
A Logarithmic Time Method for Two’s
Complementation

Jung-Yup Kang1 and Jean-Luc Gaudiot2

1 Mindspeed Technologies,
Inc., Newport Beach, CA 92660, USA
2 University of California at Irvine,

Irvine, CA 92612, USA

Abstract. This paper proposes an innovative algorithm to find the two’s
complement of a binary number. The proposed method works in loga-
rithmic time (O(logN)) instead of the worst case linear time (O(N))
where a carry has to ripple all the way from LSB to MSB. The proposed
method also allows for more regularly structured logic units which can
be easily modularized and can be naturally extended to any word size.
Our synthesis results show that our method achieves up to 2.8× of per-
formance improvement and up to 7.27× of power savings compared to
the conventional method.

1 Introduction

Signed binary numbering representation [5, 7, 11, 12] (based on two’s complement
numbers) is a nearly universally used numbering representation in the comput-
ing world. Thus, in computer systems which are based on this two’s complement
representation, operations to find the two’s complement of a signed binary num-
ber are frequently executed. This is indeed true for applications which require
to find the absolute value of signed binary numbers. For instance, motion esti-
mation operations of MPEG encodings [9, 10, 15, 17] require to find the absolute
value of the difference (of pixel values) for each pixel position for each block
comparison. Another example would be multipliers [2, 8, 13] that need to find
the two’s complement of the multiplicand for the negative encodings of Booth
algorithms [2, 3, 13, 14, 18].

Despite the frequent need for finding the two’s complement of a signed binary
number, two’s complementation of a binary number is still carried out using the
conventional way of complementing each bit and adding 1 to the complemented
number. By doing so, we cannot ignore the possibility of a carry propagating
all the way from the LSB (Least Significant Bit) to the MSB (Most Significant
Bit). However, we have learned that the speed of finding the two’s complement
of a binary number is critical to the performance improvement for a group of
applications. Our recent study indicates that if the two’s complement of the
multiplicand of a multiplication was found fast, there can be up to 40% of per-
formance improvement [8]. It has also been reported by Hashemian [6] that in

V.S. Sunderam et al. (Eds.): ICCS 2005, LNCS 3514, pp. 212–219, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Logarithmic Time Method for Two’s Complementation 213

some specific parallel processing applications, it is more effective to expedite the
two’s complementation by using special-purpose hardware rather than by using
an adder and inverters.

Therefore, in this paper, we present an efficient algorithm and architecture
to find the two’s complement of a binary number in a truly logarithmic time
(O(logN)) instead of worst case of O(N) time when using an adder. The pro-
posed method also allows for more regularly structured logic units which can
be easily modularized and can be naturally extended to any word size. In the
next section, the conventional methods to find the two’s complement of a binary
number and their problems are discussed. Then, our logarithmic method and
its possible implementations will be introduced. Finally, the evaluation of the
algorithm followed by the module generation techniques for our two’s comple-
mentation algorithm will be discussed before the summary of this paper.

2 Conventional Methods

As mentioned before, conventionally (and by definition), the two’s complement
of a binary number is found by complementing each bit and adding 1 to the
complemented number. However, by doing so, there is the possibility of a carry
propagating all the way from the LSB to the MSB. Therefore, the time com-
plexity of finding the two’s complement of a binary number is at least that of
one addition (plus the complementation of each bit). However, even this delay
is too large for fast multiplier architectures [8] and not efficient for some specific
parallel applications [6, 10, 15, 17].

There is another well-known conventional method in which all the bits after
the rightmost “1” in the word are complemented and all the other bits are left
untouched. For example, the two’s complement of the binary number 0010102

(1010) is 1101102 (−1010) (Figure 1). For this number, the rightmost “1” happens
in bit position 1 (the check mark position in Figure 1). Therefore, values in bit
positions 2 to 5 can simply be complemented while values in bit positions 0 and
1 are kept as they were.

