
Source Templates for the Automatic Generation
of Adjoint Code Through Static Call Graph

Reversal

Uwe Naumann1 and Jean Utke2

1 Software and Tools for Computational Engineering,
RWTH Aachen University, D-52056 Aachen, Germany

naumann@stce.rwth-aachen.de,
http://www.stce.rwth-aachen.de

2 Mathematics and Computer Science Division,
Argonne National Laboratory, 9700 S. Cass Avenue,

Argonne, IL 60439, USA
utke@mcs.anl.gov,

http://www.mcs.anl.gov

Abstract. We present a new approach to the automatic generation
of adjoint codes using automatic differentiation by source transforma-
tion. Our method relies on static checkpointing techniques applied to an
extended version of the program’s call graph. A code template is pro-
vided to implement a control structure governing the execution of the
adjoint and augmented forward versions of each subroutine in the pro-
gram. These code variants are generated automatically by algorithms
that are independent of the programming language of the original code.
The major advantage of this new approach is its flexibility with respect
to various reversal schemes.

1 Context and Outline

This paper discusses novel algorithmic choices made in the context of the ongoing
work on OpenAD (see www.mcs.anl.gov/OpenAD) – a software tool for the auto-
matic generation of adjoint codes. OpenAD is being developed as part of the Ad-
joint Compiler Technology and Standards (ACTS, see www.autodiff.org/ACTS)
project. The main application of this tool within the ACTS project is the MIT
General Circulation Model (MITgcm, see mitgcm.org).

The structure of the paper is as follows. In Section 2 we discuss the basics
of adjoint code construction and present an example for an adjoint code at the
level of single subroutines. Two static call graph reversal modes are explained in
Section 3. In Section 4 we consider a new approach to the generation of adjoint
code based on code templates. A successful application of the new method is
presented in Section 5.

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3514, pp. 338–346, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Source Templates for the Automatic Generation of Adjoint Code 339

2 Introduction

Inverse methods [1] play an increasingly important role in various application
areas of numerical scientific computing. Such methods are of interest, for exam-
ple, in the context of large-scale gradient-based optimization methods as they
eliminate the dependence of the complexity of the gradient computation on the
dimension of the parameter space. We assume that we are given a computer
program that implements some mathematical model

y = F (x), x ∈ IRn,y ∈ IRm . (1)

Our aim is to derive an adjoint program that computes the product of the trans-
posed Jacobian matrix (F ′(x))T with an adjoint vector ȳ in the image space
IRm. This modification of the program’s semantics is to be performed by a source
transformation tool for automatic differentiation. In a compiler like fashion the
original program for F is parsed into an abstract intermediate representation
(ir). The source transformation is performed based on a set of static analyses [2]
on ir. The modified internal representation īr is unparsed to obtain the adjoint
program. This process is illustrated in Figure 1. Automatic differentiation (AD)

y = F (x)

parser unparser

semantic

transformation

static analyses

ir īr

x̄ = (F ′(x))T · ȳ

Fig. 1. Source transformation tool for the automatic generation of adjoint codes

[3, 4, 5] is a set of techniques for transforming numerical programs into deriva-
tive code that can be used to compute derivatives of vector functions such as
Jacobians, Hessians, or higher-order Taylor coefficients. A detailed description
of the mathematical foundations of AD is beyond the scope of this paper. Refer
to [6] for a discussion of the theory.

The adjoint of a program implementing a vector function as in Equation (1)
is obtained by the reverse mode of AD. Given values for x and the adjoints of
the original outputs ȳ, the adjoint program computes the transposed Jacobian
vector product

x̄ = (F ′)T · ȳ . (2)

This process is best introduced with the help of a simple example that illustrates
the basic features. Consider the Fortran implementation of a function y = F (x)
depicted in Figure 2(a), where x ∈ IR4, y ∈ IR. Often the program that imple-
ments F consists of a possibly large number of subroutines calling each other. In
this paper we consider methods for implementing adjoint codes at the interpro-
cedural level. Our approach uses a given solution for the problem of constructing
adjoints at the intraprocedural level like the one shown in Figure 2(b),(c).

