Storage Formats for Sparse Matrices in Java

Mikel Lujan*, Anila Usman, Patrick Hardie, T.L. Freeman, and John R. Gurd

Centre for Novel Computing, The University of Manchester,
Oxford Road, Manchester M13 9PL, United Kingdom
{mlujan, ausman, hardiep, lfreeman, jgurd}@cs.man.ac.uk

Abstract. Many storage formats (or data structures) have been pro-
posed to represent sparse matrices. This paper presents a performance
evaluation in Java comparing eight of the most popular formats plus one
recently proposed specifically for Java (by Gundersen and Steihaug [6] —
Java Sparse Array) using the matrix-vector multiplication operation.

1 Introduction

Sparse matrices are those matrices which have a substantial minority of nonzero
elements — normally less than 10% are nonzero elements. These matrices are
pervasive in many computational science and engineering (CS&E) applications.
The storage formats for sparse matrices have been proposed to better suit par-
ticular CS&FE applications or computer architectures. The significant number of
different storage formats is the source of a research problem. For example, con-
sider the recently published Basic Linear Algebra Subroutines (BLAS) standard
and the part dedicated to sparse matrices (Sparse BLAS)[M]. The Sparse BLAS
do not state which storage formats must be supported or used. Each specific
hardware vendor has the freedom (or problem) to select the storage format (or
formats) that perform best for its hardware. In the context of iterative meth-
ods [2] and Java, this papers investigates the performance delivered by different
storage formats considering a wide variety of sparse matrices.

The structure of the paper is as follows. Section 2] introduces the most com-
monly used storage formats for sparse matrices. The Java Sparse Array (JSA)
storage format was recently proposed by Gundersen and Steihaug [6] to take
advantage of Java arrays; Section [3 briefly describes JSA. The performance eval-
uation (see Section [l consider a specific kernel from iterative methods, namely
matrix-vector multiplication, and compares this operation on two different com-
putational platforms with nine different storage formats. The Java implementa-
tion of this matrix operation is described in Section dl The performance study
considers around 200 different sparse matrices representing various CS&E ap-
plications as recorded by the Matrix Market repository [I]. To the best of the
authors’ knowledge, there is no other performance evaluation of storage formats
for sparse matrices which consider such a variety of matrices and storage formats.
Conclusions and future work are given in Section

* ML acknowledges a postdoctoral fellowship from the Basque Government. AU
acknowledges a postdoctoral fellowship from the HEC Pakistan.

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3514, pp. 364-371] 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Storage Formats for Sparse Matrices in Java 365

2 Storage Formats for Sparse Matrices

The objective of storage formats for sparse matrices is to best exploit certain ma-
trix properties by (1) reducing memory space, by storing only nonzero elements
of a sparse matrix, and (2) by storing these elements in contiguous memory
locations, for more efficient execution of subroutines on the matrix data.

From an implementation point of view, there are two categories of storage
formats. Point entry is used to categorise storage formats where each entry
in the storage format is a single element of the matrix. Block entry refers to
storage formats where each entry defines a dense block of elements of any two
dimensions. For both cases, programming languages provide static and dynamic
data structures. However since Fortran 77 has been the dominant language in
CS&E and does not support dynamic data structures, the most commonly used
storage formats are array-based.

There are many documented versions of different storage formats for sparse
matrices. One of the most complete sources is the book by Duff et al. [3] (for a
historical source see [7]).

2.1 Point Entry Storage Formats

Coordinate Format (COQO) — Possibly the most intuitive storage format for
a sparse matrix is in terms of coordinates. Instead of storing the matrix densely,
a list of the coordinates in terms of row and column numbers is stored, with the
associated nonzero values. COO requires no specific structure of the matrix and
is a very flexible format. It requires three (unordered) arrays and a single scalar
recording the total number of nonzero elements, nnz. The combination of the
three arrays provides a row ¢ and column j coordinate pair for an element in the
matrix along with its value a;;. In general, for a matrix with nnz, COO requires
three 1-dimensional arrays of length nnz plus a scalar.

