
A Fast Cryptanalysis of the Isomorphism of
Polynomials with One Secret Problem

Ludovic Perret

ENSTA, UMA, 32 Boulevard Victor,
75739 Paris Cedex 15, France

lperret@ensta.fr

Abstract. At Eurocrypt’96, Patarin proposed [9] new cryptographic
schemes based on the Isomorphism of Polynomials with one Secret prob-
lem (IP1S) [9]. We study in this paper a restriction of IP1S called Poly-
nomial Linear Equivalence problem (PLE) [7]. We show that PLE is in
fact not a restriction of IP1S, in the sense that any algorithm solving
PLE can be efficiently transformed into an algorithm for solving IP1S.
Motivated by the cryptanalysis of schemes based on IP1S, we present a
new efficient algorithm for solving PLE. This algorithm is mainly based
on a differential property of PLE. The main advantage of this approach
is to translate PLE into a simple linear algebra problem. The perfor-
mances of our algorithm evidence that, with the parameters proposed
in [9], schemes based on IP1S are far from achieving the security level
required for cryptographic applications.

Keywords: Cryptanalysis, Isomorphism of Polynomials with One Secret
(IP1S), Polynomial Linear Equivalence (PLE), Jacobian Matrix.

1 Introduction

IP1S has been originally introduced by Patarin [9] to circumvent the problem
of practicality encountered when using the Graph Isomorphism problem as an
underlying problem for zero-knowledge authentication protocols [4].

IP1S can be outlined as follows: given multivariate polynomials
(
a1(x1 . . . , xn),

. . . , au(x1 . . . , xn)
)

and
(
b1(x1 . . . , xn), . . . , bu(x1 . . . , xn)

)
over Fq[x1, . . . , xn],

find - if any - an invertible matrix S ∈ GLn(Fq) and a vector T ∈ F
n
q , such that:

bi(x1 . . . , xn) = ai

(
(x1 . . . , xn)S + T

)
, for all i, 1 ≤ i ≤ u.

In other words, Graphs have been replaced by multivariate polynomials and
permutations by bijective affine mappings. A new authentication protocol, based
on IP1S, as well as a public key signature scheme were then designed in [9]. The
main motivation of this paper is to study, from both a theoretical and practical
point of view, the security of these schemes. To do so, we address here a relevant
variant of it. The problem we call Polynomial Linear Equivalence problem (PLE)
[7], which is the restriction of IP1S to bijective linear mappings. We stress that

R. Cramer (Ed.): EUROCRYPT 2005, LNCS 3494, pp. 354–370, 2005.
c© International Association for Cryptologic Research 2005

A Fast Cryptanalysis of the IP1S Problem 355

this is in fact not a restriction since we prove in this paper that IP1S and PLE
are equivalent, in the sense that any algorithm solving PLE can be efficiently
transformed into an algorithm for solving IP1S.

1.1 Previous Work

To the best of our knowledge, the first algorithm presented for IP1S is due to
Geiselmann, Meier and Steinwandt [3]. We here briefly recall its principle and
refer the reader to the original paper for a detailed description.
Let

(
(a1, . . . , au), (b1, . . . , bu)

) ∈ Fq[x1 . . . , xn]u × Fq[x1 . . . , xn]u, and (S, T) ∈
GLn(Fq) × F

n
q such that:

bi(x1 . . . , xn) = ai

(
(x1 . . . , xn)S + T

)
, for all i, 1 ≤ i ≤ u.

Moreover, let ej ∈ F
n
q be the vector with its jth component equal to one and

zero otherwise. The main idea is to remark that if �j ∈ F
n
q is the jth row of the

matrix S, then:
bi(ej) = ai

(
�j + T

)
, for all i, 1 ≤ i ≤ u.

When T ∈ F
n
q is given, an exhaustive search among F

n
q is then performed to

recover:
Lj = {� ∈ F

n
q : bi(ej) = ai(� + T), for all i, 1 ≤ i ≤ u},

which is a set of candidate vectors for the jth row of S.
Soon after, Levy-dit-Vehel and Perret in [7] have remarked that the jth row

of S is a zero of the following system of non-linear equations:
{
a1(x + T) − b1(ej) = 0, · · · , au(x + T) − bu(ej) = 0

}
. (1)

Therefore, the set Lj of candidates for the jth row of S is equal to the set of
zeroes of (1). Hence, they have substituted the exhaustive search of the elements
of Lj by the computation of a Gröbner basis [7]. In this work, we use very basic
tools of linear algebra for solving IP1S.

1.2 Organization of the Paper and Main Results

The paper is organized as follows. We begin in Section 2 by introducing our
notations and defining more formally the PLE and IP1S problems, which are
the main concern of this paper.

In Section 3, we prove that PLE is equivalent to IP1S, i.e. any algorithm
solving PLE can be efficiently transformed into an algorithm for solving IP1S.

In Section 4, differential properties of PLE are presented. These properties
give a strong relation between the Jacobian matrices of an instance of PLE and
solutions of this problem. We also show that structural properties of PLE can
be used to obtain linear equations in the components of a solution of PLE.

A new algorithm for solving PLE is described in Section 5. Using properties
of section 4, we show that a partial knowledge of a solution allows us to recover
it entirely by solving a suitable linear system of equations. It appears that the
algorithm presented in this section is much more efficient than algorithms pre-
viously proposed [3, 7]. This is illustrated in the last part of this paper by giving
experimental results obtained with our algorithm.

356 L. Perret

2 Preliminaries

2.1 Notations

We introduce in this part the notations used throughout this paper. We denote
by Fq, the finite field with q = pr elements (p a prime, and r ≥ 1), by x
the vector (x1, . . . , xn), by Fq[x] = Fq[x1, . . . , xn], the polynomial ring in the n
indeterminate x1, . . . , xn over Fq, and f(x) stands for f(x1, . . . , xn). Moreover,
let g and h1, . . . , hn be polynomials of Fq[x]; by g◦h we shall mean the functional
composition g

(
h1, · · · , hn

)
of g and the hi’s.

