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Abstract. In our previous efforts, a least squares finite element lattice 
Boltzmann method (LSFE-LBM) was developed and successfully applied to 
simulate fluid flow in porous media. In this paper, we extend LSFE-LBM to 
simulate solute transport in bulk fluid and couple it with non-linear 
sorption/desorption processes at solid particle surfaces. The influences of the 
Peclet number and sorption non-linearity on solute transport is evaluated. 
Results of this work demonstrate the capability of using LSFE-LBM to study 
fluid flow and non-linear mass transfer processes at the pore scale. 

1    Introduction 

To provide for effective and efficient groundwater contamination prevention and 
remediation, it is important to possess a clear understanding of the complex mass 
transfer processes governing solute transport in the subsurface environment. Solute 
mass transfer in the subsurface includes several processes acting simultaneously: (i) 
advective-dispersive transport from bulk solution to the boundary layer of a soil or 
sediment particle; (ii) film diffusion across adsorbed water to the surface of a particle; 
(iii) sorption/desorption processes at the surface of the soil particle; and (iv) 
intrasorbent diffusion. Different factors, including transport-related non-equilibrium 
processes and sorption-related non-equilibrium processes, influence mass transfer in 
the subsurface [1], leading to non-ideal behaviors; i.e., early breakthrough and tailing 
breakthrough curves (BTC). Traditional advective-dispersive equations, which 
employ a local equilibrium assumption (LEA), fail to predict this non-ideal behavior 
[2]. In the last two decades, many efforts were devoted to better capture both 
transport-related and sorption-related non-equilibrium processes and elucidate the 
comparative contributions of different factors [3]. 

Recently, lattice Boltzmann method has been successfully applied to simulate fluid 
flow in porous media [4], providing a powerful alternative to model transport-related 
non-equilibrium processes. In this paper, we use a newly developed least squares 
finite element lattice Boltzmann method [5] to simulate fluid flow in porous media. 
Further, we extend LSFE-LBM to simulate solute transport in bulk fluid and couple it 
with non-linear sorption/desorption processes at particle surfaces.  
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2   Least Squares Finite Element Lattice Boltzmann Method 

Although LBM has been developed as an effective tool to simulate complex fluid 
flow problems in porous media, one of the challenges with LBM is its inability to 
allow irregularity in the lattice [6]. We developed a least squares finite element lattice 
Boltzmann method (LSFE-LBM), which uses a LSFE method [7] in space and Crank-
Nicolson method in time to solve the lattice Boltzmann equation. As described in an 
earlier publication [5], LSFE-LBM was successfully implemented on unstructured 
mesh to simulate fluid flow in porous media, requiring fewer grid points and 
consuming significantly less memory than traditional LBM. 

2.1   Derivation of LSFE-LBM 

Beginning with the basic equations of the LBM with a Bhatnagar-Gross-Krook 
collision operator:  
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where fi represents particle distribution moving with velocity ci, τ is the relaxation 

time, eq
if  is the local equilibrium function, and N is the number of elements per site 

based on the LB model employed. Discretizing in time with a Crank-Nicholson 
scheme, a standard form of the governing equation for LSFE-LBM is 

pLf n =+1      (2) 

where the differential operator 
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where ∆t denotes the time step in the Crank-Nicholson scheme.  
In the finite element implementation, the problem domain is first discretized into a 

set of finite elements, and then an approximate solution, fh
e,n+1 in the eth finite element 

is formulated as: 

1

1

1, +

=

+ ∑= n
j

n

j
j

ne
h fNf     (4) 

Here, Nj denotes the element shape function, n represents the number of variables 
in the element, and fj is the value of the j-th variable. Introducing this approximation 
into Eq. (2), the residual error at a point in the element is obtained. Integrating the 
square of this error over each element and minimizing the integral with respect to the 
nodal variables of the element, the elemental matrix relationship of the following 
form is obtained: 
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Ω= ∫Ω with the ith element of Q, 
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eF is the vector of nodal values at the current time step, and 
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Here, the Ke matrix is symmetric and positive definite.  

