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Abstract. Many applications benefit from surface parameterization, including 
texture mapping, morphing, remeshing, compression, object recognition, and 
detail transfer, because processing is easier on the domain than on the original 
irregular mesh. We present a method for simultaneously parameterizing several 
genus-0 meshes possibly with boundaries onto a common spherical domain, 
while ensuring that corresponding user-highlighted features on each of the 
meshes map to the same domain locations. We obtain visually smooth parame-
terizations without any cuts, and the constraints enable us to directly associate 
semantically important features such as animal limbs or facial detail. Our 
method is robust and works well with either sparse or dense sets of constraints. 

1   Introduction 

Several applications in computer graphics, such as texture mapping, compression, sur-
face processing, detail synthesis, and object recognition rely on mesh parameteriza-
tion.  Parameterization refers to computing mappings between surfaces in 3D and 
simpler domains such as planar regions, simplicial domains, or spheres.  To be useful 
for these varied applications, the mappings must satisfy several properties, such as 
continuity, bijectivity, smoothness, constraint satisfaction, and acceptable distribution 
of domain area over the surface. 

Many parametrization techniques involve partitioning the surface into simpler 
pieces using cuts.  Such cuts are problematic for applications involving a large num-
ber of models, since they can lead to fragmentation of the map (i.e. smaller and 
smaller pieces across which there is a continuous map between all models).    More-
over, the resulting map generally lacks smoothness along cuts and at their junctions. 

Continuous parameterizations are only possible between topologically equivalent 
models. For the genus-zero models that we consider, the unit sphere is a natural 
parameterization domain since it is inherently smooth. Allowing the user to specify 
constraints is another important requirement in many applications, since it provides a 
way to incorporate higher-level semantic knowledge about the objects.   

We extend the work of Praun and Hoppe [14] on spherical parameterization to al-
low simultaneous parameterization of multiple objects with point feature constraints 
while guaranteeing continuity, bijectivity, visual smoothness, and minimizing overall 
distortion. Using these consistent spherical parameterizations, one can create consistent 
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Fig. 1. Consistent Spherical Parameterization of a collection of heads 

geometry images [6; 14] representing several objects in a database, opening the door 
to a large array of applications including compression, conversion to hardware-
supported subdivision surfaces with displacement maps, natural LODs, etc. 

We present the following contributions: 

• Robust construction of consistent spherical parameterizations for several surfaces. 
• Constrained spherical parameterization where specified points on a mesh map to 

given points on the sphere. 
• Methods to avoid swirls, and to correct them when they arise. 

2   Previous Work 

Planar Parameterization: The earliest parameterization methods established map-
pings to planar domains.  There have been many methods developed to date; for a 
survey we refer the reader to Floater and Hormann [3].  Unless applied to topological 
discs, these methods must cut the mesh into one or several pieces, introducing discon-
tinuities in the parameterization. 

Spherical Parameterization: Discontinuities can be avoided altogether by mapping 
models to smooth domains of the same topology, such as the unit sphere for genus-
zero models. Examples of spherical parameterization methods include [18; 1; 9;7; 5; 
14]. We build upon the method of Praun and Hoppe [14]. 

Incorporating hard constraints into a spherical parameterization scheme proves to 
be challenging, because it is difficult to guarantee bijectivity of the result.  We chose 
to build upon the approach of Praun and Hoppe [14] because its hierarchical construc-
tion approach enables a robust solution. 

Parameterization Constraints. Several methods address the problem of parameteri-
zation under constraints. Lévy [13] texture maps meshes under soft constraints by in-
troducing additional terms in the quality metric.  Eckstein et al. [2] propose a method 
for satisfying hard constraints for planar parameterization. 

Kraevoy et al. [11] start with an unconstrained planar parameterization and then 
move the constrained vertices to their required positions by matching a triangulation 
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of these positions to a triangulation of the planar mesh formed by the paths between 
constrained vertices. Finally, they relax this parameterization while keeping the con-
straints.  They demonstrate results involving a fairly large number of features.   

In contrast, our method works well even with few provided feature points. In addi-
tion, we use a multiresolution approach to avoid forming an initial parameterization 
and then optimizing it.  

Consistent Parameterization. Praun et al. [15] consistently parameterize a set of ge-
nus-0 models onto a user-specified simplicial complex.  Unlike their method, we do 
not impose a fixed consistent connectivity of the base domain, but only satisfy the 
given point constraints, thereby providing the map more freedom.   

