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Abstract. This review will introduce areas of evolutionary research that
require substantial computing resources using the examples of phyloge-
netic reconstruction and homology searching. We will discuss the com-
monly used analytical approaches and computational tools. We will dis-
cuss two computing environments employed by academic evolutionary
researchers. We present a simple empirical demonstration of scalable
cluster computing using the Apple Xserve solution for phylogenetic re-
construction and homology searching. We conclude with comments about
tool development for evolutionary biology and Open Source strategies to
promote scientific inquiry.

1 Introduction

An evolutionary perspective is implicit in bioinformatics approaches involving
nucleotide and protein sequence analysis. For example, Dayhoff’s [1] PAM ma-
trix is based upon the assumption of different rates of amino acid substitution
over evolutionary time. It is used to score sequence alignments and as a criti-
cal component of BLAST [2]. This evolutionary perspective is most developed
in analyses of how families of related protein or nucleic acid sequences have
diverged during evolutionary history.

The evolutionary perspective has played an indispensible role in the analysis
of the human genome [3, 4] and in other genome projects (e.g., wheat, bacteria
and Drosophila). Researchers identify homologs of interesting genes, infer proba-
ble gene functions by identifying conserved functional elements within genes, and
determine the intensity of natural selection on a given genetic element. These
approaches have also been used to explore human evolution by comparing hu-
man genes with their homologs in our relatives sharing recent ancestors (such as
chimp) [5]; to investigate human disease-related genes [6]; and to identify new
human disease-gene candidates through comparisons with model organisms [7].

The computational needs of molecular biologists are increasing more rapidly
than our collective ability to manage, analyze, and interpret data. A number
of current projects manage vocabularies describing genes and functions [8] and
manage data from the numerous genome projects with generic genome database
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construction sets [9]. The flood of freely available data means that current re-
search requires analysis of dozens of genes and thousands of nucleotides. The
added complexity of managing and analyzing this amount of data requires the
skills of a bioinformatics collaborator and significant computing power. There are
several distinct classes of problems that face the bioinformatics researcher. We
present the examples of phylogenetic reconstruction and homology
searching.

Reconstructing Evolutionary History. Phylogenetic reconstructions of the evolu-
tion of genes or species utilizes historical information contained in protein and
nucleotide sequences. Phylogenetic reconstruction has made early and extensive
use of bioinformatics approaches and large data sets.

There are several steps involved with phylogenetic reconstruction. First, we
select an optimality criterion for selecting the proper phylogeny. Second, we
examine likely trees to find those that satisfy the optimality criterion. Heuris-
tic search algorithms are often used since an exhaustive search of all possible
topologies is impossible or problematic. Third, statistical metrics determine the
probability that the tree(s) found are representative of the true evolutionary re-
lationship. See section 2 for commonly used software tools; comparisons of these
tools using different cluster configurations are explored in section 3.1.

Homology Searches. Homologs are genes that share a common evolutionary an-
cestor. All evolutionary analyses are dependent upon the accurate and mean-
ingful assessment of homology [10]. Large-scale genome comparisons rely on ho-
molog predictions extracted from databases such as NCBI’s HomoloGene and
TIGR’s EGO [5]. Predicted homologs in these databases are based on reinforced
reciprocal best match criteria, wherein a gene from each of two organisms is
shown to be the best match for the other in a genome BLAST (Basic Local
Alignment Search Tool)[2].

2 Applications of Bioinformatics Tools for Phylogenetic
Reconstruction

Many methods are currently used to reconstruct and evaluate phylogenetic trees
[1, 11]. The nucleotides (or amino acids) are resampled with replacement to create
a number of new data sets (bootstrap pseudo-replicates). An experiment may use
hundreds to tens of thousands of bootstrap pseudo-replicates. For each bootstrap
replicate, the tree(s) best meeting the optimality criterion are saved. For each
node on the recovered tree using the original data set, the researcher records
the frequency that bootstrap replicates recover the same node. Strong nodes are
those that are supported by many sites in the original data set. Therefore, the
bootstrap approach tests the hypothesis that the data are consistent with the
tree recovered.
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2.1 Optimality Criteria

The level of computational difficulty depends greatly on the type of phylogenetic
analysis chosen and the criteria used to select the best tree.

