New Algorithms for Performance Trace Analysis
Based on Compressed Complete Call Graphs

Andreas Kniipfer and Wolfgang E. Nagel

Center for High Performance Computing,
Dresden University of Technology, Germany
{knuepfer, nagel}@zhr.tu-dresden.de

Abstract This paper addresses performance and scalability issues of
state-of-the-art trace analysis. The Complete Call Graph (CCG) data
structure is proposed as an alternative to the common linear storage
schemes. By transparent in-memory compression CCGs are capable of
exploiting redundancy as frequently found in traces and thus reduce the
memory requirements notably. Evaluation algorithms can be designed
to take advantage of CCGs, too, such that the computational effort is
reduced in the same order of magnitude as the memory requirements.

1 Introduction

Todays High Performance Computing (HPC) is widely dominated by massive
parallel computation, using very fast processors [I]. HPC performance analysis
and particularly tracing approaches are affected by that trend. The evolution of
computing performance combined with more advanced monitoring and tracing
techniques lead to very huge amounts of trace data. This is becoming a major
challenge for trace analysis - for interactive investigation as well as for automatic
analysis. With interactive work flows the requirement for fast response times is
most important for analysis tools. For automatic or semi-automatic tools that use
more or less computational expensive algorithms and heuristics this is a severe
problem, too. Both have in common that the effort depends on the amount of
trace data at least in a linear way.

The state of the art in-memory data structures for trace data suggest linear
storage only, i.e. arrays or linear linked lists [2[111[4,14]. Even though they are
fast and effective for raw access, they lack opportunities for improvement.

The Compressed Complete Call Graph (¢cCCG) is a promising alternative
approach for storing trace data. Contrary to linear data structures it offers fast
hierarchical access. Furthermore, it supports transparent compression of trace
data which saves memory consumption as well as computational effort for some
kinds of queries.

The following Section [2] gives a concise overview and definition of cCCGs as
well as its properties. Based on that, the concept of Cached Recursive Queries
onto ¢cCCGs is developed in Section Bl Also, it provides some typical examples
of use for this algorithm with performance results. Finally, Section [concludes
the paper and gives an outlook on future work.

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3515, pp. 116-[I23] 2005.
(© Springer-Verlag Berlin Heidelberg 2005

New Algorithms for Performance Trace Analysis Based on cCCG 117

2 Compressed Complete Call Graphs (cCCGs)

An alternative way to the traditional linear scheme is to re-create the complete
function call tree. This preserves the temporal order as well as the call hierarchy.
A Complete Call Tree (CCT) contains the comprehensive function call history
of a process. This makes it different from ordinary Call Trees which store a
summarized caller to callee relation only [6]. Furthermore, not only function
call events but also all other kinds of events can be contained such as message
send /receive events, I/O events or hardware performance counter samples. How-
ever, the function call hierarchy determines the structure of the CCT. F igure
shows an example of a Complete Call Tree including some MPI_Send () calls.

I
T —

I
[fomoon [rmon [

‘main (3)

[foo (1) | [foo (11) |

[120000 30000 T 170000] 30000] 450000 | | 120000 [30000] 170000] 30000] 450000 |

[bar (12) bar (12) | [bar (12)

[2000 T 900 T 1100 T 900 [1100 J900 23100 | [2000 [900 [1100 [900] 1100 [900 [23100 | 2000 T 900 T 1100 T 900 1100 [900] 23100
[MPI_Send (6) | [MPLSend 6) | [MPLsend©) | [MPLSend® | [MPLSend () | [MPLSend 6) | [MPL_Send 6) | [MPL_Send 6) |
[oJoJoo] [o]oJoo] [oo]oe0 | [o]o]o0o]| [o]o]o0] [o]o]o00] [0To o] [0To o]

100 bytes 100 bytes 100 bytes 100 bytes 100 bytes 100 bytes 100 bytes 100 bytes

(a) uncompressed (b) compressed

Fig. 1. An example Complete Call Graph (a) and its compressed counterpart (b)

This figure shows also another difference to the traditional way of storing
trace data. Instead of time stamps the CCT holds time durations which is most
important for the compression part. Of course, the back and forth transformation
between time stamps and time durations is simple. In terms of expressiveness a
CCT is equivalent to a traditional linear data structure with time stamps.