A monomial is a power product of the variables x1, . . . , xn, and a term is
a coefficient multiplied by a monomial. We shall define the total degree of a
monomial xα1

1 · · ·xαn
n , (α1, . . . , αn) ∈ N

n, by the sum
∑n

i=1 αi. Obviously, the
total degree of a term cxα1

1 · · ·xαn
n , c ∈ F

∗
q , is the total degree of xα1

1 · · ·xαn
n .

The leading term of f is the largest term among the terms of f w.r.t. some
admissible ordering on the monomials. For example, the lexicographical order
≺LEX , defined by:

xα1
1 · · ·xαn

n ≺LEX xβ1
1 · · ·xβn

n ⇐⇒
{

the first coordinates αi and βi from the left
which are different satisfy αi < βi,

is an admissible order.
Let f ∈ Fq[x], the degree of f is the total degree of its leading term. We shall

say that f is homogeneous of degree d if every term appearing in f has total
degree d. An important fact is that every polynomial can be written uniquely as
a sum of homogeneous polynomials. Namely f =

∑
d f (d), with f (d) being the

sum of all terms of f of total degree d. Notice that each f (d) is homogeneous,
and we call f (d) the dth homogeneous component of f . If f is of maximal total
degree d, we shall call homogenization of f , denoted by F , the polynomial:

F (x1, . . . , xn, z) =
d∑

i=0

f (i)(x1, . . . , xn)zd−i. (2)

The polynomials f and F are related in the following way:

F (x, z) = zdf
(x1

z
, . . . ,

xn

z

)
= zdf

(x

z

)
. (3)

Evaluating F in (x, 1) yields f , i.e. F (x, 1) = f(x). This process is called deho-
mogenization.

We extend now some of the notations previously given to vectors of poly-
nomials. Precisely, for a =

(
a1, · · · , au

) ∈ Fq[x]u, we shall denote by a(d) =
(a(d)

1 , . . . , a
(d)
u) the dth homogeneous components of the polynomials of a.

We shall denote by Mn,u(Fq) the set of n × u matrices whose components
are in Fq. For M ∈ Mn,u(Fq), we set Ker(M) = {x ∈ F

n
q : xM = 0u}, 0u being

the null vector of F
u
q . As usual, GLn(Fq) denotes the set of invertible matrices

of Mn,n(Fq), and we denote by AGLn(Fq) the cartesian product GLn(Fq)×F
n
q .

A Fast Cryptanalysis of the IP1S Problem 357

2.2 Jacobian Matrix

Let f =
∑

i aix
i ∈ Fq[x], the formal derivative of f is the polynomial df

dx =∑
i iaix

i−1 ∈ Fq[x]. More generally, when f ∈ Fq[x1, . . . , xn], the partial deriva-
tives of f , denoted by ∂f

∂xi
, 1 ≤ i ≤ n, are defined by considering f as a polynomial

in xi with coefficients in Fq[x1 . . . , xi−1, xi+1, . . . , xn]. It is not hard to check that
the ∂/∂xi’s commute with one another.

Definition 1. The Jacobian matrix of f = (f1, . . . , fu) ∈ Fq[x]u, denoted by
Jf (x), is the u × n matrix whose components are the partial derivatives of the
polynomials of f , i.e.:

Jf (x) =
{

∂fi

∂xj
(x)

}1≤i≤u

1≤j≤n

The property of partial derivatives that we use in this paper is the chain rule
condition:

∂(g ◦ h)
∂xi

(x) =
n∑

j=1

∂g

∂xj
(h(x))

∂hj

∂xi
(x), for all i, 1 ≤ i ≤ n.

2.3 The IP1S and PLE Problems

Let
(
a = (a1, . . . , au), b = (b1, . . . , bu)

) ∈ Fq[x]u×Fq[x]u. We shall say that (a, b)
are affine-equivalent, denoted by a ≡A b, if there exists (S, T) ∈ AGLn(Fq), s.t.:

bi(x1 . . . , xn) = ai

(
(x1 . . . , xn)S + T

)
, for all i, 1 ≤ i ≤ u.

We call such a pair an affine equivalence pair. The Isomorphism of Polynomials
with one Secret problem (IP1S) is then the one of finding - if any - an affine
equivalence pair between the polynomials of a and b. We mention that this
problem is also called Polynomial Affine Equivalence problem (PAE) in [7].

A natural variant of this problem is to consider linear bijective mappings.
We shall say that (a, b) are linear-equivalent, denoted by a ≡L b, if there

exists S ∈ GLn(Fq), such that:

bi(x) = ai(xS), for all i, 1 ≤ i ≤ u. (4)

In the sequel we shall denote, for convenience, equations (4) by b(x) = a(xS).
We call the matrix S a linear equivalence matrix. The Polynomial Linear

Equivalence problem (PLE) is then the one of finding - if any - a linear equiva-
lence matrix between a and b.

3 IP1S and PLE are Equivalent

Before giving our complexity results, we need to present structural properties of
PLE and IP1S.

358 L. Perret

Property 1. If b(x) = a(xS + T), for some (S, T) ∈ AGLn(Fq), then:

b
(Di)
i (x) = a

(Di)
i (xS), for all i, 1 ≤ i ≤ u,

Di being, for all i, 1 ≤ i ≤ u, the degree of the homogeneous component of
highest degree of bi.

Proof. For all i, 1 ≤ i ≤ u, bi(x) = ai(xS + T), for some (S, T) ∈ AGLn(Fq)
implies that bi(x−TS−1) = ai(xS). We stress that b

(Di)
i (x−TS−1), which is the

homogeneous component b
(Di)
i of bi evaluated in x − TS−1, contains the terms

of total degree Di of bi(x − TS−1).
Indeed, let b

(Di)
i (x) =

∑
1≤j1,...,jDi

≤n b
(Di)
i,j1,...,jDi

xj1 · · ·xjDi
, be the homogeneous

component of degree Di of bi. Since:

Di∏

k=1

(
xjk

− (TS−1)jk

)
= xj1 · · ·xjDi︸ ︷︷ ︸

total degree Di

+terms of total degree < Di.

We have:

b
(Di)
i (x − TS−1) =

∑

1≤j1,...,jDi
≤n

b
(Di)
i,j1,...,jDi

Di∏

k=1

(
xjk

− (TS−1)jk

)

= b
(Di)
i (x)

︸ ︷︷ ︸
total degree Di

+terms of total degree < Di.