Maximum Parsimony. Maximum parsimony (MP) approaches are rooted in the
simple philosophical assumption that the best tree is the simplest tree that can
be explained by the data. This approach ignores those nucleotide or amino acid
sites that are uninformative. The researcher examines each possible (or probable)
tree arrangement and calculates a tree length, which is equal to the sum of the
number of changes at each site for that tree. The most parsimonious tree has
the lowest tree length, but, frequently, there is more than one most parsimonious
tree.

Distance Methods. Distance methods are evolutionary models intended to repre-
sent the process of evolution as it occurred on the given sequences. This method
relies on a distance matrix composed of pair-wise distances for every pair of se-
quences in the data set using any of a number of models of nucleotide evolution.
We then infer a tree from the distance matrix. Computationally, this approach
is extremely efficient for most datasets.

Maximum Likelihood. Maximum Likelihood (ML) estimates are computationally
intensive. Likelihood approaches calculate the likelihood that a given model is
fit by a given data set. In the maximum likelihood approach to tree building,
we calculate the likelihood of the data given a specific model and tree. The
ML approach searches all possible tree topologies and finds the tree(s) with the
highest likelihood score, a taxing task even on powerful machines.

Bayesian Analysis. A Bayesian analysis calculates the probability of the model
and tree given the sequence data. We calculate this using Bayes’ theorem, but
the implementation is computationally intense. The Metropolis-Hastings algo-
rithm [12, 13] can surmount this problem by using a Markov chain Monte Carlo
(MCMC) search through tree space. This variation of their famous algorithm pre-
vents the search from becoming trapped at local optima. Fortunately, this par-
ticular approach lends itself very well to parallel computing. This strategy is en-
coded in the MrBayes package (available from http://morphbank.ebc.uu.se/
mrbayes).

2.2 Bioinformatics Tools for Phylogenetic Reconstruction

PAUP*: Phylogenetic Analysis Using Parsimony (* and other methods). PAUP
is available from Sinauer (http://paup.csit.fsu.edu/). As the title implies,
PAUP* was originally designed to implement parsimony-based approaches but
has since evolved into a more comprehensive package. It is arguably the most-
used and most-published bioinformatics tool for phylogenetics reconstruction.
The Unix-based (command-line) portable version that can run on any Unix sys-
tem, including MaxOS X. The PAUP* authors are preparing a Message Parsing
Interface (MPI) designed specifically for clusters (Swofford, pers. comm.).
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Phylip: Phylogeny Inference Package. Phylip is available free from
(http://evolution.genetics.washington.edu/phylip). Phylip is a collection
of dozens of open source bioinformatics applications with a unified structure and
common file formats. Many developers use this open standard for structure and
file formats for their own programs, building a community of users and increas-
ing the utility of the package as a whole. Phylip has been ported to a number of
platforms, but is most at home as a command-line package on a Unix machine
or cluster. This characteristic makes Phylip very amenable to implementations
on bioinformatics computer clusters, adding power and convenience to analy-
ses. Phylip applications have also been integrated into BioPerl modules allowing
developers to combine and extend existing tools for novel applications.

One useful tool in the Phylip package is MPI-FastDNAml, an implementation
of the maximum likelihood for phylogenetic reconstruction. This program allows
the user to specify a model of nucleotide evolution and searches for a phyloge-
netic tree that maximizes likelihood under that model. The MPI version of this
program takes advantage of multiple processors to search different segments of
tree space. See section 3.1 for simulation studies using this package.

Searching for Homologs. The Basic Local Alignment Search Tool (BLAST), orig-
inally created by the National Center for Biotechnology Information (NCBI),
quickly approximates alignments that optimize a measure of local similarity, al-
lowing the user to use a nucleotide or amino acid sequence to rapidly search for
similar sequences in very large databases [2]. BLAST calculates scores of the
statistical significance of alignments, providing the user a mechanism to find ho-
mologous sequences or regions. BLAST can be implemented for straightforward
DNA and protein sequence database searches, motif searches, gene identifica-
tion searches, and in the analysis of multiple regions of similarity in long DNA
sequences. BLAST has also been extended for specialized applications.