2.2   LSFE-LBM Simulating Fluid Flow  

In this study, a two-dimensional, nine-velocity lattice model (D2Q9) [8] is employed 
to implement LSFE-LBM for fluid flow. Accurate numerical results have been 
obtained for incompressible Poiseuille flow, Couette flow, and flow past a circular 
cylinder. Figure 1 is an example application of LSFE-LBM modeling fluid flow in 
porous media using an unstructured mesh. 

 

Fig. 1. LSFE-LBM-based unstructured mesh and velocity vectors for fluid flow in porous 
media 

2.3   LSFE-LBM Simulating Solute Transport 

In this study, we assume that the solute concentration is sufficiently low that it will 
not influence solvent flow. In this case, the solute can be described by a separate 
particle distribution function [9]. To recover the advection-diffusion equation, a 
simple square lattice with four possible directions is sufficient, which is thus used for 
implementing LSFE-LBM simulating solute transport.  

The validation of LSFE-LBM simulating solute transport is evaluated by a problem 
describing diffusion between two parallel walls. As illustrated in Figure 2, the two 
walls are assumed to be porous and a constant normal flow ua is injected through the 
lower wall and removed from the upper wall. The concentration of solute at the lower 
and upper walls is maintained with CU and CL, respectively. In this specific problem, 
CU is assumed higher than CL; it follows that solute diffuses counter to the flow  
of the fluid.  
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Fig. 2. Diffusion between two parallel walls 

The governing equation for this problem is:  
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where, Φ is a normalized concentration defined as: 
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diffusivity of solute. Analytical solutions can be obtained for this problem in two 
special cases. In Case I, when ua = 0, Eq. (8) will reduce to an unsteady state pure 
diffusion problem. The analytical solution can be expressed as:  

λπ
π

/

1

2

sin
)1(2

),( tn

n

n

e
l

yn

nl

y
ty −

∞

=
∑ −+=Φ , where 

D

l
2

2

π
λ =    (10) 

When 0≠au  (Case II), analytical solutions are only available for steady-state 

conditions:  
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Results presented in Figure 3 illustrate that LSFE-LBM achieves close agreement 
with the analytical solution for solute transport in both unsteady state and steady state 
conditions. 

 

Fig. 3. Comparison of LSFE-LBM solution (points) and analytical solution (line) for diffusion 
between two parallel walls. (a) represents unsteady state solutions when water velocity ua=0 
and (b) represents steady state solution when water velocity 0≠au  
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3   Mass Transfer Processes Simulation 

3.1   Problem Description  

To explore the influences of different factors on mass transfer processes, we consider 
fluid flow and transport through and around a single circular particle, set in a two-
dimensional domain with a uniform far-field velocity, as illustrated in Figure 4.  

 

Fig. 4. An illustration of fluid flow and solute transport through and around a circular particle 

A constant body force is imposed to drive fluid to flow from the left to right. When 
fluid flow reaches steady state, an instantaneous slug of solute is injected as a line 
source, as shown in Figure 4. Solute transport in the bulk fluid is driven by advection 
and diffusion processes. Several solute particles will diffuse across the water film to 
the surface of the particle. Sorption/desorption processes will then occur at the 
particle surface. The sorption rate at the particle surface can be expressed [10] as a 
function of the concentration difference between the solid and solution phases: 
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where, q is the solute concentration in the solid phase, C is the solute concentration 
in solution, ka is a sorption rate coefficient, kd is a desorption rate coefficient, and m is 
an exponent. At equilibrium, sorption isotherm models provide the relationship 
between sorbed-phase solute concentration and solute concentration in solution.  
Here, we express the relationship in terms of a Freundlich model: 
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3.2   Boundary Conditions 

