A Comparative Study of Acceleration Techniques
for Geometric Visualization

Pascual Castelld, José Francisco Ramos, and Miguel Chover

Department of Computer Languages and Systems, Universitat Jaume I,
Campus Riu Sec, 12080 Castellén de la Plana, Spain
{castellp, jromero, chover}@uji.es
http://graficos.uji.es

Abstract. Nowadays computer graphics hardware presents a series of charac-
teristics, such as AGP memory, vertex cache, etc., that can be used for real-time
rendering. The aim of this paper is to conduct a comparative study of different
techniques that are shown in the OpenGL graphics standard together with
hardware features that enable the visualization of the geometry of complex ob-
jects to be accelerated. These techniques are applied to the multiresolution
modeling, which requires techniques that can be implemented with dynamic
geometry.

1 Introduction

Computer graphics systems present a pipeline architecture [12] in which 3D data
about the scene that is to be displayed cross at different stages. Depending on the type
of application or the nature of the data, it is possible that some of these stages become
a bottleneck, thus drastically reducing the overall performance of graphics devices. It
is therefore essential to locate these bottlenecks so that the graphics hardware can

operate properly.

Figure 1 shows, in diagram form, the different stages of a graphics pipeline archi-

tecture that OpenGL presents [13] [7].

1
Rasterizer [Fragment > Frame

Geometry | ») Geometry >

CPU

storage processor Processor Buffer
[
T
1
| Texture
: storage +
Vertices i | fitering [Pixels
1
|
[

Fig. 1. Simplified OpenGL graphics pipeline

In this architecture, the main bottlenecks that can be distinguished are as follows:

CPU. There are problems with the application or the driver.

— AGP/PCI Express. There are too many data for the bus.

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3515, pp. 240 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Comparative Study of Acceleration Techniques for Geometric Visualization 241

— Geometry. There are too many vertices or too much computation per vertex.

— Rasterization. There are also too many large-sized triangles.

— Texture. Textures are too big, texture cache is underutilized and the filters are
expensive.

— Fragment Shader. There are too many fragments or too much computation per
fragment.

— Frame buffer. There is too much read/write to the frame buffer.

The first step is to find the bottleneck and later eliminate it, if possible. If this can-
not be done, we then have to try to balance the pipeline.

Traditionally the problem of representing large objects is solved by using mul-
tiresolution models [4] [11]. In the multiresolution modeling an object is represented
by different approaches, each from a different level of detail (LOD), which is going to
necessarily generate bottlenecks in the processing of vertices. There are two types of
multiresolution models: continuous, in which geometry changes in runtime as a result
of the variation of the level of detail, and discrete, where a few levels are precalcu-
lated and one level or another are shown according to the visualization requirements
of the scene. The first one requires techniques for dynamic geometry and the second
can benefit from techniques for the visualization of static geometry.

The specific problems within geometry are usually the following:

— Wrong transfer due to the use of non-native data types, inadequate sizes or calls to
the graphics libraries using less efficient primitives.

— Geometry transformation that gives rise to bottlenecks due to the number of verti-
ces and to the calculations based on them, or because of an inefficient use of the
vertex cache.

Within this framework we intend to perform an in-depth analysis of the problems
related to geometry, the solutions currently available and their possible application to
dynamic geometry.

In section 2, several solutions offered by OpenGL are presented, as well as general
solutions related to the drawing primitive, such as the use of extensions that make use
of video memory and the vertex cache included in modern graphics processors
(GPU). Section 3 describes the solutions applied to several test cases in this paper,
and in section 4 the results that were obtained are reported. Finally, conclusions and
future work are presented in section 5.

2 Solutions Overview

Different solutions are available with which to resolve the bottleneck problems in the
geometry subsystem. They can be classified as specific solutions, which are directly
linked to the graphics library that is used, and general solutions, which are more re-
lated to the type of primitive employed in the visualization of 3D objects or to the
particular characteristics of modern GPUs.