Finally, by equating the terms of total degree Di of bi(x − TS−1) with those of
ai(xS), we get that b

(Di)
i (x) = a

(Di)
i (xS), for all i, 1 ≤ i ≤ u. 	

Remark 1. Let
(
a = (a1, . . . , au), b = (b1, . . . , bu)

) ∈ Fq[x]u×Fq[x]u. In the rest
of the paper, Di will always denote the degree of the homogeneous component of
highest degree of bi. Moreover, we set D = max1≤i≤u(Di).

We now give the linear counterpart of property 1. Remark that the next property
already appeared in [7], but is quoted here for the sake of completeness.

Property 2. Let S ∈ GLn(Fq), we have:

b(x) = a(xS) ⇐⇒ b(d)(x) = a(d)(xS), for all d, 0 ≤ d ≤ D.

Proof. Let S ∈ GLn(Fq), such that b(x) = a(xS). For each i, 1 ≤ i ≤ u, and for
all d, 0 ≤ d ≤ D, the terms of total degree d of ai(xS) are equal to those of the
homogeneous polynomial a

(d)
i evaluated in xS, i.e. the terms of a

(d)
i (xS). Thus,

by equating the terms of total degree d of bi(x) with those of ai(xS), we get that
for all i, 1 ≤ i ≤ u:

A Fast Cryptanalysis of the IP1S Problem 359

b
(d)
i (x) = a

(d)
i (xS), for all d, 0 ≤ d ≤ D.

Let S ∈ GLn(Fq) and suppose now that for all i, 1 ≤ i ≤ u, b
(d)
i (x) = a

(d)
i (xS),

for all d, 0 ≤ d ≤ D. Consequently, we get that
∑D

d=0 b
(d)
i (x) =

∑D
d=0 a

(d)
i (xS),

i.e. b(x) = a(xS). 	

Wenowintroduce some additional notations. We shall call dPLE (resp. dIP1S)

the decisional version of PLE (resp. IP1S); that is, the problem of deciding
whether (a, b) ∈ Fq[x]u × Fq[x]u are linear-equivalent (resp. affine-equivalent).

Finally, we would like to recall that a polynomial-time many-one reduction
(also known as Karp reduction) is defined as follows:

Definition 2. [5] Let A and B be two decisional problems. A is polynomial-time
many-one reducible to B, denoted by A ≤m

p B, iff there exists a polynomial-time
computable function f , such that for any instance x of A, we have:

x ∈ LA ⇐⇒ f(x) ∈ LB ,

LA and LB being the set of YES instances of A and B.
Moreover, A and B are polynomial-time many-one equivalent, denoted by A ≡m

p

B, iff A ≤m
p B and B ≤m

p A.

For dIP1S and dPLE, we have the following (surprising) result:
Proposition 1. dIP1S is polynomial-time many-one reducible to dPLE.

Proof. In order to prove that dIP1S≤m
p dPLE, we define a function f : Fq[x]u ×

Fq[x]u → Fq[x, z]u+1 × Fq[x, z]u+1 as follows. For all (a, b) ∈ Fq[x]u × Fq[x]u:

f
(
a(x), b(x)

)
=

(
A(x, z), B(x, z)

)
,

with A(x, z)=
(
A1(x, z), . . . , Au(x, z), z

)
and B(x, z)=

(
B1(x, z), . . . , Bu(x, z), z

)
.

The Ai’s (resp. Bi’s) being the homogenizations of the ai’s (resp. bi’s). One can
see at once that, according to (2), f can be computed in polynomial-time.

Now, let (a, b) ∈ LdIP1S , i.e. b(x)=a(xS+T), for some
(
S ={si,j}1≤i,j≤n, T =

(t1, . . . , tn)
) ∈ AGLn(Fq). From this affine equivalence pair, we define the fol-

lowing matrix:

S′ =

⎛

⎜
⎜
⎜
⎝

s1,1 s1,2 . . . s1,n 0
...

...
. . .

...
...

sn,1 sn,2 . . . sn,n 0
t1 t2 . . . tn 1

⎞

⎟
⎟
⎟
⎠

.

We mention that since S ∈ GLn(Fq), then S′ ∈ GLn+1(Fq). Indeed, it’s inverse

is
(

S−1 0n
t

−TS−1 1

)
. Moreover, we have:

(
x, z

)
S′ =

(∑n
j=1 xjsj,1 + t1z, . . . ,

∑n
j=1 xjsj,n + tnz, z

)

=
(
xS + Tz, z

) (5)

Recall that for all i, 1 ≤ i ≤ u, Di denotes the degree of the homogeneous
component of highest degree of bi. Note that for all z �= 0, zDibi(

x
z) = zDiai(

x
z S+

T). Thus, using (3) and (5), we get that for all i, 1 ≤ i ≤ u:

360 L. Perret

Bi

(
x, z

)
= zDiai

(x

z
S +T

)
= zDiai

(xS + Tz

z

)
= Ai

(
xS +Tz, z

)
= Ai

(
(x, z)S′).

To handle the case z = 0, we use property 1. According to it, we know that if
b(x) = a(xS + T), for some (S, T) ∈ AGLn(Fq), then b

(Di)
i (x) = a

(Di)
i (xS), for

all i, 1 ≤ i ≤ u. Therefore, for z = 0, and for all i, 1 ≤ i ≤ u:

Ai

(
(x, 0)S′) = Ai

(
xS, 0

)
= a

(Di)
i

(
xS

)
= b

(Di)
i

(
x
)

= Bi

(
x, 0

)
.

Finally, we remark that Au+1

(
(x, z)S′) = Au+1

(
xS + Tz, z

)
= z = Bu+1

(
x, z

)
.

Thus, we get that f
(
a, b

)
=

(
A,B

) ∈ LdPLE .

