
PARADIS:
Analysis of Transaction-Based Applications

in Distributed Environments

Christian Glasner1, Edith Spiegl1, and Jens Volkert1,2

1 Research Studios Austria, Studio AdVISION,
Leopoldskronstr. 30, 5020 Salzburg, Austria

{christian.glasner, edith.spiegl}@researchstudio.at
http://www.researchstudio.at/advision.php

2 GUP - Institute of Graphics and Parallel Processing,
Joh. Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria

volkert@gup.uni-linz.ac.at

http://www.gup.uni-linz.ac.at

Abstract. The analysis of long running and distributed applications
poses a great challenge to software developers. PARADIS is a novel tool
that helps the programmer with accomplishing this task. It reconstructs
the corresponding event graph from events collected during a program
run and provides techniques to address the problems arising from large
traces. It offers several modules for specific examinations like the anal-
ysis of applications which process transactions and due to its modular
architecture it allows an easy extension of the functionality. We show
the usefulness on the basis of a real-life application and discuss future
enhancements.

1 Introduction

Program analysis and debugging are complex tasks in the area of software engi-
neering. Using profilers is a common way to understand the dynamic behavior
of an application, since they allow measuring the time being spent in particular
functions and consequently help to identify possible performance bottlenecks.
Unfortunately there are lots of reasons for bad runtime behavior that cannot be
tracked by this technique because simple time measurement only shows which
functions were responsible for the execution time but not the underlying causes.

This reason led to event-based debugging. The programmer or the tool au-
tomatically instruments an application at arbitrary points and at these points
information about state changes happening during a program run are recorded.
Each state record is associated with an event, that triggered the logging activity
and a series of recorded events is called a trace. These traces can be analyzed
either after termination of the inspected application (post-mortem) or simultane-
ously (on-line). In practice this event-based approach is limited by the number of
events which have to be gathered. If a high number of events are recorded it not

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3515, pp. 124–131, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



PARADIS: Analysis of Transaction-Based Applications 125

only slows down the execution of the program because of the logging activities (if
not avoided by additional hardware), but it also complicates the later analysis.
Possible problems arising are the time spent for trace processing and analysis,
the consumption of disk storage and working memory and the complexity of the
graphical representation.

To keep the number of events manageable one can instrument the program
very economically. However, trends show that for utilizing the capacity of all
available resources more and more applications get distributed across multiple
threads, processes or even nodes. This leads to higher complexity of the appli-
cations and to new sources of error. Taking into consideration multiprocessor
machines, clusters or grids combining hundreds or thousands of processors, the
need for detailed information about the program execution to find out the rea-
sons for an application’s unintentional behavior seems obvious. Even if enough
program information is gathered and sufficient computing power is provided one
still has to face the task of filtering the data to get valuable results during the
analysis and visualization.

In this paper we present PARADIS, a tool for the event-based analysis of
distributed programs. In Section 2 we discuss related work, while Section 3
focuses on the modular architecture of the tool. Section 4 describes a real world
example and finally an outlook on future work concludes the paper.

2 Related Work

There are several tools that address performance analysis of parallel programs.
According to the programming paradigm of the underlying program, they log
communication events like Send and Receive or resource assignment in shared
memory systems. They deal with large trace files but do not offer support for
the analysis of transaction-based applications, where events happening in the
context of a single transaction belong semantically together.

Paradyn [1] for instance, which was developed at the University of Wisconsin,
uses dynamic instrumentation to gather performance data such as CPU times,
wallclock times, and relevant quantities for I/O, communication, and synchro-
nization operations. As it allows dynamically setting and removing predefined
probes during a program’s execution the amount of generated trace data can be
kept relatively small, even when monitoring over a long period.

Vampir [2] and Vampir NG [3] analyze trace files produced by the Vampir-
trace library which has an API for defining events. Instrumentation is realized
by linking the application with the library, after adding the calls to Vampirtrace
to the source code. Similar to PARADIS they offer a hierarchical visualization,
but as the application is targeted at clustered SMP nodes, the display provides
three dedicated layers that represent cluster, nodes and processes [4].

Alike PARADIS DeWiz [5] utilizes the event graph model to represent a
program run. By connecting a set of specialized DeWiz modules (analysis, visu-
alization etc.), the user can build an event graph processing pipeline. The differ-
ent modules communicate using TCP/IP which makes it possible to distribute



126 C. Glasner, E. Spiegl, and J. Volkert

a DeWiz system across several computers. This loose coupling of the modules
contributes to the flexibility of DeWiz, but causes an administrative overhead
and performance problems during on-line monitoring and analysis activities.