2.1 Compression

The more structured CCT representation makes it easy to detect identical nodes
and sub-trees of pairwise identical nodes. All groups identical sub-trees are then
replaced by references to a single representative item. All other instances can
be eliminated completely. This removal of redundancy is a typical strategy for
data compression and transforms CCTs to Compressed Complete Call Graphs
(cCCGs). Figure [1(b)|shows the compressed counterpart of the previously men-
tioned CCT in Figure Of course, this transformation destroys an essential

118 A. Kniipfer and W.E. Nagel

property of tree graphs, namely the single parent node property. However, all
construction and query algorithms can be implemented in a way not to rely on
that. Thus, this kind of compression can be said to be completely transparent
with respect to read access.

So far, cCCGs offer a completely lossless compression scheme for trace data.
HPC programs show a high degree of repetition and regularity. This is reflected
in traces as well. Therefore, this compression strategy works reasonably well.

At this point, it is possible to allow not only equal but also similar sub-
trees to be mapped onto one another. This takes this approach another step
further introducing lossy compression. However, this is applicable for selected
members of the node data structure only. For example, identifiers for functions
or processes must not be subject to lossy compression because this would render
the information invalid. Other data members as time durations, operation count,
message volumes etc. are robust against small deviations in the data.

So, all those thoughts need to be considered when defining what similar is
supposed to mean for sub-graphs. Furthermore, all deviations introduced must
be limited by selectable bounds. This will induce error bounds for all results
computed from data carrying deviations.

Following this construction scheme plainly there arises one major disadvan-
tage in terms of general graph data structures. As the structure of a CCG is
determined by the call hierarchy alone, the tree’s branching factor is unbounded
and probably very large. This causes two negative effects. First, large branching
factors are most undesirable for tree traversal algorithms. Second, the compres-
sion ability is enhanced by rather small branching factors By introducing special
nodes the branching factor can be bounded to an arbitrary constant > 2 [7].

2.2 Compression Metrics

In order to make the compression comparable a measure for compression is
needed. For cCCGs there are two metrics suitable for different purposes:
Memory, Nodesq N

R, = » By T @)
m Memorycompressed "

NOdeScompressed n

First, the ratio R, of the raw memory consumption of graph nodes including
references (pointers) to child nodes is suitable for estimating memory consump-
tion. This is a the key issue as soon as data compression is concerned. Second,
the node count ratio R,, is very useful when estimating the computational effort
for tasks that perform constant amount of work per graph node. Since single
nodes have variable memory footprints R,, is not proportional to R,,.

Practical experiments with real world traces from 20 MB up to 2 GB have
shown very promising results [7]. For zero time deviation bounds R,, ranges
from 2 to 8 and R, lies in between 5 and 14. For large traces with midrange
deviation bounds for time information of 1000 ticks (timer units) or 50 % the
memory compression ratio R, rises up to 44 while the node compression ratio
R,, climbs up to 93. With more relaxed bounds R,, and R, rise over 1000!

Compression ratios of Rx < 1 are impossible, and the memory requirements
for uncompressed CCGs and traditional linear data structures are about the

New Algorithms for Performance Trace Analysis Based on cCCG 119

same. In general, it can be stated that more relaxed error bounds lead to better
compression. Furthermore, larger traces usually yield better compression than
shorter ones. Moreover, the higher the final compression ratio will grow, the
faster the compression itself will be. Within the CCG creation algorithm the
construction and compression steps are closely integrated such that at no point
the whole uncompressed graph needs to be stored. The overall complexity for
c¢CCG construction is O(N-m) with the node count in the uncompressed CCG N
and a rather small factor m. For construction, split and compression algorithms,
complexity analysis and experimental performance results see [10].