Now, let f
(
a, b

)
=

(
A,B

) ∈ LdPLE , i.e. B
(
x, z

)
= A

(
(x, z)S′′), for some

S′′ = {s′′i,j}1≤i,j≤n+1 ∈ GLn+1(Fq). Due to the particular shape of the polyno-
mials of A and B, we must have z =

∑n
j=1 xjs

′′
j,n+1 + zs′′n+1,n+1, i.e. s′′j,n+1 = 0,

for all j, 1 ≤ j ≤ n and s′′n+1,n+1 = 1. Thus, the linear equivalence matrix
S′′ must leave z unchanged. Therefore, if we set h1(S′′) = {s′′i,j}1≤i,j≤n and
h2(S′′) = (s′′n+1,1, . . . , s

′′
n+1,n) then for all i, 1 ≤ i ≤ u, we have:

Bi

(
x, z

)
= Ai

(
(x, z)S′′) = Ai

(
xh1(S′′)+zh2(S′′), z

)
= zDiai

(x

z
h1(S′′)+h2(S′′)

)
.

For z = 1, we get in particular that:

B(x, 1) =
(
b(x), 1

)
= A((x, 1)S′′) =

(
a(xh1(S′′) + h2(S′′), 1

)
.

Hence, b(x) = a
(
xh1(S′′)+h2(S′′)

)
. Since S′′ ∈ GLn+1(Fq), h1(S′′) ∈ GLn(Fq)

and it follows that
(
h1(S′′), h2(S′′)

)
is an affine equivalence pair between a and

b, i.e. (a, b) ∈ LdIP1S . 	

Note that in this paper, we are interested in the finding of a solution of PLE (resp.
IP1S) rather than deciding if such a solution exists. However, this result permits
in fact to transform efficiently any algorithm dedicated to PLE to an algorithm
for solving IP1S. Indeed, let the notations be as in the proof of proposition 1
and (a, b) be an instance of IP1S. Any linear equivalence S′′ for f(a, b) =

(
A,B

)

can be efficiently transformed into an affine equivalence pair
(
h1(S′′), h2(S′′)

)

for (a, b). Thus, any solution given by a PLE algorithm, on input
(
A,B

)
, can

be easily transformed to a solution for IP1S, i.e. an affine equivalence pair for
(a, b).

On the other hand, we have the following (less surprising) result:

Proposition 2. dPLE is polynomial-time many-one reducible to dIP1S.

Proof. Let (a, b) ∈ Fq[x]u × Fq[x]u. For proving that dPLE≤m
p dIP1S, we define

f : Fq[x]u × Fq[x]u → Fq[x](D+1)·u × Fq[x](D+1)·u in the following way. For all
(a, b) ∈ Fq[x]u × Fq[x]u, we have:

A Fast Cryptanalysis of the IP1S Problem 361

f
(
a, b

)
=

(
A,B

)
,

with A =
(
a(D), a(D−1), . . . , a(0)

)
and B =

(
b(D), b(D−1), . . . , b(0)

)
.

Let (a, b) ∈ LdPLE , i.e. b(x) = a(xS), for some S ∈ GLn(Fq).
According to property 2, we have b(d)(x) = a(d)(xS), for all d, 0 ≤ d ≤ D. Thus
B(x) = A(xS), and (S, 0n) is an affine equivalence pair between A and B, i.e.
f(a, b) = (A,B) ∈ LdIP1S .

Now let f
(
a, b

)
=

(
A,B

) ∈ LdIP1S , i.e. B(x) = A(xS′ + T ′), for some
(S′, T ′) ∈ AGLn(Fq). By the very construction of f , B(x) = A(xS′+T ′) implies
that b(d)(x) = a(d)(xS′ + T ′), for all d, 0 ≤ d ≤ D. We then have according to
property 1 that:

b(d)(x) = a(d)(xS′), for all d, 0 ≤ d ≤ D.

By property 2, we get that b(x) = a(xS′), i.e. S′ is a linear equivalence matrix
between a and b, proving that (a, b) ∈ LdPLE . 	

Let the notations be as in the proof of proposition 2 and (a, b) be an instance
of PLE. If (S, T) is an affine equivalence pair, between f(a, b) =

(
A,B

)
, then

S is a linear equivalence matrix between
(
A,B

)
, and thus between (a, b). Thus,

from any solution given by an IP1S algorithm, on input
(
A,B

)
, one can easily

construct a solution to PLE for (a, b).
Finally, from propositions 1 and 2, we deduce:

Corollary 1. dPLE ≡m
p dIP1S.

This equivalence result also holds for PLE and IP1S (the search problems asso-
ciated to dPLE and dIP1S). Indeed, aboves proofs construct a solution of PLE
(resp. IP1S) from one of IP1S (resp. PLE). Thus, we can w.l.o.g restrict our
attention to only one of these problems. Hereafter, we will focus on PLE. We
have chosen more particularly this problem since it seems to have more useful
algorithmic properties.

4 Properties of PLE

We present in this part new properties of PLE. In 4.1, we give a strong relation
between the Jacobian matrices of an instance (a, b) of PLE and solutions of
this instance. In 4.2, we show that structural properties of PLE permit to obtain
linear equations in the components of a linear equivalence matrix (provided such
a matrix exists).

4.1 Differential Properties

In the one variable case (i.e. n = 1), PLE can be reformulated as follows: given
polynomials a1(x), . . . , au(x) and b1(x), . . . , bu(x) in Fq[x], find - if any - s ∈ Fq,

362 L. Perret

such that the equality bi(x) = ai(xs) holds for all i, 1 ≤ i ≤ u. When computing
the formal derivatives of these equalities, we get that s must be such that:

dbi

dx
(x) = s

dai

dx
(xs), for all i, 1 ≤ i ≤ u.

Thus, if dai

dx (0) �= 0, for some i, then s =
dbi
dx (0)
dai
dx (0)

. The next theorem, which is is

the main result of this section, extend this idea to multivariate polynomials.

Theorem 1. If b(x) = a(xS), for some S ∈ GLn(Fq), then:

Jb(x) = Ja(xS)St,

Ja(xS) =
{

∂ai

∂xj
(xS)

}1≤i≤u

1≤j≤n
and Jb(x) =

{
∂bi

∂xj
(x)

}1≤i≤u

1≤j≤n
being the Jacobian ma-

trices of a evaluated in xS and of b evaluated in x, respectively.

