
The COOLFluiD Framework: Design Solutions
for High Performance Object Oriented Scientific

Computing Software

Andrea Lani1, Tiago Quintino1,2, Dries Kimpe2,3, Herman Deconinck1,
Stefan Vandewalle2, and Stefaan Poedts3

1 Von Karman Institute, Aerospace Dept.,
Chaussee de Waterloo 72,

B-1640 Sint-Genesius-Rode, Belgium
2 Catholic University Leuven, Computer Science Dept.,

Celestijnenlaan 200A, B-3001 Leuven, Belgium
3 Catholic University Leuven, Center for Plasma-Astrophysics,

Celestijnenlaan 200B, B-3001 Leuven, Belgium

Abstract. The numerical simulation of complex physical phenomena is
a challenging endeavor. Software packages developed for such purpose
should combine high performance and extreme flexibility, in order to al-
low an easy integration of new algorithms, models and functionalities,
without penalizing run-time efficiency. COOLFluiD is an object-oriented
framework for multi-physics simulations using multiple numerical meth-
ods on unstructured grids, aiming at satisfying these needs. To this end,
specific design patterns and advanced techniques, combining static and
dynamic polymorphism, have been employed to attain modularity and ef-
ficiency. Some of the main design and implementation solutions adopted
in COOLFluiD are presented in this paper, in particular the Perspective
and the Method-Command Patterns, used to implement respectively the
physical models and the numerical modules.

1 The COOLFluiD Architecture

COOLFluiD (Computational Object-Oriented Library for Fluid Dynamics) is
a multi-physics and multi-methods platform that combines flexibility and high
performance for the simulation of complex fluid dynamical phenomena on un-
structured grids. The package is implemented in C++, which, during the last
decade, has shown a great potential for scientific applications, offering significant
support to develop both flexible and efficient code: Cogito, ELEMD ([Arge97]),
MOUSE, Deal ([OONum]) are only few examples of available C++ platforms.

An overview of the COOLFluiD framework is sketched in Fig. 1. It con-
sists of a kernel, where Simulation, the simulation manager object, and Mesh-
Data, the basic data-structure object are implemented. Also the abstract in-
terfaces for all the polymorphic objects are defined in the kernel, in particu-
lar the ones for the physics description (PhysicalModel ) and for the numerical

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3514, pp. 279–286, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



280 A. Lani et al.

SIMULATION

MESHDATA

PHYSICAL

NUMERICAL
METHOD

MODEL LIBRARY

NUMERICAL
LIBRARY

KERNEL PLUG−INS

PHYSICAL

Fig. 1. Simplified overview of the COOLFluiD framework

methods (e.g., MeshCreator, SpaceMethod, ConvergenceMethod, LinearSystem-
Solver ). Each concrete numerical method or physical model is enclosed in a
separate plug-in library. This plug-in policy, which provides COOLFluiD with
significant modularity and extensibility, relies heavily on two complementary
techniques, namely self-registration and self-configuration of objects, whose ba-
sic principles are explained below.

1.1 Self Registration of Objects

The self registration of objects, pioneered by [Bev98] in a C++ context, au-
tomatizes the creation of polymorphic objects and reduces implementation and
compilation dependencies. This is of great help in easing the integrability of new
components in the framework, since they can be compiled as external plug-ins
and loaded dynamically, on demand, into the main core application. A generic
polymorphic concrete object (ConcreteObj ) can be registered by simply instan-
tiating the corresponding ObjectProvider in the implementation file:

ObjectProvider<BaseObj, ConcreteObj> myProvider("objName");

and it can be created by calling the corresponding Factory:

BaseObj*objPtr = Factory<BaseObj>::getProvider("objName")->create();

1.2 Self Configuration of Objects

In COOLFluiD, objects can be self-configurable, meaning that they can create
and set their own data. The template configuration function was inspired by the
Yagol library [Yagol]. An object is made self configurable, by deriving it from a
parent class ConfigObject and by adding a call to

addConfigOption("OptionKey", &configData);

in its constructor for each configurable data member configData. In particular,
OptionKey is the configuration key string, used to map the value of configData.
We consider, for instance, what would appear in a configuration file for the RK
(Runge-Kutta) time stepper object:



The COOLFluiD Framework 281

ConvergenceMethod = RK
RK.coeff = 0.28 0.61 1.0

RK is the self-configuration value for the ConvergenceMethod, which is the con-
figuration key for the homonymous polymorphic object. RK is also the self-
registration key for the Runge-Kutta class, that will be then instantiated and will
configure itself with the three given coefficients, whose configuration key is coeff.