An execution of the augmented forward code (as in Figure 2(b)) stores the
flow of control [2] in an integer stack (IS) as well as all numerical values (in a

340 U. Naumann and J. Utke

(a) y=1.
do i=1,4

if (i<3) then

x(i)=sin(x(i))
else

x(i)=x(i)*x(i)
end if

y=y*x(i)
end do

(b) y=1.
do i=1,4

if (i<3) then
push(IS,1)
push(FS,x(i))
x(i)=sin(x(i))

else
push(IS,0)
push(FS,x(i))
x(i):=x(i)*x(i)

end if
push(FS,y)
y=y*x(i)

end do

(c)
do i=4,1,-1

call pop(FS,y)
x_b(i)=x_b(i)+y*y_b
y_b=x(i)*y_b
call pop(IS,branchId)
if (branchId==1) then

call pop(FS,x(i))
x_b(i)=cos(x(i))*x_b(i)

else
call pop(FS,x(i))
x_b(i)=2*x(i)*x_b(i)

end if
end do

Fig. 2. Intraprocedural adjoint code: original (a), augmented forward (b), adjoint (c)

floating-point stack FS) needed for the adjoint computation during the follow-
ing reverse sweep. In principle the adjoint code is obtained by applying Equa-
tion (2) to each statement y = φ(x1, . . . , xk) of the original code in reverse order
(w.l.o.g. we consider scalar assignments). This application yields x̄i = x̄i + ∂φ

∂xi
ȳ

for i = 1, . . . , k. The increment of the current value of x̄i is due to the fact that xi

can occur on several right-hand sides. Adjoint versions of variables in the original
code are marked by the suffix b. For example, the code in the example shown
in Figure 2(c) requires the values of x(i) and y, which are therefore stored in
Figure 2(b). A detailed discussion of the reversal of the flow of control inside a
subroutine can be found in [7].

Adjoint codes permit the accumulation of the Jacobian at a cost proportional
to the number of outputs m. Of particular interest are gradients (m = 1) ob-
tained at a small constant multiple of the cost of evaluating the function itself,
for example, in the context of data assimilation in the MITgcm. The gradient
of some objective with respect to parameters at the grid points of a very fine
discretization leads to a number of input variables n on the order of 109. Neither
forward-mode AD nor approximation by finite difference quotients represents a
feasible approach, as either has a complexity of O(n).

3 Call Graph Reversal Modes

In the remainder of this paper we assume that adjoint code is available for
all subroutines in the given program generated by a method similar to the one
sketched in the previous section. The call graph (CG) is usually defined as a graph
with nodes representing subroutines and edges representing potential (direct)
calls [2]. It is a static entity and generally not acyclic. To be useful for the static
construction of adjoint code at the interprocedural level, we need to break the
cycles, a process generally possible only for a concrete execution of the program.
The result is the dynamic call tree (DCT). Edges represent subroutine calls
and the order of execution in the context of a depth-first traversal. The vertices
represent executions of variants of subroutine code (forward, augmented forward,

Source Templates for the Automatic Generation of Adjoint Code 341

subroutine 1

call 2; ... call 4; ... call 2;

end subroutine 1

subroutine 2

call 3

end subroutine 2

subroutine 4

call 5

end subroutine 4

11

31 3251

4121 22

Fig. 3. Dynamic call tree of a simple calling hierarchy

(a) (b)run forward coderun forward code

run augmented forward coderun augmented forward code

run adjoint coderun adjoint code

store argument checkpointstore argument checkpoint

restore argument checkpointrestore argument checkpoint

order of executionorder of execution

subroutine callsubroutine call

11 11

3131 3232 5151

41 41 2121 2222

Fig. 4. Symbols for reversal mode graphs (a), DCT of split reversal mode (b)