From this theorem, we deduce the following corollaries:

Corollary 2. Let S ∈ GLn(Fq) be such that b(x) = a(xS), and (p′, p) ∈ F
n
q ×F

n
q

be such that p′ = pS. Then:

i)Jb(p) = Ja(p′)St

ii)Ker
(
J t

a(p′)
)

= Ker
(
J t

b(p)
)
S

Proof. i) is obvious since p′ = pS.
For ii), let ka ∈ Ker

(
J t

a(p′)
)
, we have kaS−1J t

b(p) = kaJ t
a(p′) = 0u, therefore

kaS−1 ∈ Ker
(
J t

b(p)
)
, i.e. ka ∈ Ker

(
J t

b(p)
)
S.

Now, let k′ = kbS ∈ Ker(J t
b(p)

)
S, we have 0u = kbJ

t
b(p) = k′J t

a(p′), i.e. k′ ∈
Ker

(
J t

a(p′)
)
. Thus, Ker

(
J t

a(p′)
)

= Ker
(
J t

b(p)
)
S. 	

Corollary 3. If b(x) = a(xS), for some S ∈ GLn(Fq), then:

Jb(d)(x) = Ja(d)(xS)St, for all d, 0 ≤ d ≤ D.

Ja(d)(xS) and Jb(d)(x) being the Jacobian matrices of a(d) evaluated in xS and
of b(d) evaluated in x, respectively.

4.2 Structural Properties

For each homogeneous polynomial p ∈ Fq[x] of degree two there exists Q ∈
Mn,n(Fq), such that p(x) = xQxt. This matrix can be easily constructed from
the knowledge of the coefficients of the terms of p, but is not unique in gen-
eral. For fields of characteristic �= 2, provided that Q is symmetric (resp. upper
triangular, lower triangular) such a representation is unique. For fields of charac-
teristic 2, the representation is unique if Q is upper triangular or lower triangular.

A Fast Cryptanalysis of the IP1S Problem 363

Corollary 4. Let Qai
, Qbi

∈ Mn,n(Fq) be, for all i, 1 ≤ i ≤ u, the unique
matrices1 such that a

(2)
i (x) = xQai

xt and b
(2)
i (x) = xQbi

xt. If b(x) = a(xS), for
some S ∈ GLn(Fq), then:

i)Qbi
= SQai

St, for all i, 1 ≤ i ≤ u
ii)Ker(Qai

) = Ker(Qbi
)S, for all i, 1 ≤ i ≤ u.

Proof. For i), we obtain by property 2 that if b(x) = a(xS), for some S ∈
GLn(Fq), then b(2)(x) = a(2)(xS). Thus, for all i, 1 ≤ i ≤ u, we have xQbi

xt =
xSQai

Stxt, i.e. Qbi
= SQai

St.
For ii), let kai

∈ Ker(Qai
), we have kai

S−1Qbi
= kai

Qai
St = 0nSt = 0n, thus

kai
S−1 ∈ Ker(Qbi

), i.e. kai
∈ Ker(Qbi

)S, for all i, 1 ≤ i ≤ u.
Now, let k′ = kbi

S ∈ Ker(Qbi
)S, we have 0n = kbi

Qbi
(St)−1 = k′Qai

, and thus
k′ ∈ Ker(Qai

), for all i, 1 ≤ i ≤ u. 	

We finish this part by extending, thanks to property 2, a result given in [2].

Corollary 5. Let Qai
, Qbi

∈ Mn,n(Fq) be, for all i, 1 ≤ i ≤ u, the unique
matrices such that a

(2)
i (x) = xQai

xt and b
(2)
i (x) = xQbi

xt. Moreover, let S ∈
GLn(Fq) be such that b(x) = a(xS). If there exists j, 1 ≤ j ≤ n, such that Qbj

is invertible then for all i, 1 ≤ i �= j ≤ n:

StQ−1
bj

Qbi
= Q−1

aj
Qai

St. (6)

Proof. According to corollary 4, we have Qbi
= SQai

St, for all i, 1 ≤ i ≤ u.
Moreover, since Qbj

and S are invertible, we get that S−1 = Qaj
StQ−1

bj
. It

follows that, for all i, 1 ≤ i �= j ≤ n, Qaj
StQ−1

bj
Qbi

= Qai
St. Finally, since Qbj

is invertible then Qaj
is also invertible and we get that StQ−1

bj
Qbi

= Q−1
aj

Qai
St,

for all i, 1 ≤ i �= j ≤ n. 	

We stress that this corollary extends the result given in [2], since equation (6)
holds for all instances of PLE whereas the result quoted in [2] holds for instances
of PLE composed of homogeneous polynomials of degree 2 only.

5 The PLE Algorithm

Levy-dit-Vehel and Perret have linked PLE with the problem of finding common
zeroes of multivariate polynomials [7]. We go one step further in this section.
Indeed, we show that a partial knowledge of a linear equivalence matrix allows
us to recover it entirely by solving a suitable linear system of equations.

1 In upper triangular form, lower triangular form, or symmetric form, if such a matrix
exists.

364 L. Perret

5.1 Description of the PLE Algorithm

In the sequel, we always suppose that b(x) = a(xS), for some S ∈ GLn(Fq).
Let us present now the main ideas of our algorithm.

How to easily recover linear equations in the components of S?
We describe here how to obtain, from properties described in section 4, linear
equations in the components of S. Indeed, let Qai

and Qbi
be, for all i, 1 ≤ i ≤ u,

defined as in corollary 4. By corollary 5, we have that, whenever Qbj
is invertible

for some j, 1 ≤ j ≤ n, then StQ−1
bj

Qbi
= Q−1

aj
Qai

St, for all i, 1 ≤ i �= j ≤ n.

Moreover, according to corollary 2, we have additionally that Jb(0n) = Ja(0n)St.
Thus, S is a particular solution of the following linear system of equations, with
unknowns the components of X ∈ Mn,n(Fq):

{
Jb(0n) = Ja(0n)Xt

XtQ−1
bj

Qbi
= Q−1

aj
Qai

Xt,∀i, j1 ≤ i �= j ≤ n, s.t. Qbj
is invertible (7)

How to start the algorithm?
In our algorithm, we need to find pairs (p′, p) ∈ F

n
q × F

n
q , such that p′ = pS.