Our method is an extension of the latter algorithm. We observed from this
algorithm, that two’s complementation comes down to finding the conversion
signals that are used for selectively complementing some of the input bits. If
the conversion signal at any position is “0” (the red crosses in Figure 1), then
the value is kept as it is and if the conversion signal is “1” (the green check
marks in Figure 1), then the value is complemented. All the conversion signals
to the left of the rightmost “1” are 1 and all the conversion signals to the right
of the rightmost “1” (and the conversion signal for the rightmost “1”) are 0. For
example, for data word 001010002, the conversion signals would be “111100002.”
Applying these conversion signals to the input (complementing only the most
significant 4 bits in this case) would result in the two’s complement of the input
(110110002).

However, this searching for the rightmost “1” could be as time consuming as
rippling a carry through to the MSB since the previous bits information must be



214 J.-Y. Kang and J.-L. Gaudiot

5 4 3 2 1 0

0 0 1 0 1 0

1 1 0 1 1 0

Bit Position

Input Binary

Two’s Complement

First 1's Apprearance

from LSB

Complementation

Fig. 1. Two’s Complement Conversion Example

transferred to the MSB to determine which one is the rightmost “1.” Therefore,
we must find a method to expedite this detection of the rightmost “1.” As we
shall see, this search for the rightmost “1” can be achieved in logarithmic time
using our binary search tree-like structure.

One possible way to implement some fast logic which will produce the ade-
quate conversion signals would be to wire each input bit along with the preceding
less significant bits to an OR-gate that accepts that many inputs. This allows
for each input bit to determine whether there was a “1” in any lower order bit
position and to produce its own conversion signal. However, in such cases, al-
though it seems possible to produce the conversion signal in ideal constant time,
each input bit must drive a significant number of wires (up to the number of
input bits for the LSB). This is not considered to be practical nor efficient (in
terms of implementation).

3 Proposed Logarithmic Method

Consequently, in this section, we describe an efficient (in terms of speed and
implementation) algorithm which determines the conversion signals needed to
perform two’s complementation. We first find the conversion signals for a 2-bit
group by grouping two consecutive bits (the grouping always starts from the
LSB) from the input and find the conversion signals in each group as shown in
Figure 2(a). Then we find the conversion signals for a 4-bit group (formed by two
consecutive 2-bit groups). Then we find the conversion signals for an 8-bit group
(formed by two consecutive 4-bit groups). This divide-and-conquer approach is
pursued until the whole input word has been covered.

When grouping two 2n-bits groups, the leftmost conversion signals from the
right group contain the accumulative information of its group about whether a
“1” ever appeared in any bit position of its group, so that a conversion signal
should force all the conversion signals from the left group all the way to the “1”
if it is itself is a “1.” For instance, as shown in Figure 2(b), if CS1 (the leftmost
conversion signal from the right group) = “1,” the conversion signals from the
left group (CS2 and CS3) should be forced to a “1,” regardless of their previous
values. If CS1 = “0,” nothing happens to the conversion signals from the left
group. This variable control is shown with a dashed arrow. Likewise, CS5 may
affect conversion signals CS6 and CS7. The same goes for CS3’ which may affect
the conversion signals (CS7’, CS6’, CS5’, and CS4’).



A Logarithmic Time Method for Two’s Complementation 215

X
0

X
1

X
2

X
3

X
4

X
5

X
6

X
7

2-bit

conversion

signals

generation

CS
0

CS
1

CS
2

CS
3

CS
4

CS
5

CS
6

CS
7

X
7
~X

0
: Input

CS
7
~CS

0
: Conversion Signals

2-bit

conversion

signals

generation

2-bit

conversion

signals

generation

2-bit

conversion

signals

generation

(a) Conversion Signals for
Pairs of Bits

X
0

X
1

X
2

X
3

X
4

X
5

X
6

X
7

CS
0

CS
1

CS
2

CS
3CS

4
CS

5
CS

6
CS

7

CS
0
'CS

1
'CS

2
'CS

3
'CS

4
'CS

5
'CS

6
'CS

7
'

CS
0
"CS

1
"CS

2
"CS

3
"CS

4
"CS

5
"CS

6
"CS

7
"

