

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3515, pp. 265 – 272, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Consistent Spherical Parameterization

Arul Asirvatham1, Emil Praun1, and Hugues Hoppe2

1 School of Computing - University of Utah, USA
{arul, emilp}@cs.utah.edu

2 Microsoft Research, Redmond, USA
http://research.microsoft.com/~hoppe

Abstract. Many applications benefit from surface parameterization, including
texture mapping, morphing, remeshing, compression, object recognition, and
detail transfer, because processing is easier on the domain than on the original
irregular mesh. We present a method for simultaneously parameterizing several
genus-0 meshes possibly with boundaries onto a common spherical domain,
while ensuring that corresponding user-highlighted features on each of the
meshes map to the same domain locations. We obtain visually smooth parame-
terizations without any cuts, and the constraints enable us to directly associate
semantically important features such as animal limbs or facial detail. Our
method is robust and works well with either sparse or dense sets of constraints.

1 Introduction

Several applications in computer graphics, such as texture mapping, compression, sur-
face processing, detail synthesis, and object recognition rely on mesh parameteriza-
tion. Parameterization refers to computing mappings between surfaces in 3D and
simpler domains such as planar regions, simplicial domains, or spheres. To be useful
for these varied applications, the mappings must satisfy several properties, such as
continuity, bijectivity, smoothness, constraint satisfaction, and acceptable distribution
of domain area over the surface.

Many parametrization techniques involve partitioning the surface into simpler
pieces using cuts. Such cuts are problematic for applications involving a large num-
ber of models, since they can lead to fragmentation of the map (i.e. smaller and
smaller pieces across which there is a continuous map between all models). More-
over, the resulting map generally lacks smoothness along cuts and at their junctions.

Continuous parameterizations are only possible between topologically equivalent
models. For the genus-zero models that we consider, the unit sphere is a natural
parameterization domain since it is inherently smooth. Allowing the user to specify
constraints is another important requirement in many applications, since it provides a
way to incorporate higher-level semantic knowledge about the objects.

We extend the work of Praun and Hoppe [14] on spherical parameterization to al-
low simultaneous parameterization of multiple objects with point feature constraints
while guaranteeing continuity, bijectivity, visual smoothness, and minimizing overall
distortion. Using these consistent spherical parameterizations, one can create consistent

266 A. Asirvatham, E. Praun, and H. Hoppe

Fig. 1. Consistent Spherical Parameterization of a collection of heads

geometry images [6; 14] representing several objects in a database, opening the door
to a large array of applications including compression, conversion to hardware-
supported subdivision surfaces with displacement maps, natural LODs, etc.

We present the following contributions:

• Robust construction of consistent spherical parameterizations for several surfaces.
• Constrained spherical parameterization where specified points on a mesh map to

given points on the sphere.
• Methods to avoid swirls, and to correct them when they arise.

2 Previous Work

Planar Parameterization: The earliest parameterization methods established map-
pings to planar domains. There have been many methods developed to date; for a
survey we refer the reader to Floater and Hormann [3]. Unless applied to topological
discs, these methods must cut the mesh into one or several pieces, introducing discon-
tinuities in the parameterization.

Spherical Parameterization: Discontinuities can be avoided altogether by mapping
models to smooth domains of the same topology, such as the unit sphere for genus-
zero models. Examples of spherical parameterization methods include [18; 1; 9;7; 5;
14]. We build upon the method of Praun and Hoppe [14].

Incorporating hard constraints into a spherical parameterization scheme proves to
be challenging, because it is difficult to guarantee bijectivity of the result. We chose
to build upon the approach of Praun and Hoppe [14] because its hierarchical construc-
tion approach enables a robust solution.

Parameterization Constraints. Several methods address the problem of parameteri-
zation under constraints. Lévy [13] texture maps meshes under soft constraints by in-
troducing additional terms in the quality metric. Eckstein et al. [2] propose a method
for satisfying hard constraints for planar parameterization.

Kraevoy et al. [11] start with an unconstrained planar parameterization and then
move the constrained vertices to their required positions by matching a triangulation

 Consistent Spherical Parameterization 267

of these positions to a triangulation of the planar mesh formed by the paths between
constrained vertices. Finally, they relax this parameterization while keeping the con-
straints. They demonstrate results involving a fairly large number of features.

In contrast, our method works well even with few provided feature points. In addi-
tion, we use a multiresolution approach to avoid forming an initial parameterization
and then optimizing it.

Consistent Parameterization. Praun et al. [15] consistently parameterize a set of ge-
nus-0 models onto a user-specified simplicial complex. Unlike their method, we do
not impose a fixed consistent connectivity of the base domain, but only satisfy the
given point constraints, thereby providing the map more freedom.

