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Abstract. We continue the investigation into the dynamics and evolu-
tion of fuzzy rules, obtained by the fuzzification of the disjunctive normal
form, and initiated for rule 90 in [2], for rule 110 in [10] and for rule 30
in [3]. We present general methods for detecting the evolution and dy-
namics of any one of the 255 fuzzy rules and apply this theory to fuzzy
rules 30, 110, 18, 45, and 184, each of which has a Boolean counterpart
with interesting features. Finally, it is deduced that (except for at most
nine cases) no fuzzy cellular automaton admits chaotic behavior in the
sense that no sensitive dependence on the initial string can occur.

1 Introduction

This work is motivated by a question originally posed by Andy Wuensche [1] re-
garding the convergence of fuzzy rules induced by fuzzy cellular automata (CA).
He asked whether the results in [2] for fuzzy rule 90 presented in the conference
cited in [1] could be extended to fuzzy rule 30 in the generality obtained in [2].
Although this was answered in [3] we choose to go beyond this and provide a
framework for discovering the global evolution of an arbitrary fuzzy CA, cf., [4].
We develop some methods for obtaining limiting information about any one of
the 255 fuzzy rules. Recent work in this new area includes some variations on
the game of Life in [5] and applications to pattern recognition [6]. In addition,
such CA have been used to investigate the result of perturbations, for example,
noisy sources, computation errors, mutations, etc. on the evolution of boolean
CA (cf., [7], [4], [2], etc.).

Recall some basic terminology from [2]. A CA is a collection of cells arranged
on a graph; all cells share the same local space, the same neighborhood structure
and the same local function (i.e., the function defining the effect of neighbors
on each cell). Given a linear bi-infinite lattice of cells, the local Boolean space
{0, 1}, the neighborhood structure (left neighbor, itself, right neighbor), and a

1 This research is partially supported by an NSERC Canada Discovery Grant and by
a grant from the Office of the Vice-President Research and International, Carleton
University.

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3515, pp. 351–359, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



352 A.B. Mingarelli

local rule g :{0, 1}3 → {0, 1}, the global dynamics of an elementary CA are
defined by (cf., [8]) f : {0, 1}Z → {0, 1}Z and f(x)i = g(xi−1, xi, xi+1), for all i.
The local rule is defined by the 8 possible local configurations that a cell detects
in its neighborhood: (000, 001, 010, 011, 100, 101, 110, 111) → (r0, · · · , r7), where
each triplet represents a local configuration of the left neighbor, the cell itself,
and the right neighbor. In general, the value

∑7
i=0 2iri is used as the name of

the rule. As usual, the local rule of any Boolean CA is expressed as a disjunctive
normal form: g(x1, x2, x3) = ∨i|ri=1∧3

j=1x
dij

j where dij is the j-th digit, from left
to right, of the binary expression of i, and x0 (resp. x1) stands for ¬x (resp. x).
A Fuzzy CA is obtained by fuzzification of the local function of a Boolean CA:
in the disjunctive normal form by redefining (a∨b) as (a+b), (a∧b) as (ab), and
(¬a) as (1 − a). The usual fuzzification of the expression a ∨ b is max{1, a + b}
so as to ensure that the result is not larger than 1. Note, however, that taking
(a + b) for the CA fuzzification does not lead to values greater than 1 since the
sum of all the expressions for rule 255 is 1 (i.e., g255(x, y, z) = 1), and so every
(necessarily non-negative) partial sum must be bounded by 1. Since every fuzzy
rule is obtained by adding one or more of these partial sums it follows that every
fuzzy rule is bounded below by 0 and above by 1. We will be analyzing the
behavior of an odd fuzzy rule, rule 45, towards the end of this paper.