X
7
~X

0
: Input

CS
7
~CS

0
: First Level Conversion Signals

CS
7
'~CS

0
' : Second Level Conversion Signals

CS
7
"~CS

0
" : Third Level Conversion Signals

4-bit conversion

signals generation

8-bit conversion

signals generation

2-bit conversion

signals generation

(b) Conversion Signals for Eight Bits

Fig. 2. Determining the Conversion Signals

The inputs to the 2-bit group are bits from the original binary number. How-
ever, the inputs to the next level groups are conversion signals from the previous
level. For instance, the inputs to the 4-bit group are the conversion signals gen-
erated from two 2-bit groups. Therefore, from the second level (4-bit grouping)
on, the conversion signals are scanned in order to find the rightmost “1.”

After determining the conversion signals, two’s complementation is a mere
complementation of the input binary according to the conversion signals. One
possible implementation of our algorithm is shown in Figure 3(a). Figure 3(b)
shows another version of the design using NAND, NOR, and inverter gates.
Once we have the complete conversion signals, these signals are shifted left 1
bit and EXOR-ed with the input to create the two’s complement of the input.
In Figure 3(a), X0 to X7 represent the input and X ′

0 to X ′
7 represent its two’s

X
0

X
1

OR_2

X
2

X
3

OR_2 OR_2

OR_2

XOR_2 XOR_2 XOR_2 XOR_2

X
0

X
1

X
2

X
3

0

X
0
'X

1
'X

2
'X

3
'

X
4

X
5

OR_2

X
6

X
7

OR_2 OR_2

OR_2

XOR_2 XOR_2 XOR_2 XOR_2

X
4

X
5

X
6

X
7

X
4
'X

5
'X

6
'X

7
'

OR_2 OR_2 OR_2 OR_2

4-bit conversion signals

generator

8-bit conversion signals

generator

2-bit conversion signals

generator

X
0

X
1

NOR2

X
2

X
3

NAND2 NAND2

NOR2

XNOR2 XNOR2 XNOR2 XNOR2

X
0

X
1

X
2

X
3

1

X
0
'X

1
'X

2
'X

3
'

X
4

X
5

NOR2

X
6

X
7

NAND2 NAND2

NOR2

XNOR2 XNOR2 XNOR2 XNOR2

X
4

X
5

X
6

X
7

X
4
'X

5
'X

6
'X

7
'

NOR2NOR2NOR2NOR2

INV INV

INV INV INV INV

INV INV

(a) General Model (b) Using NAND, NOR and Inverter

Fig. 3. A Gate-Level Diagram of 8-bit Two’s Complementation Logic Using Our

Approach



216 J.-Y. Kang and J.-L. Gaudiot

X
7
~X

0
: Input

CS
7
~CS

0
: First Level Conversion Signals

CS
7
'~CS

0
' : Second Level Conversion Signals

CS
7
"~CS

0
" : Third Level Conversion Signals

X
7

'~X
0

': Two’s Complement of the Input

4-bit conversion signal groups

8-bit conversion signal groups

2-bit conversion signal groups

0 0 1 0 1 0 0 0

0 0 1 0 1 0 0 0

CS
7
' CS

6
' CS

5
' CS

4
' CS

3
' CS

2
' CS

1
' CS

0
'

1 1 1 0 1 0 0 0

1 1 1 1 1 0 0 0

0 0 0 0

CS
7

CS
6

CS
5

CS
4

CS
3

CS
2

CS
1

CS
0

1 0

CS
7
" CS

6
" CS

5
" CS

4
" CS

3
" CS

2
" CS

1
" CS

0
"

1

X
7

X
6

X
5

X
4

X
3

X
2

X
1

X
0

1 1 1 1 0 0 0 0

1 1 0 1 1 0 0 0
X
7

' X
6

' X
5

' X
4

' X
3

' X
2

' X
1

' X
0

'

Input Binary

Two’s Complement

2nd Level Conversions

1st Level Conversions

3rd Level Conversions

One bit left shift of

conversion signals
Complementation

Fig. 4. 8-bit Example of Two’s Complementation Using Our Approach

complement. One complete example of two’s complementation of “001010002”
is shown in Figure 4.