Such a pair can obviously be recovered by randomly selecting p ∈ F
n
q and then

performing an exhaustive search, over F
n
q , to find the corresponding vector p′ =

pS. In many cases, we can, thanks to properties of section 4, significantly decrease
the cost of this exhaustive search.

Indeed, according to corollary 2, Ker
(
J t

a(0n)
)

= Ker
(
J t

b(0n)
)
S. Consequently,

any vector p ∈ Ker
(
J t

b(0n)
)

is mapped to Ker
(
J t

a(0n)
)
, i.e. there exists p′ ∈

Ker
(
J t

a(0n)
)

such that p′ = pS. Thus, if we chose a vector p ∈ Ker
(
J t

b(0n)
)

then p′ = pS can be recovered by listing all elements of Ker
(
J t

a(0n)
)
, rather

than all F
n
q .

Similarly, using the quadratic parts of the polynomials of a and b, we obtain,
according to corollary 4, that for all i, 1 ≤ i ≤ u, any vector p ∈ Ker(Qbi

) is
mapped to an element of Ker(Qai

). Thus, by choosing p ∈ Ker(Qbi
), we can

recover p′ = pS by performing an exhaustive search over Ker(Qai
).

How to use Jacobian matrices?
Let (p′, p) ∈ F

n
q × F

n
q be such that p′ = pS. According to corollary 2, we have

Jb(p) = Ja(p′)St. From this equality, we obtain n · u linear equations in n2

unknowns (the components of S), n · Rank
(
Ja(p′)

)
of which are linearly inde-

pendent. When Rank
(
Ja(p′)

)
< n, all the solutions found do not necessarily

give a linear equivalence matrix between a and b. To eliminate superfluous so-
lutions, we need to find new linear equations in the components of S. To do so,
we increase the number of pairs (p′, p) ∈ F

n
q × F

n
q , such that p′ = pS. When one

has found P = {(p′j , pj)1≤j≤�}, such that p′j = pjS, for all j, 1 ≤ j ≤ �, then S

is a solution of the following linear system of equations:
{

Jb(pj) = Ja(p′j)X
t, for all j, 1 ≤ j ≤ �.

p′j = pjX, for all j, 1 ≤ j ≤ �.

A Fast Cryptanalysis of the IP1S Problem 365

In other words, n · � linear equations, given by P , relating the components of S
are transformed into n · � · (u+1) linear equations in the components of S. Thus
� must be chosen such that n · � · (u + 1) = n2, i.e. � ≈

⌈
n

u+1

⌉
in order to obtain

in this way (and without using (7)), n2 linear equations in the components of S.
However, we point out that equations generated in this way are not necessarily
linearly independent.

Finally, we can also use a structural property of PLE to decrease the minimal
value of � required. Indeed, according to corollary 3, we have for all d, 1 ≤ d ≤ D:

Jb(d)(p) = Ja(d)(pS)St, for all p ∈ F
n
q .

Notice that this last equation also holds for d = 0, but does not permit to get
linear equations. Therefore, if P = {(p′j , pj)1≤j≤�} is a set of vector such that
p′j = pjS, for all j, 1 ≤ j ≤ �, then S is a solution of the following linear system
of equations:

⎧
⎪⎨

⎪⎩

Jb(pj) = Ja(p′j)X
t, for all j, 1 ≤ j ≤ �.

Jb(d)(pj) = Ja(d)(p′j)S
t, for all d, 1 ≤ d ≤ D and for all j, 1 ≤ j ≤ �.

p′j = pjX, for all j, 1 ≤ j ≤ �.

(8)

In the sequel, Sys(P) shall denote the linear system of equations obtained from
(7) and (8).

We are now ready to present the PLE algorithm.

The algorithm
For a given � ≥ 1, we select � distinct (non-zero) vectors p1, . . . , p� and perform a
so-called selective exhaustive search, which is detailed after the description of the
PLE algorithm, to recover the corresponding vectors p′1 = p1S, . . . , p′� = p�S. The
aim of this selective exhaustive search is to minimize the cost of constructing a
set P = {(p′j , pj)1≤j≤�} such that p′j = pjS, for all j, 1 ≤ j ≤ �. We then compute

the solutions of Sys
(
(p′j , pj)1≤j≤�

)
, denoted by Sol

(
Sys

(
(p′j , pj)1≤j≤�

))
in our

algorithm, and the number of solutions of this linear system of equations. If it has
less than C solutions (C is a small constant given in input of the algorithm), we
try to find a solution of this system which is at the same time a linear equivalence
matrix. If such a matrix exists then we return it. Otherwise and if, after having
tried all the possible vectors p′1, . . . , p

′
� corresponding to p1, . . . , p�, we have not

obtained a linear equivalence matrix, we increment � by 1 and restart the PLE
algorithm with this new value of �.

In the PLE algorithm, we use an auxiliary function, which we call Order,
taking as input n + 1 pairs of sets of vectors and returning these sets sorted in
decreasing order (with respect to the number of elements in these sets).

366 L. Perret

The PLE algorithm
Input: (a, b) ∈ Fq[x]u × Fq[x]u, (�, C) ∈ N

∗ × N
∗.