Two recent works, by Schreiner et al. [17] and Kraevoy and Sheffer [12], improve
upon the technique of Praun et al. by not requiring the simplicial complex to be speci-
fied a priori. However, these new techniques do not scale well with regard to the
number of models to be consistently parameterized. The technique of Schreiner et al.
is limited to dealing with only 2 models, and while Kraevoy and Sheffer demonstrate
consistent parameterization among 3 models, their approach is asymmetric and would
not scale to a large collection of models.

Whereas in all previous cases the simplicial domain is abstract (with no inherent
geometry), our spherical domain geometry is explicit. This implies that paths must be
straight arcs on the sphere, rather than arbitrary meandering mesh paths, which makes
the problem more difficult. One advantage of the lack of domain connectivity is the
opportunity to improve the map by flipping edges, like in Delaunay refinement.

Step 1 ⊕

Step 2 Steps 3, 4 Step 5 Step 6

Fig. 2. Steps of the algorithm. For clarity, steps 3-5 show a coarser version of the remesh grid
than the one actually used. The features in step 5 are vertices of the finer grid. Stretch efficien-
cies: gargoyle 0.632, bunny 0.697

268 A. Asirvatham, E. Praun, and H. Hoppe

3 Approach

Given a set of meshes and corresponding feature points, we form a consistent parame-
terization of all the meshes. Our approach has two major parts. First, we find good
spherical feature locations, such that the final maps have low distortion and distribute
the sphere area adequately to the various parts of the input meshes. Second, we create
a constrained spherical parameterization for each surface, forcing the feature points to
map to the computed locations. Here is the algorithm in more detail (see also Figure
2). Let Mi (i=1..n) be the initial meshes, P be a parameterization, and F a set of
spherical feature locations.

1. (1P′ , F′) := UnconstrainedSphericalParam(1M)

 //Initial feature locations F′ on sphere using one model.

2. For i=2..n, iP′ := ConstrainedSphericalParam(iM , F′)

 //Parameterize all models using those initial locations.

3. For i=1..n, R
iM := Remesh(iM , iP′)

 //Remesh to n geometry images with identical connectivities.

4. *
RM := { 1

RM , 2
RM , … , R

nM }

 //Concatenate to single mesh with vertex coordinates in R3n.

5. (PR,F) := UnconstrainedSphericalParam(*
RM)

 //Find good feature locations considering all models.

6. For i=1..n, Pi := ConstrainedSphericalParam(iM , F)

 //Compute final parameterizations using these locations.

The main new procedure is the constrained spherical parameterization used in steps
2 and 6. It is described in detail in Section 4. The remaining steps are adapted from
earlier work [14]. In step 3 we need to exactly represent the feature points, so we
snap the closest grid samples to the spherical locations F′ .

Step 5 involves the construction of a progressive mesh for the special mesh *
RM

with geometry in R3n. We modify the quadric error metric [4] to sum each of the n er-
rors in R3. We also modify the spherical parameterization [14] to sum the n stretch
energies from the sphere to the n mesh geometries in R3.

4 Constrained Spherical Parameterization

We adapt the method of [14] to work with constraints as follows. During coarse-to-
fine refinement, we can simply fix the spherical location of feature vertices. The dif-
ficulty is to bootstrap the algorithm by creating a valid starting state that satisfies all
constraints. Specifically, we must create a progressive mesh representation of the sur-
face where the base domain contains only feature vertices and is triangulated the same
way as the spherical features (see Figure 3).

 Consistent Spherical Parameterization 269

To satisfy this, we need
only find a spherical triangu-
lation and a corresponding
embedding of its arcs onto
the mesh, given by a set of
non-intersecting paths. Once
we have such a path net-
work, we simplify the mesh
to produce a progressive
mesh , but we keep the feature vertices, and only allow vertices on the feature
paths to be collapsed into other path or feature vertices [16].

To produce the path network on the 3D surface, we use a method similar to those of
Praun et al. [15] and Kraevoy et al. [11]. We link together pairs of feature points, with
great circle arcs on the sphere, and paths on the mesh, until we complete a full “triangu-
lation”. The paths (and arcs) cannot intersect each other except at feature vertices (and
their spherical locations). The algorithm proceeds in greedy fashion, selecting the best
pair from a pool of candidates. To guarantee both termination and topological equiva-
lence of the two “triangulations”, we maintain consistent ordering of neighbors around
each vertex in the partially completed graph, and we avoid adding any arcs/paths clos-
ing cycles before we have linked all the vertices in a spanning tree [15].