1.3 Parallel Data-Structure

COOLFluiD uses a parallel layer designed to minimize impact on both users
and software developers by exporting a high level platform independent inter-
face. Parallelization is fully transparent and high performance is assured by
techniques like parallel IO and remote memory access, when supported by the
underlying platform. The intrinsically parallel data-structure is encapsulated in
a Facade object [Gamma95], MeshData, whose main component is DataStorage.
The latter offers a simple interface to create and handle generic typed arrays of
data to be shared among different numerical Methods and Commands, allowing
to treat uniformly both local and distributed data. When running in parallel, all
MPI calls are encapsulated in an underlying dynamically growing parallel array,
hidden to the clients of DataStorage. The following examples show how to create
and get local (global) data:

getDataStorage()->createData<StorageType>("storageName",
storageSize);

DataHandle<LOCAL, StorageType> myStorage =
getDataStorage()->getData<StorageType>("storageName");

2 Physical Model: Perspective Pattern

The framework is designed to apply different numerical methods for the solution
of systems of Partial Differential Equations, which typically appear in the form:

∂U
∂t

+ ∇ · F = S (1)

where U (unknown variables), F (convective and viscous fluxes), S (source term)
depend on the chosen physical model. Such a physical model can be seen as a
composition of entities, e.g., coefficients, quantities and thermodynamic proper-
ties. Note that one can look at the same physics through different formulations
of the equations, involving the use of different sets of variables, transformations,
or other adaptations tailored, e.g., towards a particular numerical method.

This logical picture can be translated into an implementation offering mul-
tiple views or perspectives for the same physics, according to the specific needs.
The first advantage is that this design approach is able to break a hypothetical
heavy and hard-to-define interface for the physical model object into a limited



282 A. Lani et al.

ConcreteModel

VariableSet

MyVariableSet

PhysicalModel

getNbEquations()

validate()

setEigenValues()
getEigenValues()
splitJacobian()
setJacobian()

function1()

function2()

function3()

setEigenValues()
getEigenValues()

splitJacobian()

setJacobian()

getNbEquations()
validate()
getPhysicalData()
getCoeff()

coeff
physicalData

concreteModelPtr concreteModelPtr concreteModelPtr

function1()

function2()

function3()

setMatrix()

setMatrix()

getMatrix()

transform()

getMatrix()

MyVarTransformer

OtherPerspective

MyPerspective

VarTransformer

transform()

Fig. 2. Perspective pattern applied to a Physical Model module

granularity of independent abstractions. Flexibility and maintainability are posi-
tively affected too. If new base Perspectives objects are needed in order to provide
new points of view for the same physics, they can easily be attached without
needing to modify the existing code.

The OMT (Object Modeling Technique) class diagram of the pattern is shown
in Fig. 2. It reflects the composition-based Adapter described in [Gamma95], but
it has a single shared Adaptee object (ConcretePhysicalModel), and multiple ab-
stract Targets (called Perspectives here), each one with a number of derived
classes (Adapters). The Perspective pattern is conceptually opposite to the View
Handler presented in [Busch00], since the former helps to tackle a situation in
which the different views (and their interfaces) are not all foreseeable a priori,
meaning that it would be impossible to define both an handler object and a
single abstract view interface, as required by the latter.

Data and functionalities that are typical of a certain physics, but invariant to
all its possible Perspectives, should be implemented in the actual ConcretePhys-
icalModel object. The base PhysicalModel defines a very general abstract in-
terface. The concrete one implements the virtual methods of the parent class
and defines another interface to which the ConcretePerspective objects (and
only those) are statically bound. As a result, a client makes use of the physi-
cal model through an abstract layer, enlargeable if required, given by a number
of perspective objects (VariableSets, VariableTransformers, etc.) while all their
collaborations with the concrete physics are completely hidden. As all the other
polymorphic objects in COOLFluiD, also PhysicalModels and Perspectives are
self-registrable and, if needed, self-configurable.