Two recent works, by Schreiner et al. [17] and Kraevoy and Sheffer [12], improve 
upon the technique of Praun et al. by not requiring the simplicial complex to be speci-
fied a priori.  However, these new techniques do not scale well with regard to the 
number of models to be consistently parameterized.  The technique of Schreiner et al. 
is limited to dealing with only 2 models, and while Kraevoy and Sheffer demonstrate 
consistent parameterization among 3 models, their approach is asymmetric and would 
not scale to a large collection of models.  

Whereas in all previous cases the simplicial domain is abstract (with no inherent 
geometry), our spherical domain geometry is explicit.  This implies that paths must be 
straight arcs on the sphere, rather than arbitrary meandering mesh paths, which makes 
the problem more difficult.  One advantage of the lack of domain connectivity is the 
opportunity to improve the map by flipping edges, like in Delaunay refinement. 

 
Step 1 ⊕ 

Step 2 Steps 3, 4 Step 5 Step 6 

Fig. 2. Steps of the algorithm. For clarity, steps 3-5 show a coarser version of the remesh grid 
than the one actually used. The features in step 5 are vertices of the finer grid. Stretch efficien-
cies: gargoyle 0.632, bunny 0.697 
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3   Approach 

Given a set of meshes and corresponding feature points, we form a consistent parame-
terization of all the meshes.  Our approach has two major parts.  First, we find good 
spherical feature locations, such that the final maps have low distortion and distribute 
the sphere area adequately to the various parts of the input meshes.  Second, we create 
a constrained spherical parameterization for each surface, forcing the feature points to 
map to the computed locations.  Here is the algorithm in more detail (see also Figure 
2).  Let Mi (i=1..n) be the initial meshes, P be a parameterization, and F a set of 
spherical feature locations. 

1. ( 1P′ , F′ ) := UnconstrainedSphericalParam( 1M ) 

 //Initial feature locations F′  on sphere using one model. 

2. For i=2..n, iP′  := ConstrainedSphericalParam( iM , F′ ) 

 //Parameterize all models using those initial locations. 

3. For i=1..n,   R
iM  := Remesh( iM , iP′ ) 

 //Remesh to n geometry images with identical connectivities. 

4. *
RM  := { 1

RM , 2
RM , … , R

nM  } 

 //Concatenate to single mesh with vertex coordinates in R3n. 

5. (PR,F) := UnconstrainedSphericalParam( *
RM ) 

 //Find good feature locations considering all models. 

6. For i=1..n,   Pi := ConstrainedSphericalParam( iM , F) 

 //Compute final parameterizations using these locations. 

The main new procedure is the constrained spherical parameterization used in steps 
2 and 6. It is described in detail in Section  4.  The remaining steps are adapted from 
earlier work [14].  In step 3 we need to exactly represent the feature points, so we 
snap the closest grid samples to the spherical locations F′ .   

Step 5 involves the construction of a progressive mesh for the special mesh *
RM  

with geometry in R3n.  We modify the quadric error metric [4] to sum each of the n er-
rors in R3.  We also modify the spherical parameterization [14] to sum the n stretch 
energies from the sphere to the n mesh geometries in R3. 

4   Constrained Spherical Parameterization 

We adapt the method of  [14] to work with constraints as follows. During coarse-to-
fine refinement, we can simply fix the spherical location of feature vertices.  The dif-
ficulty is to bootstrap the algorithm by creating a valid starting state that satisfies all 
constraints.  Specifically, we must create a progressive mesh representation of the sur-
face where the base domain contains only feature vertices and is triangulated the same 
way as the spherical features (see Figure 3). 
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To satisfy this, we need 
only find a spherical triangu-
lation and a corresponding 
embedding of its arcs onto 
the mesh, given by a set of 
non-intersecting paths.  Once 
we have such a path net-
work, we simplify the mesh 
to produce a progressive 
mesh , but we keep the feature  vertices, and only  allow vertices on the feature 
paths  to be collapsed into other  path or feature vertices [16]. 

To produce the path network on the 3D surface, we use a method similar to those of 
Praun et al. [15] and Kraevoy et al. [11].  We link together pairs of feature points, with 
great circle arcs on the sphere, and paths on the mesh, until we complete a full “triangu-
lation”.  The paths (and arcs) cannot intersect each other except at feature vertices (and 
their spherical locations).  The algorithm proceeds in greedy fashion, selecting the best 
pair from a pool of candidates. To guarantee both termination and topological equiva-
lence of the two “triangulations”, we maintain consistent ordering of neighbors around 
each vertex in the partially completed graph, and we avoid adding any arcs/paths clos-
ing cycles before we have linked all the vertices in a spanning tree [15]. 