The candidate pool is populated initially by shortest paths between all the feature
pairs, computed using a Dijkstra search on mesh vertices. When we select the best
candidate path we check to see if it intersects any paths already inserted in the net-
work and if it does we re-compute it using a restricted search. These restricted
searches can also use edge midpoints in addition to mesh vertices (though with a cost
penalty), corresponding to inserting “Steiner” vertices in the original mesh [11].

To improve the geometric quality of the triangulation we employ a set of heuristics
to avoid and fix swirls (Section 4.1) and we flip edges by replacing them with the
other diagonal of the quad formed by the two adjacent patches. This is done only
when the new path is shorter and the new configuration is valid on the sphere.

4.1 Dealing with Swirls

Sometimes the paths appear bad to a human observer because they take unnecessarily
long routes around other feature vertices. We call a swirl the local configuration of
these long paths (Figure 4).

Praun et al. [15] note
that swirls cannot be re-
paired using 1-ring relaxa-
tions of patches around a
vertex, and propose several
heuristics to prevent them.
Unfortunately we do not
benefit from a user-
provided base domain, so
some of their heuristics do

Fig. 3. "Triangulations" of features on the sphere (left) and
mesh (middle); base mesh after simplification (right)

Fig. 4. Swirl on the horse leg: the white patch (right) has to
connect to B, but it does so around A. It cannot be straight-
ened sine it would have to move over A and AB

270 A. Asirvatham, E. Praun, and H. Hoppe

not work in our case. Furthermore, our setting is harder since the spherical locations
of the feature points obtained in steps 1 and 5 of the algorithm (Section 3) may be
quite different from preferred spherical locations considering the geometry of the cur-
rent mesh. We develop a more robust set of swirl-avoiding heuristics, as well as a
method to remove swirls after they have appeared.

Swirl-Avoiding Heuristics. The main tool we use in selecting new paths to insert in
the network is their ranking in the priority queue. Paths are ranked according to their
surface length (shorter is better), but they are occasionally penalized (placed at the
end of the queue) when certain conditions occur. Such conditions include:

• The current path links non-extreme vertices, and there are still some extremities
left unconnected. Extremities are features with large average distance to their
nearest neighbors (such as legs, arms, etc.). We start the spanning tree construc-
tion by linking such features. If left unconnected they might cause swirls since
paths linking other vertices go around the base of the extremity, equally likely on
the “correct” as on the “wrong” side.

• The spherical image of the path would create spherical triangles with very small
angles (<10 degrees in our examples). In these cases the winding order of the 3
feature locations on the sphere is not reliable. Furthermore, skinny triangles make
the spherical optimization less robust.

• Failed sidedness tests for neighboring features. We check whether the projection of
a feature vertex onto the path is on the same side as the projection of the corre-
sponding feature point onto the arc on the sphere. If some of the vertices are on
different sides on the mesh and the sphere, we try to force the path to lie on the
correct side of nearby feature vertices. To do this we add temporary constraint
paths from the path endpoints to the neighboring feature. We now trace the short-
est path on the mesh. The path so traced will be on the correct side of all the fea-
tures in the connected component of the neighbor. However, this might not always
be possible as the addition of the temporary constraint paths might form a cycle
enclosing either the source or the destination vertex on different sides on the mesh
and the sphere. In such cases, we add the path to the end of the queue.

Unswirl Operator. In addition to using heuristics that avoid swirls (as Praun et al.
did [15]), we have also developed a method to identify and remove them in the rare
cases that they do occur. Paths between two features incident to many other “long”
paths (with high ratios between actual length and geodesic distance between end-
points) are likely to be the center of swirls. To fix them, we remove all paths incident
to the two vertices, and then replace them in a new order, introducing first paths that
were previously bad.

5 Results and Applications

Figure 1 illustrates the basic approach for applications making use of large model da-
tabases. To create the database, a few representative models are selected and consis-
tently parameterized using our algorithm, in order to obtain good spherical locations
for the 22 feature points. In our example we used the 5 heads shown out of a set of 8.
The remaining models can be subsequently added to the database by running con-

 Consistent Spherical Parameterization 271

strained spherical parameterization. Once the database is created, the consistent
parameterization can be used for tasks such as classification and retrieval based on
principal component analysis. On the right side of Figure 1 we show the average of
our set of heads, and the first three principal components (visualized added to the av-
erage head).

Fig. 5. Parameterization quality improves after optimizing the map taking into account all models

Figure 5 demonstrates the role of
steps 3-6 of the algorithm. The two
left images show the spherical
parameterization and regular remesh
using the locations obtained using
the cow model alone. The quality
improves (right) when the feature
locations are computed using all the
models.