For fluid flow, periodic boundary conditions are imposed on all four boundaries, and 
a non-slip boundary condition is imposed at the solid surface. For solute transport, 
periodic boundary conditions are enforced at the top and bottom boundaries. Non-flux 
boundary conditions are enforced at the inlet and outlet of the simulation domain. In 
order to provide for a valid non-flux boundary condition, the length of the simulation 
domain is adjusted such that there is no mass loss at the domain inlet and outlet. At 
the solid particle surface, the boundary condition can be expressed as: 
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where D is the solute diffusion coefficient in the fluid, and n is the direction normal to 
the interface pointing toward the fluid phase. To implement this boundary condition 
in LSFE-LBM, a relationship between the concentration gradient and microscale 
particle parameters is required. For the 4 velocity lattice Boltzmann model, Eq. (15) 
can be derived by the Chapman-Enskog expansion. 
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where gi is the particle distribution function for the solute, and α denotes x and y axis 
directions for a two-dimensional case. Figure 5 provides an example of this boundary 
condition at the upper right quadrant of a circular particle. 

 

Fig. 5. A boundary node at the upper right part of the particle surface 

Using Eq. (15), the following expressions are derived: 
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Further, we know: 
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Unknown distribution functions g1 and g2 is calculated, by solving this non-linear 
equation system. At each time step, the solid phase concentration, q, at the particle 
surface is updated based on Eq. (12). 

3.3   Results 

The simulation is carried out for a particle with radius R = 50 µm in the domain as 
defined in Figure 4. The evolution of the concentration profile is represented at four 
selected time steps in Figure 6. This example vividly displays the influence of particle 
geometry and fluid hydrodynamics on the solute concentration profile, suggesting the 
need to further evaluate transport-related non-equilibrium processes in more complex 
systems. 

Using the same Reynolds number (Re = 1.0), we examined the influence of the 
Peclet number on mass transfer processes. (Pe = uL/D, where u is the x-direction 
specific flow rate, L is the characteristic length of the domain which equals six times 
the particle diameter, and D is the solute diffusion coefficient in the bulk fluid.) By 
adjusting the values of D, two different breakthrough curves for Pe=10 and Pe=20 are 
observed at the control plane (Figure 7(a)). While representing the relative speed of 
fluid flow and solute diffusion, a lower Pe value denotes further deviation from an 
ideal symmetric breakthrough, with an earlier breakthrough and longer tailing effect 
as indicated in Figure 7 (a). 
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Fig. 6. Concentration profiles of a solute as it passes through and around a circular particle at 
four time points. Here t1 < t2 < t3 < t4 

Further, the influence of non-linear sorption is evaluated to explore the influence of 
sorption-related non-equilibrium on the mass transfer processes. Keeping all the other 
parameters the same, we simulated two cases with n = 0.5 and n = 1.0 in the sorption 
rate equation (Eq. 12). Here, the evolution of solid phase concentration for a point at 
the surface of the particle is tracked. As expected, the presence of non-linear sorption 
(n = 0.5) leads to a much stronger tailing effect (Figure 7 (b)).  

 
Fig. 7. (a) Breakthrough curves at the control plane for different Pe. (b) Time evolution of the 
solid phase concentration for a point at the surface of a particle 

4   Conclusion 

In this paper, we successfully applied our newly developed LSFE-LBM to simulate 
fluid flow and solute transport. LSEF-LBM was coupled with non-linear 
sorption/desorption through use of properly developed boundary conditions. The 
influences of particle geometry, Peclet number, and sorption/desorption non-linearity 
on solute transport were studied. Results from this work demonstrate the ability of 
LSFE-LBM to model fluid flow and highly non-linear mass transfer processes at the 
pore scale. In the future, LSFE-LBM will be applied to more complex systems to 
explore relative contributions of mass transfer processes with varying degrees of 
permeability and a variety of sorption/desorption properties. 
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