Compressed Sparse Row/Column Storage Formats (CSR/CSC) — As
with COO, CSR and CSC storage formats can store any matrix. In CSR, the
nonzero values of every row in the matrix are stored, together with their column
number, consecutively in two parallel arrays, Value and j. There is no particu-
lar order with respect to the column number, j. The Size and Pointer for each
row define the number of nonzero elements in the row and point to the relative
position of the first nonzero element of the next row, respectively. The column
based version, CSC, instead stores Value and 4, in two parallel arrays and Size
and Pointer of each column allows each member of Value to be associated with
a column as well as the row given in . The storage requirements are two arrays,
each of length the number of rows (or columns), and two further arrays of length
nnz, and a scalar to point to the next free location in the arrays ¢ (or j) and Value.

The Diagonal Storage Format (DIA) and Skyline Storage Formats (SKS)
are also part of the performance evaluation described in Section [but their
description is omitted for brevity.

366 M. Lujén et al.

rectangular two—dimensinnal array | jagged teo—dimensinn array

Fig. 1. Examples of two-dimensional arrays in Java

2.2 Block Entry Storage Formats

Block entry storage formats form an extension of certain point entry storage
formats based on partitioning matrices into blocks of elements (i.e. sub-matrices).
An example of a variable block matrix A is as follows:

@11 @a12)|a13 A14 G15 A16|A17

a2z aszz|az3 a4 azs aze|azr
° A1 Az Ass
or

a3l asz|ass asa ass asze|a
A = 31 432|433 @34 435 936|937 Ag1 Ass Asg where, for example, A1; =
41 Q42|43 Q44 Q45 A46|A47 Asz1 Ass Ass

as1 a52|as53 54 A55 A56(A57
a1 A62|A63 A64 A65 A66|A6T

aq7
a23 G24 a25 G26
(an a2)’ Az = (017), Azz = and Azz = (as7 |.
a33 @34 azs asze

ae7

In the point entry storage formats, the storage format describes the position in
the (Value) array of single matrix elements. Block entry storage formats (with
length of block Ib), instead have a scheme to describe the position of a single
block in a n/lb x n/lb blocked matrix. Each block contains [b? elements. In
this way, most point entry storage formats can be blocked to generate Block
Coordinate storage format (BCO), Block Sparse Row/Column storage format
(BSR/BSC) and others where the block does not have constant dimensions (e.g.
Variable Block Compressed Sparse Row).

3 Java Sparse Array (JSA)

The storage formats covered so far have been in use for several years. In contrast,
a more recent storage format, JSA, has been created to exploit Java’s flexible
definition of multi-dimensional arrays. In Java, every array is an object storing
either primitive types (i.e. float, double, etc.) or other objects. A two-dimensional
array is formed as an array of arrays. This definition enables developers to create
both rectangular and jagged arrays (see Fig.).

JSA is a row oriented storage format similar to CSR. It uses two arrays, each
element of which is itself an array (object). One of these arrays, Value, stores
arrays of the matrix elements — each row in the matrix has its elements in a
separate array. All the separate arrays are elements of the Value array; that is
an array of array objects. The second main array Index stores arrays containing
the column numbers of the matrix, again one array per row. The memory re-

Storage Formats for Sparse Matrices in Java 367

-

il
az Indlex Value
a2 25 =3 |3 " thaq| thg
A= 28X L5
"l y Tl
(41 (142 44 g L]z 4 gl Bzl Gy

(54 "- Q

Fig. 2. An example sparse matrix stored using JSA

quirements to store a sparse matrix in JSA are 2nnz +2n array locations. Figure
shows an example sparse matrix stored using JSA.

4 Sparse Matrix-Vector Multiplication

The performance evaluation presented in the following section is predicated upon
Java implementations of sparse matrix-vector multiplications. These implemen-
tations have been developed for this work and follow the structure of the Fortran
95 reference implementation of the Sparse BLAS developed by CERFACS [4].
Object-oriented features are used only for passing parameters to methods (sub-
routines), but are not used inside the kernels that actually implement the matrix
operation. Some simplifications are made compared with the Sparse BLAS refer-
ence implementation. The matrix data is assumed to be static once created. This
does not modify the implementation of the matrix-vector multiplication, but
simplifies the code to create, access and destroy matrices. The implementations
concentrate on square and double precision matrices. The Java implementations
incorporate external code, such as JSA.