As an example, we note that rule 45 = 20 + 22 + 23 + 25 has the local rule
(000, 001, 010, 011, 100, 101, 110, 111) → (1, 0, 1, 1, 0, 1, 0, 0). Its canonical expres-
sion is g45(x1, x2, x3) = (¬x1 ∧ ¬x2 ∧ ¬x3) ∨ (¬x1 ∧ x2 ∧ x3) ∨ (x1 ∧ ¬x2 ∧ x3) ∨
(¬x1 ∧x2 ∧¬x3) and its fuzzification gives g45(x1, x2, x3) = 1−x1 −x3 +x2x3 +
2x1x3 − 2x1x2x3. In the same way we derive the local rules for rules 45 and 184.
One of the exceptional rules (one of nine that defies assumption (I), stated in
the next section), is rule 184 (see [4]) which we will analyze at the very end. The
dynamics of these nine rules are interesting in that the methods presented herein
require some modification, yet even so, it cannot be asserted at this time that
we can determine their dynamics in general. See the last subsection for details.

Let gn(x1, x2, x3), 1 ≤ n ≤ 255, denote the canonical expression of fuzzy
rule n. We know that the disjunctive normal form for a fuzzy rule is given
by gn(x1, x2, x3) = ∨i|ri=1 ∧3

j=1 x
dij

j where 0 ≤ dij ≤ 1 is the integer defined
above. Since x0

j = 1 − xj , x1
j = xj , and the disjunction is an additive operation

it follows that gn is a linear map in each variable separately and so satisfies
Laplace’s equation (see [9]). Thus, maximum principles (see [9], Chapter 4) can
be used to derive properties of such rules under iterations.

2 The Long Term Dynamics of General Rules

We fix the notation and recall definitions from [2]. The light cone from a cell
xt

i is the set of {xt+p
j | p ≥ 0 and j ∈ {i − p, · · · , i + p}}. In this case, the light

cone is the boundary of an infinite triangle whose vertex is at the singleton a
and whose boundary consists of all the other a’s. Thus, xm

±n will denote the cell
at ±n steps to the right/left of the zero state at time m. The single cell x0

0 will
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be denoted by a and generally we will take it that 0 < a ≤ 1, since a = 0 is
clear. The method we present will allow us to determine the long term dynamics
of any fuzzy rule gn(x, y, z) where 1 ≤ n ≤ 255 where the various asymptotic
estimates are found via successive iterations. In a nutshell, the basic idea here is
to distinguish a single diagonal for a starting point, use the rule to derive basic
theoretical estimates, use continuity to prove the existence of the various limits,
when applicable, and finally use an iterative scheme to compute all subsequent
limits.

We will always assume that g : [0, 1]3 → [0, 1] is continuous on the unit cube U
and not necessarily the canonical expression of a fuzzy rule. This is for simplicity
only since, in reality, any compact set may be used in lieu of [0, 1]. The symbol
Gm(a) denotes the usual mth iterate of G at a, where G(a) ≡ g(0, 0, a) and
a ∈ (0, 1) is a given fixed number, sometimes called a seed. Similarly, we define
H(a) ≡ g(a, 0, 0). The value of “a” here measures in some sense the degree
of fuzziness in that a = 0 gives trivial evolutions while a = 1 gives Boolean
evolution. We assume, as a further restriction on g, that

(I) The equations x− g(x, y, z) = 0, y − g(x, y, z) = 0, and z − g(x, y, z) = 0
may each be solved uniquely for x, y, z respectively, for given values of
(y, z), (x, z), (x, y) respectively in [0, 1]2, and that the resulting functions
of (y, z), (x, z), (x, y) are continuous on [0, 1]2.

(II) The limits Gm(a) → L−
0 (a) and Hm(a) → L+

0 (a) each exist and are finite
as m → ∞.

Remark. Condition (I) is generally satisfied for fuzzy rules as considered here.
The only exceptions that require modifications to the technique presented here
are the nine fuzzy rules 170, 172, 184, 202, 204, 216, 226, 22 , and 240. They
are to be distinguished because they violate (I). In general, the implicit function
theorem may be used here to guarantee conditions under which (I) holds, for
arbitrary local rules. Secondly, we note that the full force of hypothesis (I) is
not necessary for many of the fuzzy rules and that weaker assumptions can be
made by restricting the class of rules. Nevertheless, we will assume it throughout
for expository reasons and introduce modifications as the need arises. For most
fuzzy rules (II) clearly holds because of our basic assumptions. For odd rules
this assumption (II) may fail, but the techniques herein can then be applied to
subsequences (see fuzzy rule 45 below).