3 Cached Recursive Queries

After creation from trace or re-creation from a previously saved version the
Compressed Complete Call Graph is available in main memory for querying.
This might involve automatic evaluation procedures or interactive user queries.
This article focuses on interactive queries particularly with regard to visualiza-
tion tasks while, of course, the cCCG data structure is suitable for performing
automatic analysis, too.

One of the two most important kinds of queries is the so called Summary
Query. It computes a certain property for a given time interval and a given set
of processes. Typical examples for summary queries are exclusive or inclusive
run time per function, message volumes per pairs of processes, average hardware
performance counter values and many more.

The traditional algorithm to derive summary statistics performs a single lin-
ear read-through of all process traces and uses some additional temporary mem-
ory to re-play the call stack. While this read-through in temporal order can be
emulated by cCCGs another algorithm is proposed here. Following the tree-like
graph structure a recursive traversal of the graph seems most obvious. This is
well suited to calculate the query’s result in a divide and conquer style. Con-
sidering an uncompressed CCG the graph itself is its own evaluation graph as
shown in Figure[2] for a single process. From the computational complexity point
of view this algorithm is equal to the traditional way with O(N) effort.

For successive queries with overlapping time intervals this evaluation scheme
can be improved by caching of intermediate results at graph nodes. Especially for
interactive navigation within a trace such sequences of successive queries with
non-disjoint time intervals are very common. Most of the time, it involves an
initial global query followed by multistage zooming into some interesting regions
for closer examination.

Caching avoids re-computation of intermediate results that appear multiple
times. That means, whenever the evaluation encounters existing cached results
the computation graph is pruned, i.e. the underlying sub-tree must not be tra-
versed. See Figure [for an illustrated example.

Typical cache strategies like Most Frequently Used (MFU) or Most Recently
Used (MRU) are not feasible here, assuming that the cache is small in compar-
ison to node count. When inserting newly computed results this would lead to

120 A. Kniipfer and W.E. Nagel

I A
Fig. 2. Evaluation graph for querying a uncompressed CCG. This is identical to the
CCGs own structure. Marked green (dashed) and blue (dotted) there are two successive

nested queries to the initial global query. For both the recursion can be pruned as soon
as a cached intermediate result is found for one of the graph nodes

continuous cache thrashing. Instead, heuristics are utilized to limit the number
of entries. For example, one could insert every n’th result into the cache. Another
convenient strategy is to insert only nodes of certain depth levels d,,oqe With

dnoge modulo x =y, y < x. (2)

The latter strategy allows to estimate the computational effort, because there
are at maximum x depth levels to traverse before there are cached results for all
nodes. With maximum branching factor b this yields worst case effort of O(b").
In addition to this effort, there is a preceding effort of finding the smallest
graph node containing the given time interval. This involves following a single
path from the root node downwards if maximum length d which is the maximum
tree depth. Furthermore, any result for nodes intersecting the bounds of the cur-
rent time interval cannot be cached but must be computed in a special way which
is aware of the interval bound. Therefore, all nodes intersecting the time interval
bounds must be handled separately. For both interval bounds this involves at
maximum 2 - d nodes. Thus, the overall complexity is O(d + *) < O(N).

3.1 Application to Compressed CCGs

This algorithm can be applied to compressed CCGs as well. Actually, compres-
sion contributes to a tremendous improvement of this evaluation scheme. Since
graph nodes are referenced repeatedly, caching pays off even for initial queries.
In addition, the compressed node count n < N causes a reduced cache size.
This saving is proportional to the node compression ratio R,, = % At the same
time, the cache re-use frequency is increased by that factor. Alternatively, the
parameters for the caching heuristics can be relaxed - compare Equation (2.
Figure Bl gives an impression how the compressed counterpart to the example in
Figure 2l might look like and how initial and successice queries are performed.
The second of the two most important kinds of interactive queries is the
Timeline Visualization Query. It shows the behavior of some properties over the
course of time representing values with a color scale. Subject of timeline displays
might again be statistical values like run time share, communication volumes or

New Algorithms for Performance Trace Analysis Based on cCCG 121

o Q@

Fig. 3. Evaluation graph of successive queries on a compressed CCG. Just like within
the CCG itself some sub-trees are replaced by references to other instances. Thus, some
sub-trees are referenced more than once. Intermediate results for such sub-trees can
be re-used within the initial query and in all successice queries. Sub-trees might even
be shared by multiple processes, e.g. processes P1 and P2 might references sub-trees
originally from PO

hardware performance counter values. It might also be the characterization of
the function call behavior, maybe even including the call hierarchy. This is in
fact the most commonly used variety of timeline displays [3,2].