We compare the performance of standard BLAST this program compared to
three extensions and modifications (see section 3.1 for results).

3 Using Clusters for Bioinformatics

Bioinformatic problems usually have a high algorithmic complexity. ClustalW,
the most commonly used multiple sequence alignment algorithm has a complex-
ity of (n2) where n is the number of sequences in the alignment. Consider also
the number of times a project needs to be run before all the kinks and bugs are
worked out. These factors combine to make the use of parallel processing power
a necessity in bioinformatics research.

Beowulf for Large or Specialized Projects. A common high-performance comput-
ing solution for academic settings is a cluster of commodity-off-the-shelf (COTS)
PC’s yoked together in various configurations. The Beowulf approach is most
commonly in academic or governmental research labs settings, but is not always
ideal or cost-effective. The Beowulf approach has a low initial cost for hardware
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and software, but may require a large amount of technician time for mainte-
nance and expansion. If the effort of maintaining a Beowulf cluster itself serves
an educational or research goal this effort is justifiable. However, if the primary
desired product is output from high-demand computing problems the equation
changes. Effort spent on care and feeding of a COTS cluster is time spent away
from biological research.

Apple Xserve Clusters with iNquiry. Apple Computer sells an Apple Workgroup
Cluster for Bioinformatics composed of rack-mounted Xserve G5 units with a
standard, extendible platform for bioinformatics applications (iNquiry, by The
Bioteam: (http://bioteam.net)). This system costs about $40k (education
pricing) for 6 nodes including all software and hardware, rack, admin tools,
etc, and requiring much less system administration experience than comparable
Linux solutions. The initial hardware cost is higher, but long term costs for main-
tenance are lower. At our institution, this solution has proven to have the best
combination of flexibility, an open, extensible platform and lower maintenance
costs for our program.

3.1 Simulation Studies

The data set for these simulation studies contains 56 bacterial taxa each with
820 nucleotides from a protein-coding gene (available on request). The first study
compares the performance of two programs conducting a search for the Maxi-
mum Likelihood (ML) tree, PAUP and MPI-FastDNAml. The second simulation
compares four homology search programs based on the BLAST algorithm [2],
NCBI-BLAST, A/G-BLAST, BT-BLAST, and MPI-BLAST. Both demonstra-
tions were performed on a nine-node Apple Xserve computer cluster with nine
nodes running the Mac OS X server platform. Five Xserve nodes were G4-based
(dual 1.33Ghz with 2Gb RAM) and four were G5-based (dual 2Ghz with 4Gb
RAM).

Maximum Likelihood Tree Search. MPI-fastDNAml and PAUP* searched for
the Maximum Likelihood (ML) tree for our data set. Recall, the ML tree is
that topology and set of branch lengths that maximizes the likelihood given
the dataset and a specific model of evolution. Both programs used the simplest
nucleotide substitution model that corrects for multiple substitutions (Jukes-
Cantor [14]) and an heuristic search to find the ML tree.

It took PAUP* just under 40 minutes to find the tree while it took MPI-
FastDNAml about 7 minutes to find the tree with 1 processor and about 3
minutes with 6 processors. FastDNAml employs an optimized heuristic search
and likelihood calculation, but is less flexible in using specific models of evolution
and can not take advantage of other PAUP features, such as integrating other
phylogentic methods. An anticipated new version of PAUP will include refined
search and likelihood algorithms and will take advantage of an MPI environment.

A/G-BLAST vs. NCBI-BLAST. We used A/G-BLAST and NCBI-BLAST to
query the data set against two different large databases, NT & EST. The NT
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Fig. 1. MPI-BLAST vs. BT-BLAST

database includes all entries from NCBI’s GenBank nucleotide database (to-
taling 10Gb & 2,718,617 sequences) that is nominally (but not completely)
non-redundant. NCBI’s EST database (8Gb & 12,582,220 sequences) includes
expressed sequence tags from all species except for human and mouse, and is
populated with sequences of much shorter length than the NT database. The
result shows that A/G-BLAST improves the speed over NCBI-BLAST, with a
much greater improvement for searches involving the small word (search target)
sizes of the EST database.