2.1 Evolution and Dynamics for a Single Seed in a Zero
Background

We assume that all cells but one (denoted by a) are initially set at zero. Writ-
ing g(0, 0, a) ≡ G(a), we see that the main left-diagonal xm

−m = Gm(a) for
each m ≥ 1, where the symbol Gm(a) denotes the usual mth iterate of G at
a. The cells of the first left-diagonal (given by xm+1

−m , m ≥ 0) then satisfy

xm+1
m = g

(
0, Gm(a), xm

−(m−1)

)
. Passing to the limit as m → ∞ in the pre-

vious display and using (II), we see that L−
1 (a) = g

(
0, L−

0 (a), L−
1 (a)

)
, by (I),

8
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and so this relation defines this limit L−
1 (a) uniquely. Now that we know both

L−
0 (a) and L−

1 (a) we can find L−
2 (a) since xn+2

−n = g
(
xn+1
−(n+1), x

n
−n, xn+1

−(n−1)

)
,

for each n ≥ 1. Passing to the limit as n → ∞ we find the special relation
L−

2 (a) = g
(
L−

0 (a), L−
1 (a), L−

2 (a)
)
. By (I) this equation can be solved uniquely

for L−
2 (a), since the other two quantities are known. Proceeding inductively we

observe that

L−
k+1(a) = g

(
L−

k−1(a), L−
k (a), L−

k+1(a)
)

(1)

holds for each k ≥ 1 and this defines the limit L−
k+1(a) uniquely, by (I), in terms of

the preceding limits. If we set g(a, 0, 0) ≡ H(a), then xm
m = Hm(a) for each m ≥

1. Arguing as in the left-diagonal case and using (II) we get that the existence of
limm→∞ Hm(a) = L+

0 (a) implies the existence of L+
1 (a). The limit L+

2 (a) is now
found recursively as the unique solution of L+

2 (a) = g
(
L+

2 (a), L+
1 (a), L+

0 (a)
)

whose existence is guaranteed by (I). Finally, an inductive argument gives us
that subsequent limits, like L+

k+1(a), are given recursively by solving

L+
k+1(a) = g

(
L+

k+1(a), L+
k (a), L+

k−1(a)
)

(2)

uniquely, using (I), for each k ≥ 1.
As for the limits of the right-vertical sequences of the form {xm+p

m }∞p=0,
m = 1, 2, 3, . . ., we use the fact that the union of two sets of points each
of which has exactly one (possibly the same) point of accumulation (or limit
point) also has exactly two (maybe the same) points of accumulation. This re-
sult is easily derived using topology and, in fact, it also holds for any count-
able family of sets each of which has exactly one point of accumulation (by
the Axiom of Choice). In the case under discussion we note that the right-
half of the infinite cone, C+, whose vertex is at x1

0 (the set that excludes the
zero background and the zeroth left- and right-diagonals) can be written as
C+ =

⋃∞
i=1 S+

m =
⋃∞

i=1{{xp
j}∞j=0| p ≥ m}, and is therefore the countable union

of sets of (right-diagonal) sequences each of which converges to some L+
k (a) and

so the only points of accumulation of C+ must lie in the union of the set consist-
ing of all the limits L+

k (a), for k ≥ 1. Since right-vertical sequences are infinite
subsequences of C+, we get that all such sequences may or may not have a limit
but if they do, it must be one of the L+

k (a)’s where the k generally depends on
the choice of the column. A similar discussion applies to left-vertical sequences.