adjoint). The order of calls to other subroutines shown on the next lower level
is implied by the left to right order of edges emanating from a given vertex.
An edge pointing to a vertex on the same level indicates the execution of a
different code variant of the same subroutine. Hence, the depth-first traversal is
well defined. Figure 3 shows the DCT for a simple example. Vertices are labeled
with the identifier of the respective subroutine. Superscripts denote the instance
of the call, as one and the same subroutine can be called repeatedly. In the
example, subroutines 2 and 3 are called twice. The symbols are explained in
Figure 4(a). Note that for the purpose of static reversal schemes the DCT is
merely a conceptual tool and does not need to be instantiated in practice.

Two basic call graph reversal modes have been proposed in the literature [6].
In split reversal mode the adjoint computation is preceded by an execution of
the augmented forward code of the entire program. All values that are needed
for the correct reversal of the intraprocedural flow of control, as well as those
required to evaluate the adjoint assignments correctly, are stored. The split re-
versal of the example in Figure 3 is shown in Figure 4(b). For computationally
challenging problems this approach usually leads to prohibitively large memory
requirements.

342 U. Naumann and J. Utke

11 11

31313131 32323232 51515151

414141 212121 222222

Fig. 5. DCT of adjoint obtained by joint reversal mode

This problem can be mitigated by the joint reversal mode, where a trade-
off between memory requirement and computational complexity is achieved by
checkpointing [8] at the level of subroutine arguments. The augmented forward
code variant directly followed by the adjoint code variant of the same subrou-
tine is run only when the adjoint values of the inputs of this subroutine are
required for executing the adjoint code variant of the calling subroutine. While
traversing the call graph backwards, one needs to know the input values to a
subroutine to run its augmented forward code. Rather than recomputing these
inputs, we first store them as argument checkpoints and later restore them for
use with the augmented forward run. Figure 5 illustrates this statement for the
example in Figure 3. Obviously, joint reversal represents a trade-off between the
consumption of memory resources and the number of instructions performed by
the adjoint code. Split and joint reversal modes can be combined in a hierarchical
fashion as described in [6] and Section 5.

4 Code Templates

Section 3 outlines the principal approach to control a reversal scheme. The
basic building blocks are variants Si of the original subroutine code S0, each
accomplishing one of the tasks shown as a subroutine symbol in Figure 4(a).
The Si are created by transforming the source code contained in the respec-
tive subroutine bodies. To integrate the Si into a particular reversal scheme,
we need to be able to make all subroutine calls in the same fashion as in the
original code and, at the same time, control which task each subroutine call
accomplishes. We replace the original subroutine body with a branch struc-
ture in which each branch contains one Si. The execution of each branch is
determined by a global control structure whose members represent the state
of execution in the reversal scheme. The branches contain code for pre- and
post-state transitions enclosing the respective Si. This ensures that the trans-
formations producing the Si do not depend on any particular reversal scheme.
In practice we insert the Si in a subroutine template, shown in Figure 6(a).
The template is written in the target language, and the insertion is done by
a postprocessing step that identifies specific pragmas in the template code as
insertion points for the Si. Anything related to setting up storage for taping

Source Templates for the Automatic Generation of Adjoint Code 343

(a)
template variables
subroutine variables
setup

state indicates task 2

state indicates task 1

pre state change for task 2

post state change for task 2

wrapup

pre state change for task 1

post state change for task 1

S1

S2

(b) subroutine template()
use OpenAD_tape ! tape storage
use OpenAD_rev ! state structure

!$TEMPLATE_PRAGMA_DECLARATIONS

if (rev_mode%tape) then
! the state component
! ’taping’ is true
!$PLACEHOLDER_PRAGMA$ id=2

end if

if (rev_mode%adjoint) then
! the state component
! ’adjoint’ run is true
!$PLACEHOLDER_PRAGMA$ id=3

end if end subroutine template

Fig. 6. Subroutine template components (a), split-mode Fortran90 template (b)

or checkpointing, such as declaring data arrays or referring to external mod-
ules, can be coded directly into the template. The following paragraphs show
examples.