Output: S ∈ GLn(Fq), such that b(x) = a(xS).
Sol0 ← Sol

(
Sys(0n, 0n)

)

If |Sol0| ≤ C then
If b(x) = a(xS), for some S ∈ Sol0 then return S

EndIf
Selective Exhaustive Search: towards finding suitable pairs (p′, p)
Aux ← ((

Ker
(
J t

a(0n)
)
,Ker

(
J t

b(0n)
))

, (Ker(Qa1),Ker(Qb1)), . . . , (Ker(Qan
),

Ker(Qbn
))

)
(
(A0, B0), . . . , (An, Bn)

) ← Order
(
Aux

)
and (An+1, Bn+1) ← (Fn

q , Fn
q)

Let k be the minimum index such that | ∪k
j=0 Aj | ≥ �

For i from 1 to k do
Bi ← Bi \ ∪i−1

j=0Bj and Ai ← Ai \ ∪i−1
j=0Aj

EndFor
k′ ← � − ∑k−1

j=0 |Ai| and Aux ← A
|A0|
0 × A

|A1|
1 × · · · × Ak′

k

Select |B0| vectors in B0, |B1| vectors in B1, . . . , and k′ vectors in Bk

Randomly choose (p1, . . . , p�) ∈ B
|B0|
0 × B

|B1|
1 × · · · × Bk′

k

Search of a linear equivalence matrix
While b(x) �= a(xS) or Aux �= ∅ do

Select |A0| vectors in A0, |A1| vectors in A1,. . . , and k′ vectors in Ak

Randomly choose (p′1, . . . , p
′
�) ∈ A

|A0|
0 × A

|A1|
1 × · · · × Ak′

k

P ← {(p′j , pj)1≤j≤�} and Aux ← Aux \ {p′1, . . . , p′�}
SolP ← Sol

(
Sys(P)

)

If |SolP ∩ Sol0| ≤ C then
If b(x) = a(xS), for some S ∈ SolP ∩ Sol0 then return S

EndIf
EndWhile

The Selective Exhaustive Search
Let the notations be as in the PLE algorithm. One can see at once that, for all
i, 0 ≤ i ≤ n + 1, we have Ai = BiS. We stress that such a property also holds
after the first for loop. Moreover at each iteration of the PLE algorithm, by the
very definition of k, it holds that | ∪k−1

j=0 Aj | < �, and thus k′ > 0. Moreover,
we have that � = k′ +

∑k−1
j=0 |Bi| = k′ +

∑k−1
j=0 |Ai|, since |Ai| = |Bi|, for all

i, 0 ≤ i ≤ n + 1.
In order to recover � pairs of vectors (p′j , pj)1≤j≤�, such that p′j = pjS, for all

j, 1 ≤ j ≤ �, we select |B0| vectors p1, . . . , p|B0| ∈ B0, and perform an exhaus-
tive search over A0(= B0S) to recover the corresponding vectors p′1 = p1S, . . . ,
p′|B0| = p|B0|S. We complete these |B0| vectors by choosing |B1| new vectors
p|B0|+1

, . . . ,p|B0|+|B1| ∈ B1. The corresponding vectors p′|B0|+1
= p|B0|+1

S, . . . ,

p′|B0|+|B1| = p|B0|+B1|S are recovered by performing an exhaustive search over

A1(= B1S). Finally, we complete the
∑k−1

j=0 |Bi| vectors already chosen by se-

A Fast Cryptanalysis of the IP1S Problem 367

lecting k′(= � − ∑k−1
j=0 |Bi|) new vectors p

�−k′ , . . . , p� ∈ Bk. The corresponding
vectors p′

�−k′ = p
�−k′S, . . . , p′� = p�S are recovered by performing an exhaustive

search over Ak(= BkS). Since, by construction, |A0| ≤ |A1| ≤ · · · ≤ |Ak|, we
minimize in this way the cost of an exhaustive search for recovering the vectors
p′1 = p1S, . . . , p′� = p�S.

5.2 Complexity

Let �∗ ∈ N be the minimum value for which PLE returns a solution, i.e. the
minimum number of pairs in P , for which Sys(P) has n2 linearly independent
equations. As explained in 5.1, b(x) = a(xS), for some S ∈ GLn(Fq), implies
that the linear equivalence matrix S verifies the following linear equations:
{

Jb(0n) = Ja(0n)St

StQ−1
bj

Qbi
= Q−1

aj
Qai

St,∀1 ≤ j ≤ n, s.t. Qbj
is invertible and ∀1 ≤ i �= j ≤ n

These equalities allow us to obtain say nb0 linearly independent equations in
the components of S. We would like to emphasize that these equations are ob-
tained in polynomial-time. Thus, if nb0 = n2 then our algorithm recovers S in
polynomial-time.

Otherwise, if nb0 < n2, we have to find �∗ ≥ 1 pairs of non-zero vectors
(p, p′), such that p′ = pS. The cost of recovering these �∗ additional pairs being
bounded from above by qn�∗ , the complexity of the PLE algorithm is:

O(n6qn�∗),

which is the cost of solving a linear system of n2 unknowns times the cost of
recovering �∗ suitable pairs of vectors.

It seems difficult to obtain a precise value of �∗. Anyway, in practice it appears
that it is on the order of

⌈
n

u+1

⌉
. Finally, we mention that in order to minimize

the number of pairs �∗ which has to be recovered, we can exploit a powerful idea
that we shall call exponentiation process. It will be described in an extended
version of this paper.

5.3 Practical Behaviour

We conclude this paper by giving some experimental results obtained with the
PLE algorithm. The instances (a, b) of PLE have been generated in the fol-
lowing way. The polynomials of a have been randomly chosen of degree 2 or
3 (or more precisely with terms of total degree at most 2 or 3). To construct
the polynomials of b, we have randomly chosen S ∈ GLn(Fq) and computed
b(x) =

(
a1(xS), · · · , au(xS)

)
. The PLE algorithm described in 5.1 has been im-

plemented using Magma software [8]. We have chosen the constant C (given in
input of the PLE algorithm) equals to 10000. The results, obtained on a stan-
dard PC, are quoted in the following table. We mention that the times given in
this table are in fact average times, obtained with our algorithm, for solving 10
instances of PLE (with u, n and q given).

368 L. Perret

n u q degree Time degree Time

50 50 F257 2 ≈ 0.3 s. 3 ≈ 10 s.

50 45 F257 2 ≈ 10 min. 3 ≈ 6 h.

60 60 F11 2 ≈ 0.2 s. 3 ≈ 10 s.

60 55 F11 2 ≈ 2 min. 3 ≈ 1 h.

60 50 F11 2 ≈ 2 min. 3 ≈ 1 h.

70 70 F2 2 ≈ 10 s. 3 ≈ 5 min.

70 65 F2 2 ≈ 10 s. 3 ≈ 5 min.

70 60 F2 2 ≈ 9 s. 3 ≈ 5 min.

70 55 F2 2 ≈ 9 s. 3 ≈ 5 min.