Always, timeline visualizations are rendered for a given horizontal display
resolution of w <« N pixels. With traditional data structures this requires lin-
ear effort O(N) for a single read-through at least. Based on ¢CCGs, this quite
different task can be converted to a series of Cached Recursive Queries, each
one restricted to the time interval associated with a single pixel. This allows to
transfer the reduced effort algorithm (with O(d + b)) to this problem, too.

3.2 Performance Results

After the theoretical considerations some performance results shall emphasize
the practical advantages of the cCCG based Cached Recursive Queries. As test
candidate a trace file from the ASCI benchmark application IRS [I3] was used
which is 4 GB in size (in VTF3 format [I2]) and contains 177 million events.
This measurements were performed on an AMD Athlon 64 workstation with
2200 MHz speed and 2 GB of main memory.

Figure @l shows the evaluation time for a Cached Recursive Query computing
exclusive and inclusive time as well as occurrences count per function all at once.
It is presented depending on the node compression ratio R,, of the cCCG and the
cache strategy parameter = as in Equation (2]). The left hand side shows initial
queries which take 1s to 23s depending on compression rate. There is only a
minor influence of the caching parameter. On the right hand side, run times
for successive queries are shown, again with global scope. Here, the run time
ranges from 50ms to 400ms which is without doubt suitable for truly interactive
responses. For non-global queries restricted to a smaller time interval both, initial
and successive queries will be even faster.

In comparison to traditional evaluation on linear data structures this is an
important improvement. For example, the classical and well known trace analysis
tool Vampir [2] is incapable of providing any information about the example

122 A. Kniipfer and W.E. Nagel

initial query successive query
25 " ” " 0.4 T T T . T
[mod 10 —+— L mod 10 —+—
I mod 9 mod 9
20 mod 8 k-] 03 L\ mod 8 ¥
H mod5] mod5 [
= 15| 1=
] o 02F T
E olf £ T
% - +
51 ey 1 RO - «|
0 R 0B 5
0 200 400 600 800 1000 0 200 400 600 80 1000
node compr. ratio R, node compr. ratio R,

Fig. 4. Run time for initial (left) and successive (right) global Cached Recursive Queries
on cCCGs with different compression levels and caching parameters

trace just because of its size on the given workstation as 2 GB main memory are
insufficient to contain the trace. Furthermore, on any 32 bit platform the address
range is not large enough. Thus, the new approach is not only a an improvement
in speed but also in receiving any valid information or not.

4 Conclusion and Outlook

The paper presented a novel evaluation algorithm for Compressed Complete
Call Graphs. This Cached Recursive Query is capable of delivering results in a
truly interactive fashion even for larger traces. This is especially necessary for
convenient manual analysis and navigation in traces. For large traces, this is
superior to the traditional scheme. Furthermore, this algorithm unites the tasks
of computing statistical summary queries and of generating timeline diagrams.

Parallelizing and distributing the Compressed Complete Call Graph approach
and the Cached Recursive Query algorithm is another option to extend the range
of manageable trace file sizes. This has already been implemented in a successful
experiment [§] introducing the cCCG data structure into Vampir NG [5].

Future research will focus on automatic and semi-automatic performance
analysis techniques based on cCCG data structures. First, this aims at apply-
ing known procedures to cCCGs taking advantage of compression and reduced
memory footprint. Second, this extends to developing new methods. Some result
have already been published in [9].