The COOLFluiD Framework 283

3 Method-Command Pattern

Every numerical module is implemented following a common design structure,
to which we will refer as the Method-Command pattern. It consists of a concrete
Method object delegating tasks to a number of Commands that share a tuple of
multiple receivers. A configurable BaseMethod object (e.g., SpaceMethod, Con-
vergenceMethod, MeshCreator) defines the abstract interface for a specific type of
Method (Fig. 3). Each ConcreteMethod implements the virtual functions of the
corresponding parent BaseMethod by encapsulating requests for specific actions
(setup, unsetup, compute something . . . ) in ad-hoc Commands. ConcreteMethod
functions can act as Template Methods [Gamma95] where the hooks are not vir-
tual functions but polymorphic commands. Each Command behaves therefore
as a Strategy object (see [Gamma95]) in performing a specific task, which can be
accomplished in several different ways. All the Commands share some common
data enclosed in ConcreteMethodData, a configurable tuple typically aggregat-
ing the multiple receivers. The latter are polymorphic Strategy or Perspective
objects, providing, e.g., the dynamic binding to the physics.

The flexibility yielded by this structural pattern is considerable and does
not affect performance, since the fast-path code is wrapped inside the concrete
Commands or their receivers. The Method-Command pattern can be viewed as
a sophisticated variant of the Whole-Part pattern described in [Busch00], or as
a three-layer Strategy, where Methods, Commands and command receivers are
completely interchangeable, self registering and self configurable.

Some applications of the pattern within the COOLFluiD framework will now
be presented, in order to show the high reusability provided by this approach,
but also its suitability to deal with complex numerical problems.

action1()

action2()

execute()

execute()

action2()

action1()
...

...
action1−>execute()

getObjA()
getObjB()
getObjC()

execute()

execute()

Command Action1

Command Action2

ObjA

ObjB

ObjC

ObjA

ObjB

ObjC

Concrete

Concrete

Concrete

ConfigObject

configure()

ConcreteMethodData

ConcreteMethod

BaseMethod

Fig. 3. OMT diagram of a Method-Command pattern



284 A. Lani et al.

3.1 Space Method

A SpaceMethod takes care of the spatial discretization of the given set of partial
differential equations, according to a specified numerical scheme on a given mesh.
The abstract interface of a SpaceMethod is as follows:

class SpaceMethod : public ConfigObject {
public:
// constructor, destructor, accessors, mutators ...
virtual setup() = 0; // setup data
virtual unsetup() = 0; // unsetup data
virtual void computeRHS()= 0; // compute residual and jacobian terms
virtual void applyBC() = 0; // apply boundary conditions

};

A possible concrete class is the so-called cell centered FiniteVolume (FV) method:

class CellCenterFVM : public SpaceMethod {
public:

typedef Command<CellCenterFVMData> FVMCom;
// overridden parent virtual functions ...

private:
SharedPtr<CellCenterFVMData> _data; // shared data
std::auto_ptr<FVMCom> _setup; // setup command
std::auto_ptr<FVMCom> _unSetup; // unsetup command
std::auto_ptr<FVMCom> _compRHS; // compute residual command
std::vector<FVMCom*> _bcs; // boundary conditions

};

As an example, we present the implementation of the method applyBC() in
CellCenterFVM, which shows how all actions are nicely encapsulated:

void CellCenterFVM::applyBC() {
for_each(_bcs.begin(), _bcs.end(), mem_fun(&FVMCom::execute));

}

As shown in Fig. 4, CellCenterFVMData holds pointers to polymorphic Strate-
gies like FluxSplitter, the flux splitting scheme and PolyRec, the polynomial re-
constructor; VarSet, the Perspective encapsulating physical model traits related
to specific sets of variables, etc.