Split Reversal: Split reversal is the simplest static reversal mode. We first ex-
ecute the entire computation with the augmented forward code (S2) and then
follow with the adjoint (S3). From the task pattern shown in Figure 4(b) it
is apparent that, aside from the top-level routine, there is no change to the
state structure within the call tree. Therefore, there is no need for state changes
within the template. Since no checkpointing is needed either, we have only two
tasks: producing the tape and the adjoint run. Figure 6(b) shows a simplified
version of the split-mode template used in OpenAD. The different Si in the
PLACEHOLDER PRAGMA are identified by their respective i =id. The state is con-
tained in rev mode, a static Fortran90 variable in module OpenAD rev of type
modeType also defined in this module. In order to perform a split-mode reversal
for the entire computation, a driver routine calls the top-level subroutine first in
taping mode and then in adjoint mode.

Joint Reversal with Argument Checkpointing: Figure 5 illustrates the
task pattern for a joint reversal scheme that requires state changes in the tem-
plate as well as the insertion of more tasks. Figure 7 shows a simplified ver-
sion of the template used in OpenAD. The state transitions in the template
directly relate to the pattern shown in Figure 5. Each prestate change ap-
plies to the callees of the current subroutine. Since the argument store (S4)
and restore (S6) do not contain any subroutine calls they do not need state
changes. Looking at Figure 5, one realizes that the callees of any subroutine
executed in plain forward mode (S1) never store the arguments (only callees
of subroutines in taping mode do). This explains lines 18, 25, and 30. Further-

344 U. Naumann and J. Utke

more, all callees of a routine currently in taping mode are not to be taped
but instead run in plain forward mode, as reflected in lines 27 and 28. Joint
mode in particular means that a subroutine called in taping mode (S2) has
its adjoint (S3) executed immediately after S2. This is facilitated by line 33,
which makes the condition in line 35 true, and we execute S3 without leav-
ing the subroutine. Any subroutine executed in adjoint mode has its direct

1:subroutine template()
2: use OpenAD_tape
3: use OpenAD_rev
4: use OpenAD_checkpoints
5: !$TEMPLATE_PRAGMA_DECLARATIONS
6: type(modeType) :: orig_mode
7:
8: if (rev_mode%arg_store) then
9: ! store arguments

10: !$PLACEHOLDER_PRAGMA$ id=4
11: end if
12: if (rev_mode%arg_restore) then
13: ! restore arguments
14: !$PLACEHOLDER_PRAGMA$ id=6
15: end if
16: if (rev_mode%plain) then
17: orig_mode=rev_mode
18: rev_mode%arg_store=.FALSE.
19: ! run the original code
20: !$PLACEHOLDER_PRAGMA$ id=1
21: rev_mode=orig_mode
22: end if
23: if (rev_mode%tape) then
24: ! run augmented forward code
25: rev_mode%arg_store=.TRUE.
26: rev_mode%arg_restore=.FALSE.
27: rev_mode%plain=.TRUE.
28: rev_mode%tape=.FALSE.
29: !$PLACEHOLDER_PRAGMA$ id=2
30: rev_mode%arg_store=.FALSE.
31: rev_mode%arg_restore=.FALSE.
32: rev_mode%plain=.FALSE.
33: rev_mode%adjoint=.TRUE.
34: end if
35: if (rev_mode%adjoint) then
36: ! run the adjoint code
37: rev_mode%arg_restore=.TRUE.
38: rev_mode%tape=.TRUE.
39: rev_mode%adjoint=.FALSE.
40: !$PLACEHOLDER_PRAGMA$ id=3
41: rev_mode%plain=.FALSE.
42: rev_mode%tape=.TRUE.
43: rev_mode%adjoint=.FALSE.
44: end if
45:end subroutine template

Fig. 7. Joint mode Fortran90 template

with argument checkpointing

callees called in taping mode, which
in turn triggers their respective ad-
joint run. This is done in lines 37–
39. Finally, we have to account for se-
quence of callees in a subroutine; that
is, when we are done with this subrou-
tine, the next subroutine (in reverse
order) needs to be adjoined. This pro-
cess is triggered by calling the subrou-
tine in taping mode, as done in lines
41–43. The respective top-level rou-
tine is called by the driver with the
state structure having both tape and
adjoint set to true.