JSA Implementation — Two Java implementations of sparse matrix-vector
multiplication are considered for JSA: JSA-GS and JSA2. The JSA-GS imple-
mentation is the code made available by Gundersen and Steihaug [6]. This code
does not include a specialised case for symmetric matriced]. A new subroutine
was incorporated into this code (a new method in class JavaSparseArray) to
support symmetric matrices. The JSA2 implementation is a reimplementation
of JSA following the structure of the Sparse BLAS reference implementation. The
main differences compared with JSA-GS is the code for creating, handling and
destroying matrices, and one subroutine (or method) which implements the mul-
tiplication rather than two as in JSA-GS. When a matrix is created the Sparse
BLAS allow users to specify whether the matrix is symmetric. With JSA-GS
a program has to check the information provided about the matrix to call ei-
ther the general subroutine or the symmetric subroutine. With JSA2, a program
simply calls the subroutine and the check is performed internally. Otherwise the
sets of instructions that implement the multiplication are identical.

1 A matrix A is symmetric when a;; = a;;.

368 M. Lujén et al.

5 Performance Evaluation

The aim of this performance evaluation is to analyse the circumstances under
which a given storage format performs better than the other storage formats.

Table 1. Legend for the ‘storage formats’-axis in Fig. (]

1|{COO 6 |[BCO block size 8 11|BSR block size 16 16|BSC block size 32
2|CSR 7 |BCO block size 16 12|BSR block size 32 17|BSC block size 64
3|CSC 8 |[BCO block size 32 13|BSR block size 64 18| DIA

4[JSA-GS 9 [BCO block size 64 14|BSC block size 8 19|SKS

5[JSA2 10|BSR block size 8 15|BSC block size 16

Experimental Testbed — Matrix test data are (around 200 different matri-
ces) real, symmetric and non-symmetric matrices from Eigenvalue problems and
Linear Systems available from the Matrix Market Collection [I]. The test pro-
gram reads a matrix from file, calculates the multiplication of that matrix with
a random vector and records the result as well as the time taken to calculate the
product. The test program repeats this computation for the 9 different storage
formats (note different block sizes).

The two test machines run the Java Virtual Machines (JVMs) with the mini-
mum and maximum heap sizes of 128 MB and 1536 MB, respectively, and -server
flag. System A is an Ultra Sparc 10 at 333 MHz with 256 MB running Solaris 5.8
and Sun Java 2 SDK 1.4.2 Standard Edition (SE). System B is an Intel Pentium
4 at 2.6 GHz with 512 MB running Red Hat 9 kernel 2.4.20-31.9 and Sun Java
2 SDK 1.4.2 SE. The timer accuracy is one millisecond and the time reported
is the time spent performing 50 matrix-vector multiplications on System A and
200 on System B. The numbers 50 and 200 are selected so that the times are
large enough in relation to the accuracy of the timers.

Performance Results on all Systems and Matrices — Figure Bl presents
the average times (out of four runs) for each matrix on both machines. The
general pattern is the same on both platforms. The block entry storage formats
do not perform significantly better with different block sizes. This suggests that
any gain that results from more efficient use of the memory hierarchy is offset by
increases in the number of zero elements that need to be processed. Throughout,
the point entry storage formats, with the exception of DIA, appear to give the
best performance. At best the block entry storage formats get close to the point
entry storage formats.

