms, systems soft-
ware, and measurements. Our presentation of ways designer insight can be
captured and expressed through programming language primitives provides a
“multi-modal method for describing the system at hand” in order to handle dy-
namically injected data. We address the needs of applications to be dynamically
composed from families of models according to streamed data and our auto-
matic simulation transformation tool permits well-behaved, runtime steering of
a simulation to accommodate external observations.



Semi-automated Simulation Transformation for DDDAS 723

2 Building Transformable Simulations

Modular and adaptable software has been the center of software engineering re-
search for decades. However, software reuse remains time consuming and difficult
to automate outside of specific application domains [3, 4, 5]. We view simulation
as another potentially fruitful domain. We posit that designers possess critical
knowledge about a simulation’s flexibility and limitations at design time, even
if runtime circumstances are unpredictable. We focus on methods for capturing
this knowledge so transformation can be facilitated. We place special emphasis
on capturing insights about time-management and event-generation algorithms
–the most commonplace and important of a simulation’s attributes [6]. This
focus distinguishes our work from mainstream software reuse research.

2.1 Capturing Designer Insight

Simulations have characteristic elements that lend themselves to automated ex-
ploration and manipulation, which we call “flexible points” [7]. Many of these
flexible points reflect the design decisions that were made to construct the simu-
lation, such as the use of stochastic sampling, the selection of input distributions,
and the level of detail included in the model. In order to facilitate the process
of simulation transformation, we are developing categories of flexible points [8]:

– Decisions made during conceptual design of a simulation
– Decisions made regarding low-level implementation details
– Opportunities to select a variable or function assignment from a set
– Opportunities to select a variable or function assignment from an ordered

set (for automatic evaluation using local search techniques)
– Opportunities to reorder events
– Opportunities to adjust level of abstraction or remove aspects

Useful information to record for each flexible point includes how its value could
be changed (by changing a parameter or by executing an alternative section of
code) and what effects the change will have on the simulation’s behavior.

Different types of flexible points and different types of information that must
be captured define a two-dimensional space. We use language constructs to en-
code the flexible point descriptions in the simulation code itself. Metalanguages
such as XML, for example, can then parse these constructs and use existing
libraries and tools to generate, display, and manipulate the flexible points. This
simplifies the development of simulation prototypes and the evaluation of the
usefulness of different types of flexible points for DDDAS.

2.2 Temporal/Event Manipulation

An attribute that distinguishes simulations from general-purpose software is the
role of time and events in dictating the program’s semantics. It is possible to repre-
sent a simulation as a (possibly repeating) timeline of events or intervals, reflecting
the way the simulated phenomenon itself occurs in time. We are exploring possible



724 D. Brogan et al.

sets of operations that can be performed on timelines, such as looping, splicing,
and overlaying timelines. From another perspective, simulations can be viewed as
sequences of event generation actions (as opposed to event graphs, as captured in
[9]). We are developing a transformation language for “event-generating systems”
wherein the nature of an event generation may not be fully determined until the
time when it is created by a previous event in the simulation.

One of the current difficulties with transformation of DDDAS simulations is
the risk that the data may call for an unexpected series of changes, pushing the
simulation out of the domain in which it was originally validated. However, by
developing a set of well-specified operations on timelines or event systems, it
becomes feasible to analyze a set of transformations on a simulation in advance.
Without knowing exactly which operations will be applied or in which order,
we can still explore whether or not the validity of the simulation is preserved
under each of the operations in the transformation language. Such explorations
could be conducted using model checking, e.g. [5] , for example. Then it becomes
possible to dynamically apply analyzed transformations in response to external
observations without risking the stability of the simulation system.

3 Composability

A crosscutting research challenge in DDDAS is the capability to dynamically
select and compose models based on runtime conditions [2]. We are investigating
model composition. Past research indicates that in the general case component
selection is inherently intractable, but we believe there are opportunities to relax
typical assumptions in order to reduce the problem to one that is practical in
applied modeling systems. We have discovered a relaxed form of composition
that is practical, in the context of an efficient means of transformation. We have
labeled our approach “applied component synthesis.”

3.1 Software Composition

In the software engineering community, composability is typically discussed
within the framework of component-based software design (CBSD). Primary
CSBD models include Microsoft’s Component Object Model Plus (COM+), the
Object Management Group’s (OMG) Common Object Request Broker Archi-
tecture (CORBA), and Sun’s Enterprise JavaBeans (EJB). These technologies
are similar in that they enforce a binary structure for exposing public inter-
faces allowing components to provide services to clients, which may or may not
themselves be components. While CBSD technologies provide the facilities to
communicate and provide services, they make no guarantees about the mean-
ing, reliability, or consistency of the exchanged information.

In his widely read text on component software, Szyperski defines a composi-
tion as an “assembly of parts (components) into a whole (a composite) without
modifying the parts” [10], which is consistent with the software engineering view
of composition as functional composition – composed black boxes with clearly de-



Semi-automated Simulation Transformation for DDDAS 725

fined interfaces. Common exemplars are graphical user interfaces (GUIs), math-
ematical libraries, and UNIX tools. Functional composition is very restrictive for
the modeling domain where practitioners typically want to view components as
white boxes, and to reason about the semantics of the internals. We are investi-
gating the means to reason about the semantics of models so formal methods of
simulation composition can ensure semantic compatibility is preserved [6].

