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Abstract. Semi-Lagrangian two-time-level finite difference scheme for 
hydrostatic atmospheric model is considered. Approximation of the 
gravitational waves in implicit-explicit manner allows to keep balance between 
extended stability and required accuracy. Both are assured by implicit 
discretization of the fast principal vertical modes and explicit approximation of 
the slow secondary gravitational waves. Numerical experiments with actual 
atmospheric data are carried out to define the most efficient implicit-explicit 
separation, which produces the accurate forecasts at the less computational cost.      

1   Introduction 

Semi-Lagrangian (SL) approach has been proved to be an efficient alternative to 
Eulerian one because it allows to circumvent the Courant-Friedrichs-Lewy (CFL) 
criterion related to advection velocity, requiring only solution of trajectory equations, 
which represent the systems of ODE decoupled at each grid point and solved 
efficiently by iterative algorithm [7,15]. If, additionally, gravitational terms of 
hydrostatic atmospheric model are discretized with sufficient degree of implicitness, 
then time step of SL schemes can be chosen on the base of accuracy considerations 
[7,15]. This is great advantage of such schemes because more straight explicit and 
implicit discretizations are computationally expensive: explicit approximation 
requires very small time steps due to fast gravitational waves and implicit 
approximation requires solution of nonlinear PDEs at each time step.   

The choice of the level of implicitness of gravitational terms in SL schemes can be 
based on considerations of efficiency, including the accuracy of forecasting fields and 
minimization of computational cost. The most direct approximation is implicit, which 
is used in the majority of the SL schemes [7,15]. It allows to use a great time steps, 
but it is not the most efficient way because the 3D linear algebraic systems of the high 
order LNM ××  (where M, N and L are the number of points in horizontal and 
vertical directions) should be solved at each time step. There is a chance to avoid 
these hard computations by separating the spectrum of gravitational waves. It is well 
known that highest internal barotropic modes of the vertically decoupled hydrostatic 
equations contain the gravitational waves with the smallest amplitudes and slowest 
velocities of propagation [8]. Such waves are secondary and do not impose any 
relevant restriction on time step and, consequently, they can be discretized in explicit 
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manner on a coarse grid. This way, implicit part can be reduced to K separate 2D 
linear systems of the order NM × , where K is a small as compared to L. Thus, the 
computational cost can be reduced if the slow gravitational waves are discretized 
more explicitly and coarsely.  

A similar approach has been used in a three-time-level SL model [3]. The reported 
results showed strong points of developed scheme for time steps up to 40 min. In the 
last decade, motivated by results of McDonald [10] and Temperton and Staniforth 
[16] for shallow water equations, numerical modelers started to substitute tree-time-
level SL schemes by two-time-level ones, which allow to achieve the same accuracy 
with even larger time steps [9,11,17]. In this paper we apply the modified technique 
of [3] to two-time-level scheme with objective to increase time step up to 60 min with 
no loss of forecast accuracy.  

2   Semi-Lagrangian Implicit-Explicit Time Discretization  

Primitive equations in time coordinate t , horizontal Cartesian coordinates yx,  and 

vertical coordinate spp=σ  can be written as follows [7]: 

uxt NGvfud +−= 0  , vyt NGufvd +−−= 0  , (1) 

RTG −=σln , σσ!−−= DPdt  , ( ) Tpttp NcPdRTTdc ++⋅= σσ!0  ; (2) 

( ) ( ) xu PTTRvffN 00 −−−= , ( ) ( ) yv PTTRuffN 00 −−−−=  , (3) 

( )( )σσσσ !! −−−−= DTTRNc Tp 0 . (4) 

Here, u , v  and σ!  are horizontal and vertical velocity components, yx vuD +=  is 

the horizontal divergence, spP ln= , p  and sp  are the pressure and surface pressure 

respectively, T  is the temperature, PRTgzG 0+= , z  is the height. Nonlinear and 

variable coefficient terms are grouped in uN , vN , TN . Individual 3D derivative is  

σϕσϕϕϕϕ !+++= yxtt vud    , TPvu ,,,=ϕ  

and the following parameters are used: f  is the Coriolis parameter with the mean 

value 0f , g  is the gravitational acceleration, R  is the gas constant of dry air, pc  is 

the specific heat at constant pressure, constT =0  is the reference temperature profile. 

