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Abstract. A simple method for animation of water waves is presented.
The two-dimensional wave equation with damping is used to obtain a
finite difference scheme for height distribution. A computational proce-
dure employs explicit time integration. High frame rates are typically
obtained for real-time animation of water waves.

1 Introduction

During the last two decades, researchers has devoted some attention to anima-
tion of water movement under various conditions. Detailed reviews of techniques
for realistic water modeling and rendering have been presented by Iglesias [1]
and Adabala and Manohar [2]. According to the reviews, approaches to dy-
namic modeling of fluids can be divided into visually convincing techniques and
physically accurate techniques.

Visually convincing techniques usually use heuristic approaches to simulate
fluid-like behavior, which creates ’nice’ visual impression. These techniques can
provide high frame rates for animation. However, they may require complicated
tuning of empirical parameters.

Physically accurate techniques are mostly based on the numerical solution of
some form of the Navier-Stokes equations [3, 4, 5, 6]. Three-dimensional problems
have been solved by Foster and Metaxas [4]. Other authors [3, 5, 6] employ sim-
plified two-dimensional Navier-Stokes differential equations. Since the solution of
the Navier-Stokes equations is a computationally intensive task it usually makes
real-time animation impossible. In computer graphics it is recognized that faster
animation is more important than its physically-based realism. We devote our
efforts to short turnaround time of water wave animation while still preserving
simplified physical and mathematical foundations of an algorithm.

In this paper, we propose a method for animation of water waves, which is
based on the two-dimensional wave equation with damping. It can be shown
that the wave equation without damping is equivalent to the linearized shallow
water equation. This justifies the use of the wave equation for modeling water
waves. Using the wave equation with damping allows us to produce acceptable
realistic picture of waves characterized by decreasing of wave height with time.
Our dynamic model of water waves propagation utilizes explicit time integration
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of discrete analogue of the wave equation with damping. Initial conditions are
specified in the form of height excitation at one or several places. Additional
excitations can be introduced at any time during animation procedure. This
helps to simulate different phenomena such as rain drops or boat movement
on the water surface. A computer code for animation of water waves typically
provides high frame rates.

2 Computational Model

2.1 Governing equation

The linearized shallow water equation [6] assumes that water speed varies slowly
in space:
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Here it is supposed that the water surface is parallel to xy coordinate plane; u,
v are fluid velocities along x− and y− directions; h is the height of the water
surface; d is the water depth and g is the gravitational acceleration.

If to differentiate first equation in respect to x, second equation in respect to
y, third equation in respect to t and to combine all three equations, the following
second order differential equation containing only the height h can be obtained:
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It can be easily seen that for d = const the above shallow water equation coin-
cides with the two-dimensional wave equation without damping. From everyday
experience we understand that the wave equation without damping is not suf-
ficient for realistic water movement modeling. For example, wakes that spread
behind a boat as it moves forward are decreased with time. This phenomenon
can be modeled if to utilize the wave equation with damping, which can be
written down in the following from:
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where c is the wave speed and k is the damping constant.

2.2 Finite difference procedure

Finite Difference Equation. For water surface animation, let us introduce a
rectangular grid of nodal points for controlling the water height h. Each nodal
point is characterized by two subscripts as shown in Fig. 1: i, which counts grid
points along x and j, which counts grid points along y. Superscripts are used
to relate the quantity to time moment. The water height h at location xi, yj at
time moment t is denoted as ht

i,j .
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Fig. 1. Finite-difference grid for modeling wave movement

The finite difference approximation produces the following discrete analogue
of Eq. (3) for equal point steps along coordinate axes ∆x = ∆y:

ht+∆t
i,j − 2ht

i,j + ht−∆t
i,j

∆t2
+ k

ht
i,j − ht−∆t

i,j

∆t

= c2
4ht

i,j − ht
i+1,j − ht

i−1,j − ht
i,j+1 − ht

i,j−1

∆x2
.

(4)

After regrouping terms we arrive at the following expression for time integration
of the water height:
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Influence of neighbors at time t in Eq. (5) is estimated with the use of the
water height at four neighboring points: left, right, top and bottom. It is possible
to take into account all eight neighboring points for the height computation at
point i, j. Then the modified expression for time integration becomes:
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Numerical experiments demonstrate that wave shapes look visually better
when eight neighbors are taken into account. Thus, the Eq.(6) is preferable for
water animation.

Integration, Initial Conditions and Boundary Conditions. An explicit
scheme is used here for for time integration of the water profile. It has the
obvious advantage of simplicity. A possible drawback of explicit integration is its
instability for large integration time steps. The Courant-Friedrichs-Levy (CFL)
stability condition requires that no wave travels farther than one cell in one time
step. Our experience shows that for water animation problems the integration
(5) or (6) is stable for real-time animation with reasonable values of the wave
speed c and the damping constant k.
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(a) Boat view from above (b) Boat view from front

Fig. 2. Boat orientation: the direction angle θ, increment of the direction angle dθ and

the tilt angle φ

In order to compute the height values at time t+∆t we need the height values
for two previous time moments t and t−∆t. The initial conditions consist of: 1)
setting h0

i,j = 0 at time t0 = 0; 2) setting of initial excitations h1
i,j = ei,j at time

t1 = ∆t. Nonzero height values at time t1 can be specified at any number of grid
points. Minimum initial excitation at time t1 can include just one nonzero height
value. After specification of two initial fields hi,j , integration of Eq. (6) produces
the water height fields for any time in the future. If the damping constant k is
nonzero then the wave amplitude is decreasing with time.