3.2 Simulation Composition

In the simulation community, composability has been defined as “the capabil-
ity to select and assemble simulation components in various combinations into
valid simulation systems to satisfy specific user requirements” [11]. In contrast
to Szyperski’s definition, this definition admits reasonable amounts of model
transformation. Within the simulation community both composability and in-
teroperability have been topics of intense study. Composability prohibits the use
of substantial integration efforts to combine components to meet requirements.
Interoperability, on the other hand, permits a one-time integration effort as is
commonly used in Distributed Interactive Simulation (DIS), Aggregate Level
Simulation Protocol (ALSP), and the High Level Architecture (HLA). These
technologies provide practical tools for interoperability, but with the same draw-
backs seen in current CBSD technologies.

Recent interest in the M&S community has been focused on the simulation
composability component selection problem [12, 13, 14]. Informally, the compo-
nent selection problem seeks to find the subset of preexisting components that
meet a simulation’s objectives (requirements). The component selection problem
does not address changing objectives, rather it assumes that all objectives are
known at selection time. We believe a more flexible approach, recognizing the
reality of changing requirements, is needed. Furthermore, component selection,
as currently framed, assumes that components, to be composable, must be both
syntactically and semantically composable. We agree with Page et al. that the
easier problem is syntactic composability [15] and composability efforts should
focus on the hard problem of semantic composability.

Only one theoretical model of simulation composability has been proposed
to date [16, 17]. The authors define models as functions, and simulations as the
process of stepping through the functions, with each step allowing the model
to receive input, give output, and change state. Although this model addresses
functional composability and semantic correctness, we find it too limited by
traditional functional composition assumptions (e.g. no commutativity).

3.3 Breaking the Composability Paradigm

We reject the common assumption of immutable components. We do not agree
with the assumption that a master set of components exists that can satisfy
all possible requirements. In the domain of computational sciences, we believe
practitioners, too, will not permit themselves to be limited by such an assump-
tion. A more practical solution permits transforming existing components when a



726 D. Brogan et al.

composition is sufficiently close to satisfying all requirements. Component trans-
formation is a particularly compelling technology when considering the challenge
of adapting to requirements that change at runtime.

We are currently investigating a new paradigm of simulation reuse, applied
component synthesis, that relies on efficient transformation. Applied component
synthesis requires a formal model describing an iterative process of selecting,
transforming, creating, validating, and assembling simulation components to
meet changing requirements. Initial work regarding component selection algo-
rithms is underway as is the investigation of metrics and means that will guide
practitioners in component synthesis. We envision developers making decisions
on the importance of different aspects of time and resources, encoding these de-
cisions, and then allowing this encoding to facilitate the process of component
selection and transformation.

Our initial results include a new model for the component selection problem –
a model that permits consideration of component transformation in a component
selection cost analysis. We have demonstrated that cases of this problem are NP
hard, and others are polynomial time. We are utilizing our results to identify
heuristics and to conduct further reconsiderations of assumptions.

4 Automatic Behavior Modeling

Incorporating data into an executing simulation has the potential to improve the
simulation’s utility by identifying and correcting errors, steering the simulation
towards more effective states, or triggering the reconfiguration of the simulation’s
underlying computational components. In each of these cases, the infused data
may trigger large corrections in the simulation state, which can have undesirable
side effects when internal simulation variables are not changed accordingly. Such
instabilities should be expected in complex simulation systems because they are
composed of a dynamic set of interacting software components, each possessing
internal variables and non-linear equations. Because state changes of large mag-
nitude are common sources of such instabilities, we propose a method where a
desired change in state is subdivided into multiple smaller changes that avoid
simulation discontinuities and perturbations.

Consider how runtime data may reveal that the output O of a simulation
in state S is not tracking actual conditions O′ of the world and a new simula-
tion state S′ will be required to realign the simulation. The simulation (S,O)
must be transformed to (S′, O′). Recalling that a simulation’s variables cannot
directly be modified without causing unforeseen complications, we seek an it-
erative transformation process that permits the simulation to update all state
and internal variables synchronously. The challenge becomes one of finding a
sequence of states S1, S2, ..., Sn that incrementally takes the simulation output
from O to O′ while avoiding the problems caused by the internal variables. We
require a model that provides a means to select the intermediate steps between
O and O′ and permits us to map them to the corresponding S1, ..., Sn that
generate them. To build this model, we use a data-driven approach that uses



Semi-automated Simulation Transformation for DDDAS 727

simulation observations acquired during typical execution of the simulation. A
particular feature of this model will be to constrain interpolation to outputs that
have been observed so that the sequence between O and O′ will be supported
by valid simulation states.