Remark. If the limits L±
k themselves converge as k → ∞ to L±, say, then L±

must be a fixed point of the rule, that is L± = g (L±, L±, L±). This is clear by
(1), (2) and the continuity of g. The same observation applies to limits of vertical
sequences. In the case of fuzzy rule 30 all columns (left or right) converge to one
and the same value, namely, 1/2 (see [3]). On the other hand, fuzzy rule 18 (see
below) has the property that, generally speaking, none of its vertical columns
converges at all (since each column has exactly two limit points).
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2.2 A General Theory in the Finite Support Case

This case is very similar to the single support case and so need only be sketched.
We now assume that all cells but a finite number are initially set at zero. We take
it that the initial string of cells is given by x0

−k, . . . , x0
0, . . . , x

0
q, where x0

±i ∈ (0, 1).
Without loss of generality we will assume that k ≥ 1 and q ≥ 0 so that our initial
string contains at least two elements.

We now distinguish two vertical columns, that is, V−k and Vq, that is those
two infinite columns whose top cell is x0

−k, x0
q, respectively. We need to describe

the evolution of the half-light cones emanating to the left and down from x0
−k

(and to the right and down from x0
q). Suppressing the variables in the expression

of a limit for the purpose of clarity we will write L−
−k(x0

−k, . . . , x0
0, . . . , x

0
q) as L−

−k.
As before the zeroth left-diagonal, consisting of the value x0

−k only, necessarily
converges to the same value. Hence, L−

0 = x0
−k. It is helpful to think of the cell

value x0
−k as playing a role analogous to a in the single support case.

Consider now the first left-diagonal S−
1 , originating at the cell x0

−(k−1) of the
initial string. By definition every term of S−

1 on or to the left of V−k is of the
form xm+1

−(k+m) = g
(
0, x0

−k, xm
−(k+m−1)

)
, where m ≥ 0. Passing to the limit as

m → ∞, using the continuity assumptions of g at the outset, and hypotheses (I)
and (II) we see that L−

1 = g(0, L−
0 , L−

1 ), from which we get the existence and
uniqueness of L−

1 . The remaining limits, L−
2 , L−

3 , . . . are found recursively as in
the single support case. Thus, L−

2 = g(L−
0 , L−

1 , L−
2 ), and so this limit exists and

is unique, etc. The verification of a recursion similar to (1) is straightforward in
this case.

The finite support right-diagonal case is handled precisely as the right-diagonal
case of the single support configuration except that we distinguish the column Vq

and, without loss of generality, consider all right-diagonal sequences as originat-
ing on Vq. This only leaves out a finite number of terms and so the asymptotic
dynamics are not affected. In this case one can show that L+

0 = x0
q, L+

1 exists and
is unique, and as before there holds a relation similar to (2) for all subsequent
limits each one of which can be calculated explicitly on account of (I). Vertical
sequences are handled as before so that, generally, one can only guarantee the
existence of various limit points, even for sequences in the “dark area”, that is
that area enclosed by those columns between V−k and Vq.

Remark. All but nine fuzzy rules (mentioned above) satisfy the conditions of
continuity and (I), (II) above, so the analysis captures much of the dynamics
of essentially every single rule. The exceptions thus noted are distinguished by
the fact that their diagonal function has every point in [0, 1] as a fixed point!
More refined estimates as to the rate of convergence of a diagonal, questions of
convergence in the dark area, etc. may be obtained on a case-by-case basis. It
follows that there are no random or chaotic fuzzy rules in this context (except
for the 9 undetermined ones) since all existing limits are continuous functions
of the initial data. Chaos can occur when the iterates Gm(a) fail to converge
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thus violating (II) or, if they do converge, they admit sensitive dependence upon
a because the original nonlinear rule (not necessarily related to a fuzzy CA)
admits chaotic sequences under iterations. For example, the “rule” defined by
g(x, y, z) = 4x(1−x2) produces a chaotic sequence in the case of a single support
initial configuration with fixed cell value a ∈ (0, 1). The spatio-temporal evolu-
tion of fuzzy rule 30 can be found in [3] and these results follow immediately
from our methods. We note that the long term dynamics of fuzzy rule 110 were
obtained in [10] using special arguments pertaining to the form of the rule itself
along with its representation as a Taylor polynomial. This also follows from our
methods.