The candidate pool is populated initially by shortest paths between all the feature 
pairs, computed using a Dijkstra search on mesh vertices.  When we select the best 
candidate path we check to see if it intersects any paths already inserted in the net-
work and if it does we re-compute it using a restricted search.  These restricted 
searches can also use edge midpoints in addition to mesh vertices (though with a cost 
penalty), corresponding to inserting “Steiner” vertices in the original mesh [11].   

To improve the geometric quality of the triangulation we employ a set of heuristics 
to avoid and fix swirls (Section 4.1) and we flip edges by replacing them with the 
other diagonal of the quad formed by the two adjacent patches. This is done only 
when the new path is shorter and the new configuration is valid on the sphere. 

4.1   Dealing with Swirls 

Sometimes the paths appear bad to a human observer because they take unnecessarily 
long routes around other feature vertices.  We call a swirl the local configuration of 
these long paths (Figure 4). 

Praun et al. [15] note 
that swirls cannot be re-
paired using 1-ring relaxa-
tions of patches around a 
vertex, and propose several 
heuristics to prevent them.  
Unfortunately we do not 
benefit from a user-
provided base domain, so 
some of their heuristics do 

 

Fig. 3. "Triangulations" of features on the sphere (left) and 
mesh (middle); base mesh after simplification (right)

 

 

Fig. 4. Swirl on the horse leg: the white patch (right) has to 
connect to B, but it does so around A. It cannot be straight-
ened sine it would have to move over A and AB 
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not work in our case.  Furthermore, our setting is harder since the spherical locations 
of the feature points obtained in steps 1 and 5 of the algorithm (Section 3) may be 
quite different from preferred spherical locations considering the geometry of the cur-
rent mesh. We develop a more robust set of swirl-avoiding heuristics, as well as a 
method to remove swirls after they have appeared.  

Swirl-Avoiding Heuristics. The main tool we use in selecting new paths to insert in 
the network is their ranking in the priority queue.  Paths are ranked according to their 
surface length (shorter is better), but they are occasionally penalized (placed at the 
end of the queue) when certain conditions occur.  Such conditions include: 

• The current path links non-extreme vertices, and there are still some extremities 
left unconnected.  Extremities are features with large average distance to their 
nearest neighbors (such as legs, arms, etc.).  We start the spanning tree construc-
tion by linking such features.  If left unconnected they might cause swirls since 
paths linking other vertices go around the base of the extremity, equally likely on 
the “correct” as on the “wrong” side. 

• The spherical image of the path would create spherical triangles with very small 
angles (<10 degrees in our examples).  In these cases the winding order of the 3 
feature locations on the sphere is not reliable.  Furthermore, skinny triangles make 
the spherical optimization less robust. 

• Failed sidedness tests for neighboring features. We check whether the projection of 
a feature vertex onto the path is on the same side as the projection of the corre-
sponding feature point onto the arc on the sphere.  If some of the vertices are on 
different sides on the mesh and the sphere, we try to force the path to lie on the 
correct side of nearby feature vertices.  To do this we add temporary constraint 
paths from the path endpoints to the neighboring feature.  We now trace the short-
est path on the mesh.  The path so traced will be on the correct side of all the fea-
tures in the connected component of the neighbor.  However, this might not always 
be possible as the addition of the temporary constraint paths might form a cycle 
enclosing either the source or the destination vertex on different sides on the mesh 
and the sphere.  In such cases, we add the path to the end of the queue. 

Unswirl Operator. In addition to using heuristics that avoid swirls (as Praun et al. 
did [15]), we have also developed a method to identify and remove them in the rare 
cases that they do occur.  Paths between two features incident to many other “long” 
paths (with high ratios between actual length and geodesic distance between end-
points) are likely to be the center of swirls.  To fix them, we remove all paths incident 
to the two vertices, and then replace them in a new order, introducing first paths that 
were previously bad. 

5   Results and Applications 

Figure 1 illustrates the basic approach for applications making use of large model da-
tabases.  To create the database, a few representative models are selected and consis-
tently parameterized using our algorithm, in order to obtain good spherical locations 
for the 22 feature points.  In our example we used the 5 heads shown out of a set of 8.  
The remaining models can be subsequently added to the database by running con-
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strained spherical parameterization. Once the database is created, the consistent 
parameterization can be used for tasks such as classification and retrieval based on 
principal component analysis. On the right side of Figure 1 we show the average of 
our set of heads, and the first three principal components (visualized added to the av-
erage head). 

  

Fig. 5. Parameterization quality improves after optimizing the map taking into account all models 

Figure 5 demonstrates the role of 
steps 3-6 of the algorithm. The two 
left images show the spherical 
parameterization and regular remesh 
using the locations obtained using 
the cow model alone. The quality 
improves (right) when the feature 
locations are computed using all the 
models. 