242 P. Castello, J.F. Ramos, and M. Chover

2.1 Specific Solutions

Among the specific solutions, the following can be considered in OpenGL [7]:

Immediate mode. This consists in drawing geometry by means of glBe-
gin()...glEnd() operations. This is the primitive with lowest performance and the
least recommended, as is shown below.
Display list. A display list is simply a command group and OpenGL arguments
that have been saved in a suitable fashion for later execution by the hardware. Its
fundamental characteristic is that it cannot be modified. Obviously the main limita-
tion of this solution is that in principle it is not adapted to dynamic geometry be-
cause any change in geometry implies the creation of a new display list. However,
it is very well adapted to the representation of static geometry or discrete mul-
tiresolution models.
Vertex array. This consists of storing the associated vertex data in special arrays,
so that these arrays can be used to specify several geometries with the execution of
only one command. The array of vertices can only contain the vertices of the ge-
ometry and a list of indexes is needed to generate the primitives based on that ar-
ray. This scheme is suitable to exploit the characteristics of dynamic geometry be-
cause the array of vertices is generated only once and it is then possible to modify
the list of indices at runtime.
OpenGL extensions. Extensions enable new characteristics and capabilities to be
added to OpenGL. In general, what the extensions related to geometry acceleration
attempt to do is to load the data concerning the vertices into the local memory of
the graphics card and try to avoid using the main memory.

Of the extensions that have been developed by manufacturers, the following are
perhaps the most noteworthy:

— ATI_vertex_array_object (8/2002)
— NV_vertex_array_range (9/2001)

An extension that has recently appeared with the same intention as the previous
ones and which has been officially approved by OpenGL is
ARB_vertex_buffer_object (2/2003). This is the extension that was used in this
study; its use allowed the behavior of OpenGL vertex arrays to be modified by let-
ting them reside in the local memory of the graphics card.

2.2 General Solutions

Graphics processors have hardware characteristics that allow them to represent 3D
objects suitably by means of triangles.

In order to avoid sending repeated vertices to the graphics system other structures

such as triangle strips or triangle fans can also be employed. In a triangle strip, the
first triangle is drawn and then only one vertex is added for each new triangle that is
added to the strip. In a triangle fan, all the triangles share one vertex they have in

A Comparative Study of Acceleration Techniques for Geometric Visualization 243

common. Consequently, the visualization of an object by means of triangle strips or
fans achieves greater acceleration because less information is sent to the graphics
system.

In this paper we have analyzed the following algorithms that allow us to obtain a
strip-based representation:

— Stripe [3] (Stony Brook University)
— NvTriStrip [8] (NVIDIA Corporation)

Both Stripe and NvTripStrip allow strips to be generated, but only NvTriStrip takes
advantage of the vertex cache. Current GPUs have a series of registers that allow us to
store the last 16 or 24 vertices used. It is possible to try to provide the graphics system
with information about vertices ordered in such a way as to produce the smallest num-
ber of page faults. Several studies have been carried out that try to take advantage of
this characteristic. These include Chow [2], who presents a method for the com-
pression of geometry; Hoppe [6], who develops an algorithm for the generation of
strips while taking advantage of the vertex cache in a transparent way; and Bogomja-
kov and Gotsman [1], who present a method for the optimization of the vertex cache
applied to the Progressive Meshes [5] multiresolution model.

The NvTriStrip library [8] allows both triangles and triangle strips to be generated,
taking advantage of the GPU vertex cache and, in addition, it allows for the generation
of one single triangle strip (by using degenerated triangles) or several triangle strips.

The Stripe utility [3] allows triangle strips to be generated from objects represented
by means of the obj format. This utility always generates several strips, so it does not
make use of degenerated triangles.

3 Description of the Comparison

The objective of this study was to measure the performance of all the techniques de-
scribed above for 3 test meshes: cow (5804 triangles), sphere (30 624 triangles) and
bunny (69 451 triangles). These measurements consisted in obtaining the frames per
second (fps) rates, that is to say, the number of times per second the system is able to
draw the scene.