We use a modeling tool called self-organizing maps to accomplish our simula-
tion transformation goals. Self-organizing maps are a family of neural network-
based clustering algorithms developed by Teuvo Kohonen in the 80s [18]. The
self-organizing map uses a network of neural network nodes to record simu-
lation outputs observed during a training period and it generates a similarity
relationship such that similar outputs get placed in neighboring locations on
the map. We benefit from this in that we can use locally guided path finding
algorithms to search for an acceptable path from O to O′. While training the self-
organizing map, each map node is associated with the simulation outputs that
it best matches and their corresponding simulation states. From this mapping,
a path through the self-organizing map’s output space can be used to generate
the desired S1, ..., Sn.

To test this data-driven simulation transformation process, we implemented
a curve-plotting program that generates non-linear and counterintuitive rela-
tionships between the simulation state and its output. The simulation state is
a vector of five continuous parameters and the output is a 64x64-pixel image
of a parametric curve. A fully connected 10x10 self-organizing map was trained
on a set of 1,000 output images generated by a parameter sweep through four
of the five state parameters. Associated with each output image placed in the
map is the image’s corresponding parameter setting. Given a pair of source
and target images, we can then use the map to generate a path (using any
path finding algorithm) of similar images between them. In ongoing work, the
corresponding sequence of simulation states will be generated to smoothly tran-
sition from the source simulation state to a new state satisfying the output
criteria.

5 Conclusion

In this paper, we have presented three research projects underway at the Uni-
versity of Virginia in support of the COERCE effort. These projects are united
in their combined use of simulation designers and automation to address trans-
formation challenges that would otherwise be insurmountable. Each simulation
transformation project addresses a different point in the simulation life cycle and
addresses the crosscutting needs of the DDDAS community. We will continue to
pursue ways a simulation designer’s insight and automation can be brought to
bear on transformation’s challenges.

Acknowledgments. The authors gratefully acknowledge the support of the
NSF under grant 0426971.



728 D. Brogan et al.

References

1. Davis, P.: Exploratory analysis enabled by multiresolution multiperspective mod-
eling. In: Proceedings of the Winter Simulation Conference. (2000)

2. Darema, F.: Dynamic data driven application systems: A new paradigm for appli-
cation simulations and measurements. In: Proceedings of the International Con-
ference on Computational Science. (2004)

3. Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch or why it’s hard to
build systems out of existing parts. In: Proceedings of the International conference
on Software engineering. (1995) 179–185

4. Sullivan, K.J., Knight, J.C.: Experience assessing an architectural approach to
large-scale systematic reuse. In: Proceedings of the international conference on
Software engineering. (1996) 220–229

5. Batory, D., Johnson, C., MacDonald, B., von Heeder, D.: Achieving extensibility
through product-lines and domain-specific languages: a case study. In: ACM Trans.
Softw. Eng. Methodol. Volume 11. (2002) 191–214

6. Bartholet, R.G., Reynolds, P.F., Brogan, D.C., Carnahan, J.C.: In search of the
philosopher’s stone: Simulation composability versus component-based software
design. In: Proceedings of the Fall Simulation Interoperability Workshop. (2004)

7. Carnahan, J.C., Reynolds, P.F., Brogan, D.C.: Visualizing coercible simulations.
In: Proceedings of the Winter Simulation Conference, Institute of Electrical and
Electronics Engineers, Inc. (2004) 411–419

8. Carnahan, J.C., Reynolds, P.F., Brogan, D.C.: Language support for identifying
flexible points in coercible simulations. In: Proceedings of the Fall Simulation
Interoperability Workshop. (2004)

9. Schruben, L.: Simulation modeling with event graphs. In: Commun. ACM. Vol-
ume 26. (1983) 957–963

10. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. 2d
edn. Addison-Wesley (2002)

11. Petty, M.D., Weisel, E.W.: A composability lexicon. In: Proceedings of the Spring
Simulation Interoperabilty Workshop. (2003)

12. Page, E.H., Opper, J.M.: Observations on the complexity of composable simulation.
In: Proceedings of the Winter Simulation Conference. (1999)

13. Petty, M.D., Weisel, E.W., Mielke, R.R.: Computational complexity of selecting
components for composition. In: Proceedings of the Fall Simulation Interoperability
Workshop. (2003)

14. Fox, M.R., Brogan, D.C., Reynolds, Jr., P.F.: Approximating component selection.
In: Proceedings of the Winter Simulation Conference. (2004)

15. Page, E.H., Briggs, R., Tufarolo, J.A.: Toward a family of maturity models for
the simulation interconnection problem. In: Proceedings of the Spring Simulation
Interoperability Workshop. (2004)

16. Petty, M.D., Weisel, E.W.: A formal basis for a theory of semantic composability.
In: Proceedings of the Spring Simulation Interoperability Workshop. (2003)

17. Weisel, E.W., Petty, M.D., Mielke, R.R.: Validity of models and classes of models
in semantic composability. In: Proceedings of the Fall Simulation Interoperability
Workshop. (2003)

18. Kohonen, T.: Self-Organizing Maps. Springer (1997)


	Introduction
	Building Transformable Simulations
	Capturing Designer Insight
	Temporal/Event Manipulation

	Composability
	Software Composition
	Simulation Composition
	Breaking the Composability Paradigm

	Automatic Behavior Modeling
	Conclusion
	References