Consistent parameterizations can
also be used to transfer mesh proper-
ties, such as geometric detail (the
high-frequency components of a

multiresolution mesh representa-
tion), normals, colors, or texture co-
ordinates. Figure 6 demonstrates ex-
amples of color and normals transfer
between two heads.

Table 1 shows timing results for
our method. For small meshes, step
5 is the most expensive since it involves several geometries simultaneously. How
ever, when the original meshes are dense, step 6 becomes the most expensive one.

6 Summary

We have presented a robust algorithm for parameterizing genus-zero models onto a
sphere in the presence of feature constraints. The central part of the algorithm, con-
strained spherical parameterization is guaranteed to produce topologically equivalent
spherical triangulations and mesh patch partitions, and avoids awkward swirl configu-

Fig. 6. The texture and normals of the head on the
left are combined with the geometry of the head in
the middle to produce the one on the right

Table 1. Timing results (in minutes) for the heads
example (Figure 1), bunny and gargoyle example
(Figure 2). The timings for steps 2 and 6 are cumu-
lative for the different models in the set

 Steps
Models 1 2 5 6 Total time
Fig. 1 19 81 8 95 203
Fig. 2 10 5 5 17 37

-

272 A. Asirvatham, E. Praun, and H. Hoppe

rations through a collection of novel heuristics. The regularly sampled consistent ge-
ometry images that can be obtained using our parameterizations allow digital geome-
try processing applicable to many real-world applications.

References

1. Alexa, M. 2000. Merging polyhedral shapes with scattered features. The Visual Com-
puter, 16(1), pp. 26-37.

2. Eckstein, I., Surazhsky, V. and Gotsman, C. 2001. Texture mapping with hard con-
straints. Eurographics 2001, pp. 95-104.

3. Floater, M. and Hormann K. 2004. Recent advances in surface parameterization. Mul-
tiresolution in geometric modeling 2004.

4. Garland, M. and Heckbert, P. 1997. Surface simplification using quadric error metrics.
ACM SIGGRAPH 97, pp. 209-216.

5. Gotsman, C., Gu, X. and Sheffer, A. 2003. Fundamentals of spherical parameterization for
3D meshes. SIGGRAPH 2003, pp. 358-364.

6. Gu, X., Gortler, S., And Hoppe, H. 2002. Geometry images. ACM SIGGRAPH 2002, pp.
356-361.

7. Gu, X., Wang, Y., Chan, T., Thompson, P, and Yau, S.-T. 2003. Genus zero surface con-
formal mapping and its application to brain surface mapping., Information Processing
Medical Imaging 2003.

8. Guskov, I., Vidimče, K., Sweldens, W., and Schröder, P. 2000. Normal meshes. ACM
SIGGRAPH 2000, pp. 95-102.

9. HAKER, S., ANGENENT, S., TANNENBAUM, S., KIKINIS, R., SAPIRO, G., AND HALLE, M. 2000.
Conformal surface parameterization for texture mapping. IEEE TVCG, 6(2), pp. 181-189.

10. Hoppe, H. 1996. Progressive meshes. ACM SIGGRAPH 96, pp. 99-108.
11. Kraevoy, V., Sheffer, A. and Gotsman, C. 2003. Matchmaker: constructing constrained

texture maps. SIGGRAPH 2003, pp. 326-333.
12. Kraevoy, V., and Sheffer, A. 2004. Cross-parameterization and compatible remeshing of

3D models. SIGGRAPH 2004, to appear.
13. Lévy, B. 2001. Constrained texture mapping for polygonal meshes. ACM SIGGRAPH

2001, pp. 417-424.
14. Praun, E. and Hoppe, H. 2003. Spherical parameterization and remeshing. ACM

SIGGRAPH 2003, pp. 340-350.
15. Praun, E., Sweldens, W. and Schröder, P. 2001. Consistent mesh parameterizations. ACM

SIGGRAPH 2001, pp. 179-184.
16. Sander, P., Snyder, J., Gortler, S., and Hoppe, H. 2001. Texture mapping progressive

meshes. ACM SIGGRAPH 2001, pp. 409-416.
17. Schreiner, J., Asirvatham, A., Praun, E., and Hoppe, H. 2004. Inter-surface mapping.

ACM SIGGRAPH 2004.
18. SHAPIRO, A. AND TAL, A. 1998. Polygon realization for shape transformation. The Visual

Computer, 14 (8-9), pp. 429-444.

	Introduction
	Previous Work
	Approach
	Constrained Spherical Parameterization
	Dealing with Swirls

	Results and Applications
	Summary
	References