Hereinafter the subscripts σ,,, yxt  denote the partial derivatives with respect to 

indicated variable. 
Let us split solution of (1)-(2) into two steps. The first SL step consists of solution 

of the advective part of the prognostic equations 

Vr =td  ,  ( )σ,, yx=r  , ( )σ!,, vu=V  . 

These equations are efficiently solved by Robert's iterative algorithm [14,15], which 
assures the second order of accuracy and converges under limitation on time step 
expressed in the terms of the wind derivatives [13,15]: 
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( )σσσ σσστ !!! ,,,,,,,,max,32 yxyxyxdd vvvuuuVV =≤  , 

For fine grid with horizontal meshsize about 50km and 20 vertical levels it gives 
maximum time step about 1 hour.  

The other terms, including gravitational waves, are considered on the second step 

uxt NGvfu +−= 0   , vyt NGufv +−−= 0  , (5) 

σσ!−−= DPt  , ( ) Tttp NPRTTc ++⋅= σσ!0  . (6) 

Implicit discretization of all the gravitational terms ( xG , yG , D , σσ! , σσ! ) is the 

most traditional approximation in SL models [7,15,17]. It gives rise to the following 
time difference equations:  
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where τ  is the time step, superscript 1+n  denotes the values at the new time level 
( )τ11 +=+ ntn  and superscript n  denotes the values at the current time level τntn = . 

The nonlinear terms are evaluated by extrapolation to the half way time level 21+nt : 

( ) 23 121 −+ −= nnn NNN , Tvu NNNN ,,=  . 

The scheme (7)-(9) is of the second order of accuracy and linear analysis shows that it 
is absolutely stable. However, it requires the solution of 3D elliptic problem at each 
time step [11,17]. 

Another way of approximation of gravitational terms is explicit. For example, 
forward-backward time differencing gives: 
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This scheme is of the first order of accuracy and its CFL condition is 

gravg ch2≤τ , where gh  is meshsize used for approximation of gravitational 
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waves and smcgrav 350≈  is the propagation velocity of the fastest gravitational 

waves. This condition implies the use of the small time steps about 3 min on a fine 
horizontal grid with kmhg 50= . However, the algorithm of solution at each time step 

is very simple because this scheme is actually explicit. 
Finally, let us consider implicit time differencing for essential fast gravitational 

waves and explicit one for secondary slow waves. To this end, we should apply 
vertical transform to separate the different types of the gravitational waves. First we 
eliminate functions P, T and σ!  from (6) to obtain prognostic equation for G : 

( ) ( )σσσ σσ Tptp NRcDTRGc −= 0
2

ln . (13) 

Then, we use the vertical expansion of the functions   

∑= kk Sϕϕ , (14) 

where ( )σkS  are the first K eigenfunctions of the differential vertical structure 

equation  

( ) RSSc p
1

ln
−−= λσ σσ  

or its discrete analogues, that is, the eigenvectors of the difference vertical structure 
equation on vertical K-level grid. Using (14) we can rewrite equations (5), (13) in the 
following form for each vertical mode k 

kukxkkt NGvfu +−= 0 , kvkykkt NGufv +−−= 0 , kGkkkt NDcG +−= 2 , (15) 

where kk RTc λ0=  and ( )( )
kTkG NRN σσλ= . It was shown in [5] for differential 

vertical structure equation and in [4] for difference equation that all eigenvalues kλ  

are positive and have zero limit point as k approaches infinity. Fig.1 shows the values 
of kc  as function of the mode number k for 20-level Lorenz staggered vertical grid. 

The results for homogeneous grid and actual grid (with concentration of the levels in 
boundary layer and higher troposphere) are presented. 

Now we can apply different approximation to the fast and slow gravitational 
waves. The first I principal vertical modes are approximated implicitly with second 
order of accuracy 
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Fig. 1. Gravity-wave velocity as function of the vertical mode number 

The remaining secondary modes are approximated explicitly with the first order of 
accuracy: 
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Let us note that although systems (15) are coupled through nonlinear terms, both 
schemes (16)-(18) and (19)-(21) can be solved separately for each k because nonlinear 
terms are treated explicitly. This approach generates stability condition in the 

form 12 +≤ Ig chτ , where 1+Ic  is the maximum gravity-wave speed of the modes 

treated explicitly. 
If discrete vertical transform is applied, implicit approximation (16)-(18) of all the 

vertical modes will result in the scheme (7)-(9) and explicit approximation (19)-(21) 
of all the modes will give forward-backward scheme (10)-(12).  