These techniques were applied to models represented as triangle lists and triangle
strips, and the extension that refers to local memory buffers and GPU vertex cache
was also tested.

First, we assessed the use of techniques classified as specific solutions:

— Immediate mode

— Display list

— Vertex array

— Vertex buffer object

These techniques were applied to the general solutions. The following aspects were
compared within the triangles model:

244 P. Castello, J.F. Ramos, and M. Chover

Original model triangles (respecting the order in which they appear in the obj file)
Optimized triangles obtained by NvTriStrip

— One strip with degenerated triangles obtained by NvTriStrip

Several strips obtained by NvTriStrip

— Several strips obtained by Stripe

Finally, the effect exerted by the vertex cache was measured. It was tested by using
NvTriStrip with remapping (vertices are rearranged in the same way as indexes). In
particular, times with and without cache were measured using different specific solu-
tions:

— NvTriStrip optimized triangles
— NvTriStrip strips (one strip with degenerated triangles and several strips)
Lastly, the results obtained using the different techniques were compared.

4 Results

The experiments were conducted using different PCs: Pentium IV 2600 MHz, Pen-
tium Xeon 2800MHz and dual Pentium III with 1 Gb RAM and several GPUs:
NVIDIA GeForce FX5900' 128 Mb, GeForce FX5700° 256 Mb and GeForce 6600'
256 Mb with two operating systems: Windows XP Professional SP1 and Linux SuSE
9.1. They involved measurement of the number of frames per second (fps) that the
system reaches using each of the techniques. The implementation was performed in
C++ using the OpenGL graphics library. Ms Visual C++ 6.0 SP5 was employed as a
compiler for windows and gcc 3.3.3 for Linux.
The results obtained for the 3 test meshes are shown in Tables 1 to 3.

Table 1. Results (fps) obtained for Cow

Cow GPU V.cache|t/s Kb| IM DL VA VBO
Triangles: original model FX5700 no 5804 136 | 397.60 1315.68 707.68 1050.95
Ge6600 850.00 1319.00 1259,70 1268.00

FX5900 816.19 1951.05 1421.58 1913.09

Triangles: NvTriStrip FX5700 yes |5804 136| 371.63 128871 384.62 1031.97
Ge6600 796,20 1488,50 1420,60 1430,60

FX5900 774.23 1958.04 1385.61 1888.11

One strip: NvTriStrip FX5700 yes 1 102 543.90 140859 831.17 1239.76
Ge6600 1084,90 1494,50 1436,60 1434,60

FX5900 1089.91 2154.88 1860.20 2081.92

Several strips: NvTriStrip FX5700 yes 551 98| 427.72 1368.63 701.30 1105.89
Ge6600 1015.00 1430,60 1441,60 1427,60

FX5900 981.02 2010.99 1550.45 1674.33

Several strips: STRIPE~ FX5700 no 101 98| 622.38 159241 833.17 1259.74
Ge6600 1009.00 1520,50 1440,60 1450,60

FX5900 966.03 2350.65 1995.00 2283.72

! Tested under Windows.
2 Tested under Linux.

A Comparative Study of Acceleration Techniques for Geometric Visualization 245

Table 2. Results (fps) obtained for Sphere

Sphere GPU_ V.cache| t/s Kb| IM DL VA VBO
Triangles: original model FX5700 no 30624 717| 86.14 584.83 119.64 32802
Ge6600 216,10 834,33 75820 828,17

FX5900 205.38 1121.88 397.60 1143.86

Triangles: NvTriStrip FX5700 yes |30624 717| 79-60 748.50 118.53 296.70
Ge6600 212,40 861,14 81020 849,15

FX5900 204.80 1239.76 394.61 1197.80

One strip: NvTriStrip FX5700 yes 1 51213260 830.17 178.64 590.82
Ge6600 39420 860,14 81220 847,15

FX5900 384.23 1287.61 77223 1221.78

Several strips: NvTriStrip FX5700 yes 1763 496 | 111.00 780.22 176.47 520.96
Ge6600 324,40 77323 72120 764,24