5 Application

A simplified version of the MITgcm
code is the so-called shallow water
model, which can be used for prob-
lems of variable complexity. A sim-
ple split or joint mode implies storage
or runtime requirements far beyond
what is feasible. Hierarchical check-
pointing has traditionally been used
to allow for a trade-off between stor-
age and runtime requirements. For
the shallow water code we imple-
mented a reversal scheme with a two-
level hierarchical checkpointing split-
ting the main time-stepping loop into
an inner loop i and an outer loop o.
Wrapping the respective loop bodies
into subroutines allows the use of the
subroutine-level template approach il-
lustrated in Figure 8. We show two
loop iterations for each level, whereas
the real-world problem potentially has thousands of steps at each level. Subrou-
tine calls located outside the outer loop are nonrepetitive allowing for use of the

Source Templates for the Automatic Generation of Adjoint Code 345

checkpoint level 1

checkpoint level 2

adjoin

all callees in plain mode all callees in split mode

in joint mode

and all callersf1

f1f1

o1 o1o2o2o2

i1 i2 i3i3i3i3 i4i4i4i4

Fig. 8. Two-level hierarchical checkpointing scheme

joint mode because the few checkpoints require little memory. A single execution
of the inner-loop body and its callees is short enough to fit all required values
on the tape stack, allowing for use of the split mode.

The code transformation uses the templates introduced above for the subrou-
tines handled in either mode respectively. To control the outer and inner level
checkpointing, we use two additional templates that are similar to the joint-
mode template but have small adjustments in the state transitions to control
the checkpointing. The templates and their use in applying OpenAD to the
shallow water model code are part of the case studies presented on the OpenAD
website.

Acknowledgments

This work was supported by the Mathematical, Information, and Computational
Sciences Division subprogram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract W-31-
109-ENG-38 and by NSF under ITR contract OCE-0205590.

References

1. Wunsch, C.: The Ocean Circulation Inverse Problem. Cambridge U. Press, Cam-
bridge (1996)

2. Aho, A., Sethi, R., Ullman, J.: Compilers. Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA (1986)

3. Berz, M., Bischof, C., Corliss, G., Griewank, A., eds.: Computational Differentiation:
Techniques, Applications, and Tools. SIAM, Philadelphia (1996)

4. Corliss, G., Faure, C., Griewank, A., Hascoët, L., Naumann, U., eds.: Automatic
Differentiation of Algorithms: From Simulation to Optimization. Springer, New
York (2002)

5. Griewank, A., Corliss, G., eds.: Automatic Differentiation of Algorithms: Theory,
Implementation, and Application. SIAM, Philadelphia (1991)

6. Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic
Differentiation. Number 19 in Frontiers in Appl. Math. SIAM, Philadelphia (2000)

346 U. Naumann and J. Utke

7. Naumann, U., Utke, J., Lyons, A., Fagan, M.: Control flow reversal for adjoint
code generation. In: Proceedings of the Fourth IEEE International Workshop on
Source Code Analysis and Manipulation (SCAM 2004), Los Alamitos, CA, USA,
IEEE Computer Society (2004) 55–64

8. Griewank, A.: Achieving logarithmic growth of temporal and spatial complexity
in reverse automatic differentiation. Optimization Methods and Software 1 (1992)
35–54

	Context and Outline
	Introduction
	Call Graph Reversal Modes
	Code Templates
	Application