4 Performance Evaluation and Analysis

In order to measure the performance of the proposed algorithm and its imple-
mentation, we designed our algorithm using Verilog HDL (Hardware Description
Language) and synthesized it using Synopsys synthesis tools [16]. Note that we
used Artisan TSMC 0.13um 1.2-Volt standard-cell library [1] with “slow cor-
ner” operating conditions for our synthesis. We estimated the area, delay, and
power of our designs and in order to measure the performance of the two’s
complementation of larger words, we expanded our proposed 8-bit two’s com-
plement logic in Figure 3(b) to larger sizes (such as 16-, 32-, 64-, and 128-bits).
In order to compare the performance (against the conventional method using
an adder), we implemented a two’s complementation logic using a CLA (Carry-
Lookahead Adder in [4]). (We used a high speed CLA for the conventional
method instead of a ripple carry adder in order to be as fair as possible in our
evaluation.)

Our synthesis results (Table 1) show that both methods result in linear
growth in area and power as the input size increases. The delays for both meth-
ods show somewhat logarithmic characteristics. In our method, we observe that
the added delay from one column (2n-input) to the next column (2n+1-input)
is the one additional level of OR-gates, the associated wire delay, and the delay
for driving twice the number of OR-gates (note that it would be a perfect log-
arithmic growth if there were no wire delays or delays due to the high fan-outs
required in the last level of OR-gates). This can be made clearer as we observe



A Logarithmic Time Method for Two’s Complementation 217

Table 1. Synthesis Reports

Input (n-bit) 8-bit 16-bit 32-bit 64-bit 128-bit
Delay (ns) 0.47 0.71 1.06 1.62 2.17

Power (mW) 0.096 0.18 0.35 0.69 1.37
Area (um2) 201 480 1111 2528 5661Our Method

Delay (ns) 1.33 1.64 2.40 2.80 3.35

Power (mW) 0.51 1.04 2.35 4.74 9.96

Area (um2) 497 997 2122 4274 8614
Conventional

(using CLA)

Fig. 5. Improvement (Speed, Area, and Power) of Our Two’s Complementation Along

with Input Size

the difference from one column to the other as we move right from one column
to the other in the table.

When the methods are compared, our approach brings up to 2.8× (when
n = 8) of performance improvement, up to 2.47× (when n = 8) of area savings,
and up to 7.27× (when n = 128) of power saving when compared to the conven-
tional method. We notice that as we increase the input size, the improvements
from delay and area shrink (Figure 5). When n = 128, we achieve about 1.54×
of performance improvement and about 1.52× of area saving. We believe this
phenomenon is due to the fact that, as we increase the size of the operator, the
fan-out of the last stage OR-gate is severely impacted which results in greater
delays and area penalty. The power savings (in percentage) are about the same
across the input sizes.

Related to our method, Hwang [7] and Hashemian [6] have shown similar
approaches (finding the conversion signals). However, our method is logarithmic
whereas Hwang’s method is linear and Hashemian has focused on circuit opti-
mization to improve the performance. Our approach is more general and shows
better adaptability to any word size.



218 J.-Y. Kang and J.-L. Gaudiot

5 Module Generation

Our two’s complementation algorithm can be easily modularized and expanded
to cover binary numbers of any size. First, as shown in Figure 3(a), a 2-bit
group can be modularized into a 2-bit conversion signals generator (using one
OR-gate). Then, two 2-bit conversion signals generators and two more OR-gates
form a 4-bit conversion signals generator. Again, two 4-bit conversion signals gen-
erators and four more OR-gates constitute an 8-bit conversion signal generator.
In this fashion (two 2n-bit conversion signals generators and 2n more OR-gates
connected to the left 2n-bit conversion signals generator), we can continue for
any 2n+1-bit grouping.