FX5900 335.33 127173 64535 986.01

Several strips: STRIPE ~ FX5700 no 172 481 | 16541 78521 213.14 601.40
Ge6600 336,30 831,17 86320 76523

FX5900 296.11 1149.85 870.13 1049.95

Table 3. Results (fps) obtained for Bunny

Bunny GPU V.cache| t/s Kb | IM DL VA VBO
Triangles: original model FX5700 no 69451 1630 | 31.40 21813 29.01 113.10
Ge6600 94,53 256,50 112,10 172,70

FX5900 75.40 345.96 187.62 247.75

Triangles: NTriStrip FX5700 yes |69451 1630 | 36.31 420.00 32.35 162.67
Ge6600 99,50 512.00 337,70 506.00

FX5900 9391 763.24 18525 741.26

One strip: NvTriStrip FX5700 yes 1 1218 | 56.10 527.42 5556 256.23
Ge6600 171,50 501,50 366,90 495,50

FX5900 160.20 778.22 360.64 758.48

Several strips: NvTriStrip FX5700 yes 6194 1168 | 44.12 485.03 69.86 217.13
Ge6600 121.00 423,70 274,50 455,10

FX5900 130.61 768.23 270.73 438.12

Several strips: STRIPE ~ FX5700 no 917 1176 | 58.88 562.87 73.05 286.71
Ge6600 119,80 499.00 401,80 431,70

FX5900 105.89 715.57 335.33 614.39

Table 4. Techniques for geometry acceleration in LodStrips, results mesured in milliseconds

Object Test Vertices Strips Mb | IM VA VBO
Cow Linear 2904 136 0.183| 374 256 101
Exponential 460 129 1.06
Bunny Linear 34834 1229 2.111| 19.06 585 5.19
Exponential 2474 747 6.65
Horse Linear 58 485 1964 3.098| 2638 8.54 7.57
Exponential 35.51 13.17 9.85

Finally, we have also experimented with the use of acceleration techniques in a
continuous multiresolution model, based on strips, called LodStrips [9]. We have
applied the linear test and the exponential test [10] for the following test meshes:

246 P. Castello, J.F. Ramos, and M. Chover

Cow, Bunny and Horse. We have considered the total times (extraction + rendering)
in milliseconds to measure the performance.

As shown in Table 4, if we consider the object of highest complexity (Horse), it
can be seen that the vertex array technique improves performance by up to 300% with
regard to the immediate mode. The use of VBO provides an increase in performance
about 20% with regard to the vertex array technique.

5 Conclusions and Future Work

Of the different visualization techniques used by OpenGL, the worst technique is the
immediate mode. Vertex array leads to a gain of at least 300%, although the technique
that achieves the best performance is the display list, which offers a gain of 800%
with regard to the immediate mode. The use of VBO remarkably improves the per-
formance of the vertex array by up to 700% with regard to the immediate mode, al-
though it is lower than display lists. The use of the vertex cache significantly im-
proves VBO performance in complex 3D models, and almost reaches the level of
display lists. These proportions remain the same regardless of the drawing primitive
used, that is, whether they are strips or triangles.

In relation to the drawing primitive, the use of strips instead of triangles improves
performance by at least 100% if optimized triangles are used. If we employ original
model triangles, however, this can reach 600% when the drawing primitive is a dis-
play list. On the other hand, the memory requirements of strips are also about 30%
lower than in the case of triangles.

Finally, on comparing NvTriStrip strip generation with that of Stripe, it can be ob-
served that the benefits deriving from the best NvTriStrip case (one single strip with
degenerated triangles) and Stripe are similar, although NvTriStrip is significantly
improved in VBO. Stripe generates fewer strips than NvTriStrip. For this reason, it
achieves higher performance than NvTriStrip with several strips.

Therefore, it can be concluded that using strips as a drawing primitive and display
lists for static geometry is the best way to obtain the highest performance. In a case
involving dynamic geometry, VBO may be employed since its use in conjunction
with the vertex cache offers an increase in performance of 775%, compared with the
immediate mode, and this is close to the value achieved by display lists (an increase
of 800% with regard to the immediate mode).