3 Our Approach

We consider PARADIS a tool for the breakdown of distributed programs, like
on-line database systems with plenty of users, eBusiness, eCommerce or eGov-
ernment systems, to name only a few. Nevertheless, the techniques might also
prove very useful in the field of high performance computing, where message
passing and shared memory computing is common. Our intent is to allow users
to define events (eg. send and receive events when using MPI [6]), which are
logged during a program run. These events form an event graph which provides
the basis for our investigations. An event graph [7] is a directed graph, where
the nodes are events and the edges stand for relations between the events.

To obtain a description of the application flow it is necessary to order the
events in a causal manner. For this purpose we apply Lamport’s [8] ”happened-
before relation”. While the order for events occurring on one given object (node,
process, thread,...) is given implicitly by the real-time timestamps of the events
on the calling object with a given local time, the creation of relations between
two dependent events on different objects can be more complicated if considering
distributed systems without any global clock and where the local clocks are not
synchronized and drifting. To get these events ordered we use a logical time-
stamping mechanism (totally ordered logical clocks [9]).

Fig. 1. Block diagram of the PARADIS system. An event graph is constructed from

the recorded trace data and represents the basis for all further analysis tasks

Based on these conditions we create the event graph and offer various modules
for textual and graphical representations and examinations. Figure 1 shows the
logical units of PARADIS and their communication and is explained in the
following sections.



PARADIS: Analysis of Transaction-Based Applications 127

3.1 Monitoring

To enable event tracing, first the program has to be instrumented. At the moment
this is done statically by inserting calls to dedicated monitoring functions at
points of interest in the source code of the inspected program. Being aware of
the limitations due to the need of recompilation we are working on a dynamic
instrumentation module using dyninstAPI [10]. It will allow the examination of
already running programs without having to change the source code.

After the instrumentation each participating node in the computing environ-
ment executes a modified program which logs program state information. To
comply with our system, for each event the values described in Table 1 (Tr)
have to be recorded. Each event belongs to a particular category denoted by
type. Possible categories are ”communication”, ”critical section”, ”function call”,
”inspection of variable”, and also user defined ones. Each type can have several
subtypes. Identification is usually the id of the thread and the name or address of
the node where the event has occurred. Timestamp is used to calculate durations
(eg. blocking times) and statistics. For the creation of happened-before relations
we utilize the logical Lamport time which is stored in the field logicalclock.

Table 1. Information stored for each event in the PARADIS monitoring environment.

Kind indicates the traced (Tr) and the deduced (De) information

Information Description Kind

type Category to which the event belongs Tr
identification Id of the thread and machine that produced the event Tr
timestamp Local physical time measured at the occurence of the event Tr
logicalclock Used to reconstruct the logical sequence in the event graph Tr
data Any other information for the later analysis Tr/De
isHeadOf Events that relate as source events to this event De
isTailOf Events to which this event does relate as a source event De

The field data serves as storage for any further event-specific information.
For instance to find all events referring to the same critical section one has to
store the id of the critical section for which the events occurred. Since we use
PARADIS for the analysis of distributed transaction-based applications we also
store the id of the triggering transaction for each event. This information offers
the possibility to trace the processing of a complete transaction in a distributed
environment and to locate dependencies between single transactions.

3.2 Data Processing

The data processing unit commutes the raw events recorded during a monitored
program run into the internal data model where it is negligible whether the
analysis takes place post-mortem or on-line. For holding the relations, PARADIS
offers two data structures (see Table 1) for each event. These two structures,



128 C. Glasner, E. Spiegl, and J. Volkert

isHeadOf and isTailOf, store the connected events according to the event graph
definition and the application specific relations.

Figure 2 shows a more detailed image of the data processing unit. Each com-
ponent of the program which takes part in the monitoring process is recording
program information according to its instrumentation. These ”raw events” are
gathered by Trace Collectors (TC). It is necessary to offer different techniques
for the collection to accommodate different node types. For instance nodes in a
cluster with a shared file system may store their traces in dedicated directories
from where the TC fetches them, while single clients which do not grant access
to a TC will most probably prefer sending their traces in uncertain time inter-
vals. PARADIS allows new nodes to start, and already participating nodes to
discontinue partaking in the monitoring process at any time.