3   Numerical Experiments 

In this section we present the results of the experiments with different configurations 
of the vertical approximation. At each time step, the explicit approximation (19)-(21) 

is solved by direct formulas: first 1+n
kG  are found from (21) and then 1+n

ku  and 1+n
kv  
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are elementary solved from (19) and (20). The implicit approximation (16)-(18) is 

reduced to 2D Helmholtz equation for 1+n
kG :   
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where ritght-hand side is combination of the values at the time level nt . This equation 

is solved by multigrid method, which is fast solver for such kind of the problems. Its 
optimal versions require ( )MNO  arithmetic operations, where M and N are the 

number of points in horizontal. We apply BOXMG algorithm [2,6] based on Galerkin 
type of discretization, which allows to use spatial grids with arbitrary number of the 
points with no less of the convergence speed of iterations. Numerical experiments 
showed that optimal version of the BOXMG algorithm for equation (22) consists of 
using the V-cyclic method with two cycles for the first two vertical modes and one 
cycle for others. One four-color Gauss-Seidel point relaxation sweep is performed on 
any grid both before dropping down to the next coarser grid and before interpolation 

to the previous finer grid. As initial guess for iterations we use n
kG . After 1+n

kG  is 

found, the 1+n
ku  and 1+n

kv  are calculated by elementary solution of (16), (17). 

 

Fig. 2. Time step and computational cost of the implicit-explicit schemes 

24-hour integrations of the primitive equations were carried out for different 
number of the vertical modes approximated implicitly. Fig. 2 shows time step used in 
these experiments (chosen in accordance with stability criterions) and computational 
time cost (in percent of the forecast time of the forward-backward scheme (10)-(12)) 
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as functions of the number of the implicitly treated vertical modes. The required 
computational time for one forecast computed by implicit approximation (7)-(9) is 
also shown. The last integration is less expensive than that with implicit solution of all 
vertical modes by formulas (16)-(18). The former requires solution of the 3D elliptic 
equation but does not need application of vertical tranform, while the latter uses 
vertical transform and fast MG solvers for a set of 2D elliptic problems. Although 
multigrid solution of 3D equation is more expensive than fast solution of the 
decoupled set of 2D equations, the additional computational charge due to vertical 
transform is too hard. Since both schemes have absolutely stable adjustment step, that 
is, their maximum time step is about 60 min as defined by advective step, the scheme 
(7)-(9) required less computational time than (16)-(18) with I=K. Nevertheless, some 
versions of the implicit-explicit algorithm are more computationally efficient than the 
standard algorithm (7)-(9). For example, implicit treatment of 7-9 vertical modes 
gives certainly more efficient algorithm. 

To evaluate forecasting ability of the above schemes we carried out integrations 

based on actual atmospheric data. The horizontal domain of 5000x5000 2km  centered 

at Porto Alegre city ( S030 , W052 ) was covered by uniform spatial grid C with 
meshsize km50=h (we use Arakawa-Mesinger nomenclature of spatial grids [12]). 

The initial and boundary conditions were obtained from objective analysis and global 
forecasts of National Centers for Environmental Prediction (NCEP). 

 

Fig. 3. Root-mean-square error of geopotential forecast at the surface of 500 hPa 

It is well expected that after certain period of integration the forecast results will be 
determined in high degree by boundary conditions. Therefore the standard evaluation 
time for the regional models is limited to 24 or 36 hours of integration [1]. In Fig. 3 
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we present the root-mean-square differences in meters between 24-h forecasts and 
analysis at pressure level 500hPa. This is standard measure of quality of short-range 
weather forecasts for geopotential fields [1]. Each scheme was run with appropriate 
time step chosen in accordance with stability criterions. Based on this results we can 
conclude that the most efficient algorithms are obtained when implicit-explicit 
algorithm with 7-9 implicit modes is used. 
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