6 Conclusions

This paper has introduced an innovative and efficient method to find the two’s
complement of a binary number. When using the proposed method, the two’s
complement of a binary number can be found in logarithmic time and can be
used for cases where faster two’s complementation is necessary such as fast mul-
tiplications as well as some specific parallel processing applications. At the same
time, our approach brings a more regular structure which can be easily mod-
ularized and can be easily expandable to any word size. Our synthesis results
show that our method achieves up to 2.8× of performance improvement and up
to 7.27× of power savings compared to the conventional method.

Acknowledgements

This paper is based upon work supported in part by NSF grants CCR-0234444
and INT-0223647. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

References

1. Artisan Components. TSMC 0.13µm Process CL013LV 1.2-Volt SAGE-XT M
Standard Cell Library Databook. Artisan Components, October 2001.

2. A. D. Booth. A Signed Binary Multiplication Technique. Quarterly J. Mechanical
and Applied Math., 4:236–240, 1951.

3. F. Elguibaly. A Fast Parallel Multiplier-Accumulator Using the Modified Booth
Algorithm. IEEE Transactions on Circuits and Systems, 47(9):902–908, 2000.

4. M. D. Ercegovac and T. Lang. Digital Arithmetic. Morgan Kaufmann Publishers,
Los Altos, CA 94022, USA, 2003.

5. D. Gajski. Principles of Digital Design. Prentice Hall, 1997.
6. R. Hashemian and C. P. Chen. A New Parallel Technique for Design of Decre-

ment/Increment and Two’s Complement Circuits. In Proceedings of the 34th Mid-
west Symposium on Circuits and Systems, volume 2, pages 887–890, 1991.



A Logarithmic Time Method for Two’s Complementation 219

7. K. Hwang. Computer Arithmetic Principles, Architecture and Design. Wiley, New
York, 1979.

8. J.-Y. Kang and J.-L. Gaudiot. A Fast and Well-Structured Multiplier. In EU-
ROMICRO Symposium on Digital System Design, pages 508–515, August 2004.

9. J.-Y. Kang, S. Shah, S. Gupta, and J.-L. Gaudiot. An Ecient PIM (Processor-In-
Memory) Architecture for Motion Estimation. In IEEE 14th International Confer-
ence on Application-specic Systems, Architectures and Processors, pages 273–283,
June 2003.

10. J. Kneip, S. Bauer, J. Vollmer, B. Schmale, P. Kuhn, and R. Bosch. The MPEG-
4 Video Coding Standard - A VLSI Point of View. In 1998 IEEE Workshop on
SIGNAL PROCESSING SYSTEMS (SiPS): Design and Implementation, pages
43–52, Octover 1998.

11. M. Mano and C. Kime. Logic and Computer Design Fundamentals. Prentice Hall,
2000.

12. A. Marcovitz. Introduction to Logic Design. McGraw Hill, 2002.
13. O. L. Mac Sorley. High Speed Arithmetic in Binary Computers. IRE Proc., 1961.
14. M. R. Santoro and M. Horowitz. SPIM: A Pipelined 64x64-bit Iterative Multiplier.

IEEE Transactions on Circuits and Systems, 24(2):487–493, 1989.
15. M. Sun and K. Yang. A Flexible VLSI Architecture for Full-search Block-Matching

Motion Vector Estimation. In IEEE Int. Symp. on Circuits and Systems, pages
179–182, May 1989.

16. Synopsys. Design Compiler User’s Guide. http://www.synopsys.com/, 2004.
17. K. Yang, M. Sun, and L. Wu. A Family of VLSI Designs for Motion Compen-

sation Block Matching Algorithm. IEEE Transactions on Circuits and Systems,
36(10):1317–1325, 1989.

18. W.-C. Yeh and C.-W. Jen. High-Speed Booth Encoded Parallel Multiplier Design.
IEEE Transactions on Computers, 49(7):692–701, 2000.


	Introduction
	Conventional Methods
	Proposed Logarithmic Method
	Performance Evaluation and Analysis
	Module Generation
	Conclusions
	Acknowledgements
	References