Fig. 2. Trace collecting and processing mechanism of PARADIS

Each raw event gets stored to the Event Graph Memory which offers a fast
and efficient indexing and caching mechanism for the ongoing creation of rela-
tions, graph transformations and examinations. If more raw events are produced
than the data processing unit can handle at a certain time, we use a selection
mechanism, named ”wave-front analysis”, where those events are worked up first
which occurred in neighbouring time segments. This leads to more significant re-
sults, as the event graph gets more detailed in the respective time frames and it
is more likely to find related events. Additionally it is possible to filter specific
events, for instance only those which cause blocking, to get intrinsic information
even during high workloads.

3.3 Analysis

This unit works directly on the event graph which leads to a low main memory
usage as there exists at most one single instance of any event at any time. The
event graph memory module caches clusters of the most likely to be requested
events (”sliding window”). By design an unlimited number of analysis modules
may be active simultaneously while the data processing unit is still generating the
graph. At the moment the analysis unit implements several filtering techniques,
like for example by time of appearance or by blocking type to name only a few,



PARADIS: Analysis of Transaction-Based Applications 129

but it is possible to extend the set with graph transformation, pattern matching
or export functionality for transferring PARADIS data to other graph analysis
or visualization tools like VisWiz [11] or GraphML [12].

As PARADIS additionally provides support for events which occurred in
the context of transactions, it governs the identifications of all transactions, to
accelerate access to the associated events. This is necessary because multiple
nodes and processes may work on the same transaction in parallel which can
lead to a spreading of events which belong semantically together in the event
graph memory.

3.4 Visualization

For simply visualizing communication between a handful of processes a space-
time diagram like the one adumbrated in Figure 1 may be sufficient, but for
large distributed programs with a vast number of processes, events and relations
it may not. As our target programs are transaction-based applications we pro-
pose an abstraction on transaction level. Figure 3a shows an overview of some
transactions of an example application, where a single bar represents one single
transaction. Dedicated events like the blocking time before obtaining a critical
section or establishing communication are emphasized on the lower and upper
half of the bar and with different colors. Thereby one gets an impression on
how long each transaction took place and how much time was spent unproduc-
tive due to blocking. As a bar contains all events of one transaction regardless
on which object they occurred it is necessary to provide a more detailed view
for the analysis of the communication patterns between the different nodes and
processes in the distributed environment (see Figure 3b).

To ease the detection of reasons of an unintended runtime behavior, PARADIS
supports the user by visually emphasizing different events and blocking times.
For figuring out the reasons for race conditions or communication patterns, trans-
actions that relate directly (communication partners, previous owner of critical
sections,... ) to the transaction under analysis are displayed too. The abstrac-
tion from transaction layer to process layer and the detailed information about
each single event contribute to the systematic breakdown of distributed applica-
tions. To maintain independence from the user interface and the output device
the visualization unit creates AVOs [13] (Abstract Visualization Object). The
graphical representation of these objects is chosen by the viewing component.
At the moment our graphical user interface is running under Microsoft Windows
and the AVOs are rendered with OpenGL.

4 Results

We have tested our tool with traces of a real-world document-flow and eBusiness
system. Users submit tasks using a web interface and the system executes the
tasks by distributing subtasks to different layers (client layer, frontend server,
backend server). In order to fulfil one task at least one transaction is created. The



130 C. Glasner, E. Spiegl, and J. Volkert

Fig. 3. The Transaction overview (a) shows all transactions in a given period, while

the Communication overview (b) represents the inter-node communication of a single

transaction

application was instrumented to produce events which comprehend the necessary
information for the ensuing analysis. It was then started on a test environment,
which is able to simulate real-world conditions. As this application is based on
transactions, each recorded event can be associated with a specific transaction.
One program run generates in one minute about 3000 transactions, 5.6 million
critical section operations (request, enter, leave) and 76000 delegation operations
(http and rpc requests, execution requests,...) which leads to a total of almost 6
million events per minute.

We have implemented several analysis and visualization modules like the one
described in the previous section and especially the transaction overview proved
very valuable for getting a first impression which transactions were unproduc-
tive over longer periods. With this information a goal-oriented search for the
causes was possible, though we must admit that for really large numbers of
transactions merging and filtering techniques become necessary to hide com-
plexity.