The implementation of other concrete SpaceMethods, like Residual Distribution
(RD) or Finite Element (FE), follows an identical Method-Command pattern.

3.2 ConvergenceMethod and LinearSystemSolver

Figure 5 shows the collaboration between two abstract methods:Convergence
, responsible of the iterative procedure, and LinearSystemSolver.

In this case, an implicit convergence method, BackwardEuler, delegates polymor-
phically the solution of the resulting linear system to PetscLSS, which interfaces

Method



The COOLFluiD Framework 285

SpaceMethod

CellCenterFVM
Data

CellCenterFVM

Setup

Unsetup

VarSet

PolyRec

Flux
Splitter

VarSet
Concrete

Concrete

Concrete

PolyRec

Splitter

PhysicalModel

Concrete

PhysicalModel

Command

Command

Command

Command BC

Compute
RHS

Fig. 4. Finite Volume module

Method

Backward

Euler

Solution

Command

Command

SetupCommand Command

Command

Command

Setup

UnsetupUnsetup

Update Solve
System

Backward
Euler Data

Petsc
LSS Data

PetscLSS

Solver

LinearSystemConvergence

Fig. 5. Backward Euler and Petsc Linear System Solver modules

the PETSc library ([Petsc]). BackwardEuler makes use of commands for the setup,
unsetup and solution update. Also PetscLSS delegates tasks to specific commands
sharing some data (PetscLSSData), such as references to the (parallel) Petsc ma-
trix and the (parallel) Petsc vectors involved in the solution of the linear system.

4 Conclusions

The flexible and reusable design solutions presented in this paper have allowed an
easy integration of several components in COOLFluiD: explicit (Runge-Kutta)
and implicit (Newton, Crank-Nicholson) time stepping, different spatial dis-
cretizations (FV, RD, Space-Time RD, FE), different physical models (Euler,
compressible Navier-Stokes, Magneto Hydro Dynamics), a parallel flexible data-



286 A. Lani et al.

Fig. 6. Mach contours and isolines for an Euler simulation with blended LDA/N scheme

(left) and 2nd order Roe scheme with Barth limiter (right) on a Falcon airplane (mesh

courtesly provided by Dassault Aviation)

structure supporting the use of hybrid meshes, etc. The implementation of many
other functionalities is underway: Aero-Thermo-Chemical models, incompress-
ible Multi-Phase flows, error estimation, mesh movement and adaptation.

Fig. 6 shows the result of a simulation of the Euler gas dynamics equations
over a Falcon airplane geometry, flying at Mach 0.85, with two different high
order spatial discretizations, namely cell vertex RD and cell centered FV.

Acknowledgments

T. Quintino acknowledges the financial support of Fundaćao Ciencia e Tecnologia.

References

[Bev98] Beveridge, J.: Self-Registering Objects in C++. Dr. Dobbś Journal,
8/1998.

[Gamma95] Gamma, E., Helm, R. Johnson, R., Vlissides, J.: Design Patterns. Ele-
ments of Reusable Object-Oriented Software. Addison Wesley, 1995.

[Busch00] Buschmann, F., Meunier, R. Rohnert, H., Sommerlad, P., Stal, M.:
Pattern-Oriented Software architecture. A System of Patterns. Wiley,
2000.

[Arge97] Arge, E., Bruaset, A. M. , Langtangen, H. P. eds.: Modern Software Tools
for Scientific Computing, Birkhäuser, 1997.

[OONum] Open Systems Laboratory: The Object-Oriented Numerics Page,
http://www.oonumerics.org/oon/, 2005.

[Yagol] Pace, J.: Another Getopt Library, http://yagol.sourceforge.net, 2003.
[Petsc] Argonne National Laboratory: PETSc. Portable, Extensible Toolkit for

Scientific Computation, http://www-unix.mcs.anl.gov/petsc, 2004.


	The COOLFluiD Architecture
	Self Registration of Objects
	Self Configuration of Objects
	Parallel Data-Structure

	Physical Model: Perspective Pattern
	Method-Command Pattern
	Space Method
	ConvergenceMethod and LinearSystemSolver

	Conclusions