Lastly, it can also be concluded that the application of the described techniques to
multiresolution modeling improves performance. However, these techniques impose

Table 5. Summary of performance in relation to the immediate mode

Primitive DL VA VBO VBO with NvTriStrip
Original triangles 300% 150% 225% -

Optimized triangles ~ 775% 200% 650% 700%

Triangle strips 800% 300% 700% 775%

A Comparative Study of Acceleration Techniques for Geometric Visualization 247

special requirements when working with data structures. This is notable at the time of
defining a new multiresolution model, and we must consider these restrictions if we
want to reach optimal performance. LodStrips is a multiresolution model in which
these techniques are applied easily.

An extension to this paper would be the application of the techniques described
above to different multiresolution models in order to increase their performance.

Acknowledgments

We are sincerely grateful to Cem Cebenoyan of NVIDIA Corporation for his helpful
feedback concerning the NvTriStrip library.

This work was partly financed by projects GameTools IST-2-00463 from European
Comission, Mater TIN2004-07451-C03-03 from the Spanish Ministry of Science and
Technology, Visual CAD FIT-3501101-2004-15 from the Spanish Ministry of Industry,
Tourism and Trade, and Juegos P11B2004-22 (Fundaci6 Caixa Castell6 - Bancaixa).

References

1. A Bogomjakov, C Gotsman. “Universal Rendering Sequences for Transparent Vertex
Caching of Progresive Meshes”, Computer Graphics Forum, (21:2) (2002) pp. 137-148.

2. M M Chow. “Optimized Geometry Compression for Real-time Rendering”, Proceedings
of the IEEE Visualization '97 (1997), pp. 347-354.4. Michalewicz, Z.: Genetic Algo-
rithms + Data Structures = Evolution Programs. 3rd edn. Springer-Verlag, Berlin Heidel-
berg New York (1996).

3. F Evans, S Skiena and A Varshney. Optimising Triangle Strips for Fast Rendering, IEEE
Visualization 96, pp. 319-326, 1996. http://www.cs.sunysb.edu/~stripe

4. M Garland. Multiresolution modeling: survey & future opportunities. State o the Art Re-
ports of EURO-GRAPHICS ’99, 1999.

5. H Hoppe. “Progresive Meshes”, Proc. of SIGGRAPH *96 (1996) 99-108.

6. H Hoppe. “Optimization of Mesh Locality for Transparent Vertex Caching”, ACM
SIGGRAPH 1999, pp. 269-276.

7. R Kempf and C Frazier. OpenGL reference manual. Reading, Addison-Wesley Develop-
ers Press, 1997.

8. NvTriStrip Library, NVIDIA Corporation (2002). Available on the Internet at the follow-
ing URL : http://developer.nvidia.com/object/nvtristrip_library.html

9. F Ramos, M Chover, LodStrips, Lecture notes in Computer Science, Proc. of Computa-
tional Science ICCS 2004, Springer, ISBN/ISSN 3-540-22129-8, Krakow (Poland), vol.
3039, pp. 107-114, June, 2004.

10. J Ribelles, M Chover, A Lépez and J Huerta, A First Step to Evaluate and Compare Mul-
tiresolution Models, Short Papers and Demos of EUROGRAPHICS’99 (1999) 230-232.

11. J Ribelles, A Lépez, O Belmonte, I Remolar, M Chover. Multiresolution modeling of arbi-
trary polygonal surfaces: a characterization. Computers & Graphics. Elsevier Science.
2002.

12. J Spitzer, “OpenGL Performance Tuning”, NVIDIA Corporation, GameDevelopers Con-
ference 2003.

13. M Woo, J Neider, T Davis. OpenGL programming guide. Reading, MA: Addison-Wesley
Developers Press, 1997.

	Introduction
	Solutions Overview
	Specific Solutions
	General Solutions

	Description of the Comparison
	Results
	Conclusions and Future Work
	Acknowledgments
	References