The Fastest Storage Formats — In Fig. [J] the fastest storage formats are
COO, CSR, CSC, JSA-GS and JSA2. Figure[dshows in more detail the execution
times for these storage formats. The graphs present the results for JSA-GS, JSA2
and the minimum time taken by the other three storage formats; i.e. min(COO,
CSR, CSC) = MCCC. For System A, JSA-GS consistently performs better than
JSA2 and JSA2 itself in most cases performs better than or equivalent to MCCC.
System B does not offer the same clear conclusion. For the matrices in the region

Storage Formats for Sparse Matrices in Java 369

System A

Timings(s)

Storage Formats

System B

Timings(s)

Matrix Mumber o

Storage Formats

Fig. 3. Time results (seconds) on Systems A and B. The legend for the ‘storage
formats’-axis is given in Table[[l The ‘matrix number’-axis is ordered by nnz

370 M. Lujan et al.

System A
25 T T T T T T T T T
—+— JSAGS
—%— JSA2
—©- min(COO,CSR,CSC)
2 |- —
151 b
@
@
=)
£
£
i
1 |- —
0.5 4
L L L L L
0 20 40 60 80 100 120 140 160 180 200
Matrix Number
System B
0.7 T T T T T T T T
—— JSAGS
—¥— JSA2
—©- min(COO,CSR,CSC)
0.6 b
0]
0.5 b
~ 041 4
%
D
=)
£
£
= ooa3f g

100 120 140 160 180 200
Matrix Number

Fig. 4. Time results (seconds) for the fastest storage formats. The matrix number axis
is ordered by nnz

Storage Formats for Sparse Matrices in Java 371

1 to 90 (matrices with the fewest nnz), MCCC performs in most cases similarly
to JSA-GS. For these matrices JSA2 performs similarly, but slightly worse than
JSA-GS. For the rest of the matrices, JSA-GS performs better than JSA2 in most
cases and JSA2 performs better than or similarly to MCCC. The exception is in
the matrix region around 130 where JSA-GS and JSA2 deliver similar execution
times, but both are outperformed by MCCC.

As mentioned in SectionH, the computationally intensive code in JSA-GS and
JSAZ2 is identical. Thus, a reasonably expectation would be that the performance
delivered by JSA-GS and JSA2 should be similar. One possible explanation for
the observed different performances is that the JVMs find it more amenable
to optimise the smaller subroutines (methods) in JSA-GS (symmetric vs. non-
symmetric support).

6 Conclusions and Future Work

It would be presumptuous to say that all the storage formats for sparse matrices
are covered by this work, especially since there are many minor variations which
can create entirely new storage formats. Nonetheless, this paper has presented
a comprehensive performance comparison of storage formats for sparse matri-
ces. The results have shown that JSA performes better than the other storage
formats for most matrices. The block entry storage formats have not performed
as well as the point entry storage formats. Future work underway is to include
a similar set of experiments with Fortran implementations and then other op-
erations supported by the Sparse BLAS. The most relevant related work is the
Sparsity project [5]. For a given sparse matrix the Sparsity project has developed
compile time techniques to optimise automatically several sparse matrix kernels
using a specific block entry storage format.

References

[y

The matrix market. http://math.nist.gov/MatrixMarket/.

2. R. Barrett et al. Templates for the Solution of Linear Systems: Building Blocks for
Tterative Methods. STAM, 1994.

3. 1. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices.
Oxford University Press, 1986.

4. 1. S. Duff, M. A. Heroux, and R. Pozo. An overview of the sparse basic linear
algebra subprograms: The new standard from the BLAS technical forum. ACM
Transactions on Mathematical Software, 28(2):239-267, 2002.

5. Eun-Jin, K. A. Yelick, and R. Vuduc. SPARSITY: An optimization framework
for sparse matrix kernels. International Journal of High Performance Computing
Applications, 18(1):135-158, 2004.

6. G. Gundersen and T. Steihaug. Data structures in Java for matrix computations.
Concurrency and Computation: Practice and Ezperience, 16(8):799-815, 2004.

7. U. W. Pooch and A. Nieder. A survey of indexing techniques for sparse matrices.

ACM Computing Surveys, 5(2):109-133, 1973.

	Introduction
	Storage Formats for Sparse Matrices
	Point Entry Storage Formats
	Block Entry Storage Formats

	Java Sparse Array (JSA)
	Sparse Matrix-Vector Multiplication
	Performance Evaluation
	Conclusions and Future Work