Consistent parameterizations can 
also be used to transfer mesh proper-
ties, such as geometric detail (the 
high-frequency components of a 

multiresolution mesh representa-
tion), normals, colors, or texture co-
ordinates. Figure 6 demonstrates ex-
amples of color and normals transfer 
between two heads. 

Table 1 shows timing results for 
our method. For small meshes, step 
5  is the most expensive since it involves several geometries simultaneously.   How
ever, when the original meshes are dense, step 6 becomes the most expensive one. 

6   Summary 

We have presented a robust algorithm for parameterizing genus-zero models onto a 
sphere in the presence of feature constraints.  The central part of the algorithm, con-
strained spherical parameterization is guaranteed to produce topologically equivalent 
spherical triangulations and mesh patch partitions, and avoids awkward swirl configu-

 

Fig. 6. The texture and normals of the head on the 
left are combined with the geometry of the head in 
the middle to produce the one on the right 

Table 1. Timing results (in minutes) for the heads 
example (Figure 1), bunny and gargoyle example 
(Figure 2). The timings for steps 2 and 6 are cumu-
lative for the different models in the set 

 Steps  
Models 1 2 5 6 Total time 
Fig. 1 19 81 8 95 203 
Fig. 2 10 5 5 17 37 

-
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rations through a collection of novel heuristics.  The regularly sampled consistent ge-
ometry images that can be obtained using our parameterizations allow digital geome-
try processing applicable to many real-world applications. 

References 

1. Alexa, M. 2000.  Merging polyhedral shapes with scattered features. The Visual Com-
puter, 16(1), pp. 26-37. 

2. Eckstein, I., Surazhsky, V. and Gotsman, C.  2001. Texture mapping with hard con-
straints. Eurographics 2001, pp. 95-104. 

3. Floater, M. and Hormann K. 2004. Recent advances in surface parameterization. Mul-
tiresolution in geometric modeling 2004. 

4. Garland, M. and Heckbert, P. 1997.  Surface simplification using quadric error metrics. 
ACM SIGGRAPH 97, pp. 209-216.  

5. Gotsman, C., Gu, X. and Sheffer, A. 2003. Fundamentals of spherical parameterization for 
3D meshes. SIGGRAPH 2003, pp. 358-364.     

6. Gu, X., Gortler, S., And Hoppe, H. 2002. Geometry images. ACM SIGGRAPH 2002, pp. 
356-361. 

7. Gu, X., Wang, Y., Chan, T., Thompson, P, and Yau, S.-T. 2003. Genus zero surface con-
formal mapping and its application to brain surface mapping., Information Processing 
Medical Imaging 2003. 

8. Guskov, I., Vidimče, K., Sweldens, W., and Schröder, P. 2000.  Normal meshes. ACM 
SIGGRAPH 2000, pp. 95-102. 

9. HAKER, S., ANGENENT, S., TANNENBAUM, S., KIKINIS, R., SAPIRO, G., AND HALLE, M. 2000. 
Conformal surface parameterization for texture mapping.  IEEE TVCG, 6(2), pp. 181-189. 

10. Hoppe, H. 1996. Progressive meshes. ACM SIGGRAPH 96, pp. 99-108.  
11. Kraevoy, V., Sheffer, A. and Gotsman, C. 2003. Matchmaker: constructing constrained 

texture maps. SIGGRAPH 2003, pp. 326-333. 
12. Kraevoy, V., and Sheffer, A. 2004. Cross-parameterization and compatible remeshing of 

3D models. SIGGRAPH 2004, to appear. 
13. Lévy, B. 2001. Constrained texture mapping for polygonal meshes. ACM SIGGRAPH 

2001, pp. 417-424. 
14. Praun, E. and Hoppe, H. 2003. Spherical parameterization and remeshing. ACM 

SIGGRAPH 2003, pp. 340-350. 
15. Praun, E., Sweldens, W. and Schröder, P. 2001. Consistent mesh parameterizations. ACM 

SIGGRAPH 2001, pp. 179-184. 
16. Sander, P., Snyder, J., Gortler, S., and Hoppe, H. 2001. Texture mapping progressive 

meshes.  ACM SIGGRAPH 2001, pp. 409-416. 
17. Schreiner, J., Asirvatham, A., Praun, E., and Hoppe, H. 2004. Inter-surface mapping. 

ACM SIGGRAPH 2004. 
18. SHAPIRO, A. AND TAL, A. 1998.  Polygon realization for shape transformation.  The Visual 

Computer, 14 (8-9), pp. 429-444.  


	Introduction
	Previous Work
	Approach
	Constrained Spherical Parameterization
	Dealing with Swirls

	Results and Applications
	Summary
	References