2.3 The Dynamics of Fuzzy Rule 18

As for new phenomena we exhibit, for example, the long term dynamics of fuzzy
rules 18, 45 and 184 (a typical representative of the exceptional list of fuzzy rules
that defy (I)) below, in this and the next subsections. The canonical expression
for fuzzy rule 18 is given by g18(x, y, z) = (1 − y)(x + z − 2xz). The methods
presented above can be applied easily here so the following result is presented
without proof.

Theorem 1 Let a ∈ (0, 1) be a single seed in a zero background. Then the long
term dynamics of fuzzy rule 18 are given as follows:

• L−
0 (a) = a, L−

1 (a) = 0, and L−
2n(a) = 1/2, for each n ≥ 1, while

L−
2n+1(a) = 0, for each n ≥ 0.

• L+
0 (a) = a, L+

1 (a) = 0, and L+
2n(a) = 1/2, for each n ≥ 1, while

L+
2n+1(a) = 0, for each n ≥ 0.

• Vertical columns fail to converge as they always have two limit points, either
0 or 1/2.

Some may argue that the vertical columns actually represent asymptotically
periodic sequences. Either way, there is no definite convergence. The symme-
try about the central column in the evolution of rule 18 is due to the relation
g(x, y, z) = g(z, y, x) satisfied by this rule for every x, y, z ∈ U . The asymptotics
of the finite support case are governed by the first and last cells of the initial
configuration and rule 18’s dynamics are identical, by the theory above, to those
of the single cell case.

2.4 The Dynamics of Fuzzy Rule 45

In order not to focus our examples on even rules we present an example of
the application of our techniques to the evolution of fuzzy rule 45, an odd rule.
The canonical form of this rule is given by the expression g45(x, y, z) = 1 −
x − z + yz + 2xz − 2xyz. Its diagonal function d(x) ≡ g45(x, x, x) is given by
d(x) = −2x3 + 3x2 − 2x + 1. It has only one real fixed point, x = 1/2, which is
attracting. For a single seed, a, in a zero background observe that, by induction,
x2n
−2n = 0 = . . . = x2n

n+1 for each n ≥ 1. In addition, x2n+1
−(2n+1) = 1 = . . . =



The Dynamics of General Fuzzy Cellular Automata 357

x2n+1
−(n+2) for n ≥ 1. Thus, no left-diagonal sequence converges in the strict sense

although it is a simple matter to see that we have eventually periodic behavior (or
an eventual 2-cycle) for the left diagonals. The right-diagonals lead to interesting
phenomena. Note that condition (I) is untenable for this rule, that is, the limit
L+

0 does not exist (since the zeroth right-diagonal sequence alternates between
0 and 1, or represents a 2-cycle), and the same can be said of L+

1 (since the
first right-diagonal sequence alternates between a and 1 − a, another 2-cycle).
However, the limit L+

2 does exist and, in fact, L+
2 = 1/2. The following proof of

the preceding result is typical for odd rules. Let n be an even integer. Then

xn
n−2 = g45(xn−1

n−3, x
n−1
n−2, x

n−1
n−1). (3)

However, for even n, xn−1
n−1 → 1 while xn−1

n−2 → 1−a. Taking the limit in (3) we get
that Leven

2 = g45(Leven
2 , 1 − a, 1). Solving for Leven

2 we get that Leven
2 = 1/2, as

stated. If n is an odd integer, then (3) is still in force, but xn−1
n−2 → a while xn−1

n−1 →
0 as n → ∞ through odd numbers. It follows that Lodd

2 = g45(Lodd
2 , a, 0). Solving

for Lodd
2 we find that Lodd

2 = 1/2 as well. From this we see that the common limit
Leven

2 = Lodd
2 is, in fact the limit, L+

2 = 1/2. To find L+
3 we proceed as usual,

noting that the non-existence of L+
1 is unimportant. For example, if a < 1,

passing to the limit inferior in (3) we deduce that L+
3,inf = g45(L+

3,inf , L+
2 , a)

where L+
3,inf is the limit inferior of the sequence xn

n−2. Observe that one can
solve for L+

3,inf uniquely in the preceding display provided a 	= 2, which is
necessarily the case (since the range of g45 is contained in [0, 1]). The unique
value thus obtained is L+

3,inf = 1/2. A similar argument using the limit superior
gives us that L+

3,sup = 1/2. Since these two limits agree, the sequence itself has
a limit and this limit must be L+

3 = 1/2. We see that L+
k = 1/2, for each k ≥ 3,

by induction.