Database AG-BLAST NCBI-BLAST

NT 26m18s 27m30s

EST 26m40s 33m37s

MPI-BLAST vs. BT-BLAST. We used our bacterial dataset to search against
the NCBI NT database with different number of processors in the cluster. Both
BLAST versions work in a similar fashion: the database is segmented and each
processor searches one (or more) of the segments.

For MPI-BLAST, the database was divided into 14 segments. We may use
any number of processors, but we limited this number to 14, equal to the num-
ber of segments in our database. MPI-BLAST does not require this limitation;
we enforced this setup for comparison purposes. The number of segments and
processors can be specified at run-time. Each processor will search a different
segment, but some may search more segments than other processors, depending
on run conditions and processors speeds. Segments are located locally - on the
hard drive of the machine conducting the search of that specific segment.

For BT-BLAST, the database segmentation is more complicated (limited by
size) and the number of processors used in the search must equal the number of
segments. We divided the database into 8, 10, 12, and 14 segments. All segments
are located in a single hard drive on the head node. Processors access these data
via gigabit Ethernet, conduct the search, and send results to the head node.
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MPI-BLAST scales very well with the number of nodes in the cluster, but
BT-BLAST perforomace degrades when the nodes number increases beyond 8.
There are two reasons for this. First, the first 8 processors in our cluster are
G5 processors and the remainder are G4. Mixing G4 processors with G5 pro-
cessors may degrade the overall performance of the cluster although this was
not observed with the MPI-BLAST search. Second, BT-BLAST uses a shared
directory to store database segments of. BLAST search is I/O extensive so the
shared directory creates a bottleneck. This problem is specifically avoided by
MPI-BLAST’s distribution of the database.

4 Developing Bioinformatics Tools for Evolutionary
Biology

For researchers needing to develop custom programsscripts, new software tools or
even full applications, the general hardware requirements for a large cluster are
essentially the same as for application-based analyses. Our language of choice
for scripting and developing full-fledged bioinformatics tools is Perl. The perl
interpreter will function on nearly every modern platform and properly writ-
ten Perl code will run equally well on all of them. This choice is based upon the
widespread use of Perl in bioinformatics research circles and specialized and gen-
eral modules available through the Comprehensive Perl Archive Network (CPAN
at http://www.cpan.org). The BioPerl modules (http://www.bioperl.org)
available on CPAN are especially useful.

Some bioinformatics problems scale up well for parallel processing on a clus-
ter, indeed some problems demand it. A current research effort at ISU un-
derscores this point. We are exploring methods derived from Sequencing-by-
Hybridization for their applicability to metagenomic (total environmental nucleic
acids) analysis [15, 16]. This effort requires concurrent pair-wise comparisons of
dozens of whole microbial genomes and oligonucleotide probe sets. The full-scale
application of this method will absolutely demand the power of a cluster.

None of these advances in computing power and software development
tools would be possible without the worldwide community of enthusiastic and
generous contributors. Often described as the Open Source community,
(http://www.opensource.org it represents a useful combination of generos-
ity, pragmatism and vision that allows researchers to benefit from the collective
efforts of people they may never meet. The Open Source model of software
development and licensing works especially well for scientific computing in an
academic research setting. The Open Source model is simply an expression of
the basic ideals and values of scientific inquiry: transparency, openness and the
promotion of ideas based on merit alone.

Evolutionarybiology research has reached a point were access to high-powered,
high-availability computing is an indispensable requirement for research. We
drown in data and thirst for algorithms, tools and applications to make sense
of it all. For biologists who analyze these limitless data sets, the challenge is to
remain focused on the essential research tasks at hand and not be distracted
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or bankrupted by the powerful computing tools at our disposal. Researchers in
smaller research institutions can have access to world-class computing resources.
Careful attention to the total equation of ownership and maintenance costs plus
an understanding of the resources provided by the bioinformatics community
and the larger world of scientific computing make it possible.
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