References

1. George Almasi, Charles Archer, John Gunnels, Phillip Heidelberger, Xavier Mar-
torell, and Jose E. Moreira. Architecture and Performance of the BlueGene/L
Message Layer. In Recent Advances in PVM and MPI. Proceedings of 11th Fu-
ropean PVM/MPI Users Group Meeting, volume 3241 of Springer LNCS, pages
259-267, Budapest, Hungary, September 2004.

10.

11.

12.

13.

14.

New Algorithms for Performance Trace Analysis Based on cCCG 123

H. Brunst, H.-Ch. Hoppe, W.E. Nagel, and M. Winkler. Performance Otimization
for Large Scale Computing: The Scalable VAMPIR Approach. In Proceedings
of ICCS2001, San Francisco, USA, volume 2074 of Springer LNCS, page 751.
Springer-Verlag Berlin Heidelberg New York, May 2001.

H. Brunst, W. E. Nagel, and S. Seidl. Performance Tuning on Parallel Systems: All
Problems Solved? In Proceedings of PARA2000 - Workshop on Applied Parallel
Computing, volume 1947 of LNCS, pages 279-287. Springer-Verlag Berlin Heidel-
berg New York, June 2000.

. Holger Brunst, Allen D. Malony, Sameer S. Shende, and Robert Bell. Online

Remote Trace Analysis of Parallel Applications on High-Performance Clusters.
In Proceedings of ISHPC’03 Conference, volume 2858 of Springer LNCS, pages
440-449, 2003.

Holger Brunst, Wolfgang E. Nagel, and Allen D. Malony. A Distributed Perfor-
mance Analysis Architecture for Clusters. In IEEE International Conference on
Cluster Computing, Cluster 2003, pages 7381, Hong Kong, China, December 2003.
IEEE Computer Society.

David Grove and Craig Chambers. An assessment of call graph construction algo-
rithms. http://citeseer.nj.nec.com/groveOOassessment.html, 2000.

Andreas Kniipfer. A New Data Compression Technique for Event Based Program
Traces. In Proccedings of ICCS 2003 in Melbourne/Australia, Springer LNCS 2659,
pages 956 — 965. Springer, Heidelberg, June 2003.

Andreas Kniipfer, Holger Brunst, and Wolfgang E. Nagel. High Performance Event
Trace Visualization. In 13th Euromicro Conference on Parallel, Distributed and
Network-based Processing, Lugano, Switzerland, Feb 2005.

Andreas Kniipfer, Dieter Kranzlmiiller, and Wolfgang E. Nagel. Detection of Col-
lective MPI Operation Patterns. In Recent Advances in PVM and MPI. Proceed-
ings of 11th European PVM/MPI Users Group Meeting, volume LNCS 3241, pages
259-267, Budapest, Hungary, September 2004. Springer.

Andreas Kniipfer and Wolfgang E. Nagel. Compressible Memory Data Structures
for Event Based Trace Analysis. Future Generation Computer Systems by FElsevier,
2004. [accepted for publication].

Dieter Kranzlmiiller, Michael Scarpa, and Jens Volkert. DeWiz - A Modular Tool
Architecture for Parallel Program Analysis. In Furo-Par 2003 Parallel Processing,
volume 2790 of Springer LNCS, pages 74-80, Klagenfurt, Austria, August 2003.
S. Seidl. VTF3 - A Fast Vampir Trace File Low-Level Library. personal commu-
nications, May 2002.

The ASCI Project. The IRS Benchmark Code: Implicit Radiation Solver.
http://wuw.1llnl.gov/asci/purple/benchmarks/limited/irs/|, 2003.

F. Wolf and B. Mohr. EARL - A Programmable and Extensible Toolkit for An-
alyzing Event Traces of Message Passing Programs. Technical report, Research
Center Jiilich, April 1998. FZJ-ZAM-IB-9803.

http://citeseer.nj.nec.com/grove00assessment.html
http://www.llnl.gov/asci/purple/benchmarks/limited/irs/

	Introduction
	Compressed Complete Call Graphs (cCCGs)
	Compression
	Compression Metrics

	Cached Recursive Queries
	Application to Compressed CCGs
	Performance Results

	Conclusion and Outlook