2.5 The Dynamics of Fuzzy Rule 184

We consider the dynamics of a rule that fails to satisfy (I). As we pointed
out earlier there are exactly nine such (so-called exceptional) rules, including
the present one. The canonical form of rule 184 is given by the expression
g184(x, y, z) = x − xy + yz. Its diagonal function d(x) ≡ g45(x, x, x) is given
by d(x) = x. Thus, every real number in [0, 1] is a fixed point (it is this fact
that characterizes the other exceptional rules). Next, for a single seed a in a zero
background observe that, by induction, xn

n = a for each n ≥ 1, so that this rule
is a right-shift. Clearly, for a single seed its dynamics are trivial. The difficulty
occurs when we pass to the case of finite support/random initial data.

Consider the case of two seeds, a, b ∈ (0, 1) in a zero background. We take
it that x0

0 = a, x0
1 = b. Of special interest in this case is the convergence of the

right-diagonals and the dynamics of the rule along them. Note that xn−1
n = b for

all n ≥ 1, so that the limit of this sequence (or zeroth diagonal, V0), is L+
0 = b.

Next, the terms of the first right-diagonal, V1, are given by xn
n = a(1 − b)n−1,

a result that is easily verified by induction. It follows that its limit, L+
1 = 0,

except in the special case where b = 0, in which case this reduces to the single
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seed scenario already discussed above. Difficulties arise in the discussion bearing
on the next diagonal, V2. Applying our technique to this situation we find L+

2 =
g184(L+

2 , L+
1 , L+

0 ) = g184(L+
2 , 0, b) = L+

2 . Thus, no a priori information regarding
L+

2 is obtainable using our methods, as they stand.
In order to circumvent this difficulty we suggest the following approach. We

suspect that L+
2 may be obtained by passage to the limit of a small parameter

ε > 0 using the claim that L+
2 = g184(L+

2 , ε, b), holds for every ε > 0. This then
results in the equality L+

2 ε = bε, from which we conclude that L+
2 = b. This argu-

ment is supported by numerical calculations of this specific limit. Since L+
2 = b

we get L+
3 = g184(L+

3 , L+
2 , L+

1 ) = g184(L+
3 , b, 0) = L+

3 − bL+
3 and so L+

3 = 0.
Continuing in this way we find the sequence of limits, L+

k = b if k is even, and
L+

k = 0 if k is odd. Once again these limiting values are supported by calcula-
tions in this two-seed case.

Remark. We note that rigorous justification for our technique of passage to the
limit of a small parameter is lacking, except for the fact that it yields the correct
dynamics for this rule. We suspect that this yields correct limiting behavior for
finite random initial data in rule 184. However, it is an open question whether
this technique will produce the correct limiting behavior for the other eight
remaining exceptional fuzzy rules.
Concluding Remarks. An iterative method for finding the dynamics of all fuzzy
CA as defined in [4] is produced. This gives a road-map for determining the
global evolution of a general fuzzy rule. It is likely that all fuzzy CA lead to de-
terministic behavior and there are no chaotic or random rules (except possibly
for rules 170, 172, 184, 202, 204, 216, 226, 22 , and 240; see [7]). The dynamics
of these nine rules remain undetermined at this time even though the methods
used in rule 184 above may be used, it is not clear that this will work in all cases.
Minor modifications show that the techniques presented here apply to neighbor-
hood structures with an arbitrary fixed number of cells (e.g., 5 or 7) and finite
support (or random) initial configurations.

Acknowledgments. I am grateful to Richard Phillips [11] of Wolfram Corp. for
producing very useful output for random initial strings of all fuzzy rules.
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