In addition to initial excitation, any height values can be changed at any time
moment. Using random number generators in space and in time, it is possible
to simulate rain making indentations at the water surface, which imitate rain
drops. Surface profile correction allows one to simulate movement of a boat on the
water surface. Reflections of water waves at the boundary of the water reservoir
are modeled with the symmetry boundary conditions. If the grid point i, j is
located on the boundary then symmetrical interior points are employed instead
of lacking height values outside the grid in the time integration procedure.

2.3 Boat on the Water Surface

Presented here the water wave animation procedure may be suitable for game
development. Let us consider an application example where the boat follows the
mouse position in a manner similar to magnetic force interaction. Boat movement
is controlled by an acceleration vector a and by tilt angle φ as shown in Fig. 2.
Components of the acceleration vector are calculated using location of the boat
(xb, yb) and location of the mouse (xm, ym):

ax =
xm − xb√

(xm − xb)2 + (ym − yb)2
, ay =

ym − yb√
(xm − xb)2 + (ym − yb)2

. (7)

The above relations imitate magnetic force interaction. The acceleration vector
is used to calculate the velocity vector vt of the boat and new boat position.
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The angle between current boat orientation and the acceleration vector dθ can
be calculated as follows:

dθ = arccos
((

vt

|vt|
)
•

(
vt+∆t

|vt+∆t|
))

. (8)

The initial boat orientation is given by the programmer or by the user. The
direction angle θ defining boat orientation and the tilt angle φ are calculated as:

θt+∆t = θt + dθ, φ = κ dθ , (9)

where κ is an appropriate constant in order to make boat movement natural.
After moving the boat to new position, negative increment is applied to the
water height value at the previous boat position. This imitates wakes that spread
behind the boat.

3 Implementation

The computational procedure for animation of water waves can be implemented
in the following steps:

1. Define a grid for water height computation.
2. Apply initial deflections to some grid points.
3. Compute new water height values using wave profiles at two previous time

moments using Eq. (6).
4. Render the water surface.
5. If necessary apply height excitations at grid points (rain drops, boat move-

ment etc.)
6. Go to step 3.

To produce realistic water surface images with reflection, surface texture
coordinates are generated following the sphere mapping algorithm [7]. The algo-
rithm provides a reflection vector and texture coordinates that produce suitable
reflections on the water surface.

The wave animation algorithm has been programmed in C++ language using
OpenGL library for rendering. Desktop computer with Intel Pentium 4 2.4GHz
processor, 512MB RAM and NVIDIA GeForce4 graphics card was used to per-
form real time animations. The algorithm was tested on square grids of different
sizes, with different number of initial deflections and with different values of the
model parameters.

4 Examples

In this section, several examples of application of the proposed water wave anima-
tion algorithm to various water movements are presented. In the first example,
the surface deflection is applied to water surface at three points. The surface
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Fig. 3. Wave simulations with three initial deflections

Fig. 4. Rain imitation with 128 drops: R = 0.95 (left), R = 0.85 (right)

profile after reflections of waves from the walls is shown in Fig. 3. The finite
difference grid 64 × 64 is used. The frame rate is about 230 fps (frames per sec-
ond). The value of the damping coefficient is set to zero in order to demonstrate
effects of reflections and interference.

The example of Fig. 4 illustrates simulation of rain drops. The surface deflec-
tions are applied randomly at 128 grid points imitating rain drops. The surface
is divided into the 128 × 128 grid. A coefficient R = (1−k∆t) is set to 0.95 and
to 0.85 for the left and right pictures of Fig. 4 respectively. The code runs with
the frame rate about 100 fps.

Fig. 5 shows simulation of wave propagation inside a concave-shaped reser-
voir. The Π-shaped water surface is produced by cutting off the part of the
rectangular mesh. The surface is represented by the 64 × 64 grid. Four pictures
demonstrate the process of spreading waves with reflections from the walls and
interference. The frame rate is about 250.

Fig. 6 presents two screen shots of boat movement on the water surface. The
coefficient R = 0.95 is employed. Fractal mountains are used for a coast line.
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Fig. 5. Wave simulation applied to concave boundary surface

Boat trajectories and interference with some additional excitations can be seen
in the pictures.

The reported frame rates are given for the code which performs both finite
difference equation integration and water surface rendering for each frame. The
algorithm efficiency can be increased if to perform rendering just with necessary
for human eye frequency.

5 Conclusion

A simple and fast method for animation of water waves has been developed. Us-
ing the two-dimensional wave equation with damping, a finite difference relation
for a water surface profile was obtained. An explicit scheme was used for time
integration. One empirical coefficient was employed in order to simulate decrease
of wave amplitudes with time.

Our experiments with the proposed water wave model show that it provides
visually realistic animations of water waves with high frame rates. For example,
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Fig. 6. Boat on the water surface

frame rate 100 fps was obtained for a mesh of 128 × 128 points using Intel
Pentium 4 2.4GHz computer.
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