We would like to emphasize that the algorithms described in [7] have also been
tested on these instances. The results are not quoted since these algorithms do
not terminate (in a reasonable time). Anyway, we mention that in [11], the algo-
rithms of [7] have been compared with a restricted version of the PLE algorithm
described here. These experiments have been done on smaller instances of PLE
(in terms of u, n and q) than the ones quoted in the above table. It appears
that the PLE algorithm is much more efficient than the algorithms of [7] (which
perform better than the algorithm described in [3]). This is mainly due to the
fact that we have replaced the computation of Gröbner Bases by a Gaussian
elimination.

Interpretation of the results
We first mention that the case u ≈ n is the most interesting for cryptographic
applications of PLE. Indeed, in this setting it is very likely that an instance ad-
mits a unique solution (see [7] for further details). Moreover, Jb(0n) = Ja(0n)St,
allows us to obtain n ∗Rank(Ja(e0)) linearly independent equations in the com-
ponents S. Since u ≈ n, then Rank(Ja(0n)) is also close to n. Therefore, even if
S is not uniquely determined by these equations, it is then very likely that a very
little partial knowledge of S allows us to obtain a linear system of equation with
less than C solutions. Since C is very small, we can quickly find if one of these
C solutions is at the same time a linear equivalence matrix. Typically, in our
experiments it has been sufficient to recover one pair (p′, p) such that p′ = pS,

confirming, at least for these parameters, that �∗ is close to
⌈

n
u+1

⌉
. Note that

this pair is recovered efficiently using our selective exhaustive search.
Let us now analyze our results.
When u = n, and for p = 257 (resp. p = 11) the matrix Ja(0n) was always

invertible (in the ten instances generated). In this case, the solution is simply
obtained by computing the transpose of Ja(0n)−1Jb(0n). For p = 2, it was not
the case and we had to find only one pair (p′, p) such that p′ = pS in order to
solve PLE. For this reason, our algorithm for u = n is faster for p = 257 (resp.
p = 11) than for p = 2. This result is in fact not surprising since the probability
that a matrix M ∈ Mn,n(Fq) is invertible is larger in F257 (resp. F11) than
in F2. For instances (a, b) of PLE of degree 2, we can efficiently check if S is

A Fast Cryptanalysis of the IP1S Problem 369

indeed a linear equivalence matrix between (a, b). Let A,B ∈ Mn,u(Fq) such that
a(1)(x) = xA and b(1)(x) = xB. Moreover, let Qai

, Qbi
be, for all i, 1 ≤ i ≤ u,

the unique matrices such that a
(2)
i (x) = xQai

xt and b
(2)
i (x) = xQbi

xt. According
to property 2, we have b(x) = a(xS) iff B = SA and Qbi

= SQai
St, for all

i, 1 ≤ i ≤ u. Therefore, to check whether b(x) = a(xS), we just have to compute
product of matrices and compare these matrices. For an instance (a, b) of degree
3, such a manipulation is possible only for the homogeneous components of
degree 1, and 2. But, in order to check whether b(3)(x) = a(3)(xS) or not, we have
to compute formally the polynomials a(3)(xS), which is much more costly than
computing product of matrices (explaining the significant difference of results
between instances of degree 2 and 3).

6 Conclusion

We have proved in this paper that IP1S and PLE are equivalent. Moreover,
using a differential approach of PLE, we have presented a fast algorithm for
solving PLE (and consequently also IP1S). It appears that, with the parameters
proposed in [9], schemes based on IP1S are far from achieving the security level
required for cryptographic applications. We recall that, initially, the security
level of schemes based on IP1S has been estimated to q

√
2n3/2

[10].

Acknowledgements

I would like to thank F.Levy-dit-Vehel for helpful discussions related to this
paper.

References

1. N. Courtois, L. Goubin, and J. Patarin: Improved Algorithms for Isomorphism
of Polynomials. Advances in Cryptology - EUROCRYPT ’98, Lecture Notes in
Computer Science, vol. 1403, Springer-Verlag, pp. 84–200, 1998.

2. N. Courtois, L. Goubin, and J. Patarin: Improved Algorithms for Isomorphism of
Polynomials - Extended Version. Available from www.minrank.org.

3. W.Geiselmann, W.Meier, and R.Steinwandt: An Attack on the Isomorphisms of
Polynomials Problem with One Secret. Int. Journal of Information Security, Vol.
2(1): pp. 59–64, 2003.

4. O. Goldreich, S. Micali, and A. Wigderson: Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. Journal of the
ACM, Vol. 38(3) pp. 690–728, 1991.

5. M. R. Garey, and D. B. Johnson: Computers and Intractability. A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

6. S. Goldwasser, S. Micali, and C. Rackoff: The Knowledge Complexity of Interactive
Proof Systems. SIAM J. on Computing, Vol. 18, pp. 186–208, 1989.

7. F. Levy-dit-Vehel, and L. Perret: Polynomial equivalence problems and applica-
tions to multivariate cryptosystems. Progress in Cryptology - INDOCRYPT 2003,
Lecture Notes in Computer Science, vol. 2904, pp. 235–251, 2003.

370 L. Perret

8. http://magma.maths.usyd.edu.au/magma/
9. J. Patarin: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials

(IP): two new families of Asymmetric Algorithms. Advances in Cryptology - EU-
ROCRYPT ’96, Lecture Notes in Computer Science, vol. 1070, Springer-Verlag,
pp. 33–48, 1996.

10. J. Patarin:Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP):
two new families of Asymmetric Algorithms - Extended Version. Available from
www.minrank.org/hfe/.

11. L. Perret, and A. Bayad: A differential approach to a polynomial equivalence prob-
lem, in Proceedings of ISIT 2004, extended abstract, pp. 142, 2004.

	Introduction
	Previous Work
	Organization of the Paper and Main Results

	Preliminaries
	Notations
	Jacobian Matrix
	The IP1S and PLE Problems

	IP1S and PLE are Equivalent
	Properties of PLE
	Differential Properties
	Structural Properties

	The PLE Algorithm
	Description of the PLE Algorithm
	Complexity
	Practical Behaviour

	Conclusion