5 Future Work

According to our tests the close coupling of the data processing and analy-
sis units contributes causally to the celerity of PARADIS. Future work focuses
on two aspects: the first is tuning our tool. We are optimizing the most time
consuming tasks and want to reduce the amount of events, without losing im-
portant program information. One approach is the fractional outsourcing of the
generation of the event graph, where relations between events which do not rep-
resent any type of inter-node communication are created on the nodes where
they occurred. Another technique is the introduction of ”meta-events” which
encapsulate more than one event. This reduces the number of events and lessens
the access to the event graph memory, but needs more effort in administra-
tion.

The second aspect is how to widen the field of application. We are developing
new visualizations like highlighting positions with surpassing blocking times.
Furthermore we are designing a mechanism for setting checkpoints in order to
use record and replay techniques to repeat applications with non-deterministic
behavior for debugging purpose.



PARADIS: Analysis of Transaction-Based Applications 131

Acknowledgements

This work was funded by ARC Seibersdorf research GmbH Austria and was
originally initiated by an Austrian software company, which develops large dis-
tributed applications. The Institute of Graphics and Parallel Processing, at the
Joh. Kepler University Linz/Austria was taking part as a consulting member.

References

1. B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin, K.
L. Karavanic, K. Kunchithapadam, T. Newhall. The Paradyn Parallel Performance
Measurement Tools. IEEE Computer 28, pp. 37-46, November 1995.

2. H. Brunst, H.-Ch. Hoppe, W. E. Nagel, M. Winkler. Performance Optimization for
Large Scale Computing: The Scalable VAMPIR Approach. In V. N. Alexandrov,
J. Dongarra, B. A. Juliano, R. S. Renner, C. J. K. Tan (Eds.): International Con-
ference on Computational Science (ICCS), San Francisco, CA, USA, May 28-30,
2001, Proceedings, Part II. , Springer, LNCS 2074, pp. 751-760, 2001.

3. H. Brunst, W. E. Nagel, Allen D. Malony. A Distributed Performance Analysis
Architecture for Clusters. IEEE International Conference on Cluster Computing,
Cluster 2003, IEEE Computer Society, Hong Kong, China, pp. 73-81, December
2003.

4. S. Moore, D. Cronk, K. London, J. Dongarra. Review of Performance Analysis
Tools for MPI Parallel Programs. In Proceedings of the 8th European PVM/MPI
Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface, Springer, pp. 241-248, 2001.

5. C. Schaubschläger, D. Kranzlmüller, J. Volkert. Event-based Program Analysis
with DeWiz. In M. Ronsse, K. De Bosschere (Eds.): Proceedings of the Fifth Inter-
national Workshop on Automated Debugging (AADEBUG 2003), Ghent, Septem-
ber 2003.

6. Message Passing Interface Forum, MPI: A Message-Passing Interface Standard -
Version 1.1, http://www.mcs.anl.gov/mpi/, June 1995.

7. D. Kranzlmüller. Event graph analysis for debugging massively parallel programs.
PhD Thesis, Institute for Graphics and Parallel Processing, Joh. Kepler University
Linz, Austria, http://www.gup.uni-linz.ac.at/~dk/thesis/, September 2000.

8. L. Lamport. Time, clocks, and the ordering of events in a distributed system. In
Communications of the ACM, Vol. 21, No. 7, pp. 558-565, July 1978.

9. C. Fidge. Fundamentals of Distributed System Observation. In IEEE Software,
Volume 13, pp. 77-83, 1996.

10. B. Buck, J. Hollingsworth. An API for Runtime Code Patching. In Journal of High
Performance Computing Applications, 14(4), pp. 317-329, 2000.

11. R. Kobler, Ch. Schaubschläger, B. Aichinger, D. Kranzlmüller, J. Volkert. Exam-
ples of Monitoring and Program Analysis Activities with DeWiz. In Proc. DAPSYS
2004, pp. 73-81, Budapest, Hungary, September 2004.

12. U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, M. S. Marshall. GraphML
Progress Report: Structural Layer, Proposal.Proc. 9th Intl. Symp. Graph Drawing
(GD ’01), LNCS 2265, pp. 501-512, 2001.

13. R. B. Haber, D. A. McNabb. Visualization idioms: A conceptual model for scientific
visualization systems. In G. Nielson, B. Shriver, L. J. Rosenblum: Visualization in
Scientific Computing, pp. 74-93, IEEE Comp. Society Press, 1990.


	Introduction
	Related Work
	Our Approach
	Monitoring
	Data Processing
	Analysis
	Visualization

	Results
	Future Work



