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Abstract. Building on the vast body of existing TCP models, we develop a novel
versatile model that explicitly captures user heterogeneity, and takes into consid-
eration dynamics at both the packet level and the flow level. It is described how
the resulting multiple time-scale model can be numerically evaluated. Validation
is done by using NS2 simulations as a benchmark. In extensive numerical experi-
ments, we study the impact of heterogeneity in the round-trip times on user-level
characteristics such as throughputs and flow transmission times, thus quantifying
the resulting bias. In particular, we investigate to what extent this bias is affected
by the networks’ ‘packet-level parameters’, such as buffer sizes. We conclude by
extending the single-link model in a straightforward way to the general network
setting.

Keywords: TCP, user heterogeneity, performance, throughput, round-trip times,
packet level, flow level.

1 Introduction

Enabled by enhanced access technologies such as ‘fiber to the home’, ADSL, wireless
LANs or UMTS, the number of users with high-speed access to the Internet is increas-
ing rapidly. At the same time, more and more Internet applications require some sort of
minimum quality-of-service (QoS), expressed in terms of delay, throughput, etc. With
most of the data transfers relying on TCP as underlying end-to-end transport proto-
col, the performance of TCP-controlled networks has become a prominent theme in
networking research.

TCP has been designed to support efficient and reliable transmission of elastic data
flows, tolerating some variations in the throughput. In particular, based on implicit in-
formation about the level of network congestion (round-trip time, packet loss) TCP
increases or decreases the sending rate in order (to attempt) to provide a fair share of
the network resources to all users. However, it is clear that heterogeneous user behavior
might lead to asymmetries in the experienced performance. For instance, one may won-
der to what extent it pays off to have a higher access rate or a shorter round-trip time
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than the other TCP flows. It is this relation between user heterogeneity and flow-level
performance (throughput, flow transfer times) that is studied in this paper.

A study on the impact of user heterogeneity could be done relying exclusively on
simulation tools (like the NS2 [13] TCP simulator), but such an approach has its well
known inherent limitations; in particular, (basic) simulation methods hardly allow for
doing sensitivity analysis, as it may already be rather time-consuming to get a reliable
estimate for a single parameter instance. Therefore we have chosen to set up a model
that allows for an analytical approach, or, when its evaluation turns out to be too com-
plicated, a hybrid approach in which the role played by simulation is minimized.

As motivated by the above, TCP’s widespread use and complex behavior have trig-
gered the search for simple and transparent, yet accurate, mathematical techniques for
performance analysis. Many performance models have been proposed, which can be
roughly divided into packet-level models and flow-level models.

Packet-level models describe the detailed dynamics of TCP, related to the evolution
of the flows’ window sizes and transmission rates. Evidently, the detailed behavior of
a link fed by various classes of TCP flows, is intrinsically difficult to capture, particu-
larly due to the complex interactions between the source behavior and the congestion
level. However, by assuming a constant number of greedy (i.e., persistent) flows, and
after imposing some additional simplifications, explicit expressions were obtained for
the flows’ throughput, as a function of the packet loss probability; early references are
Kelly [15], Mathis et al. [21], and Padhye et al. [23]. Noticing that in return the packet
loss probability of a bottleneck link is a function of the offered load (and hence essen-
tially also of the throughput), we obtain two equations in two unknowns, and as a result
the throughput can be found, see e.g. [3, 8, 17]. Some papers explicitly model TCP’s
window dynamics, and allow at the same time user heterogeneity, e.g., [11, 22], but this
approach is severely limited by scalability constraints.

Where packet-level models consider a constant set of persistent flows feeding into a
link, flow-level models explicitly focus on the dynamics of the number of flows present.
In other words: flow-level models focus on a somewhat less detailed time-scale than
packet-level models, namely the time-scale at which flows arrive and depart, see for
instance [20]. It is assumed that, at the moment such a flow-level transition takes place,
the allocation of the transmission rates to the individual flows adapts instantly. This en-
ables the use of processor sharing (PS) queues, addressed in great generality by Cohen
[9]. Over the past years this class of models has gained ground as a generic description
of TCP’s flow-level dynamics, as advocated in, e.g., [5, 16].

It is clear that TCP’s packet-level and flow-level have a strong mutual dependency,
which motivates the attempts to develop a unified approach. In this respect we men-
tion the pioneering work of Gibbens et al. [12], who consider the network extension
of the single-link packet-level models mentioned above, enabling them to compute the
throughputs for any given number of flows simultaneously present at the various routes
through the network. Then they weigh these throughputs with an a priori supposed
distribution for this number of ‘concurrent flows’ (Poisson, geometric), in order to ‘em-
ulate’ the flow level. Though reasonable, a rigorous justification of assuming these spe-
cific flow-level distributions was lacking. This motivated why Lassila et al. [19] have
considered ways to derive (i.e., to ‘endogeneously determine’) the flow-level distri-
bution from the model, rather than to exogeneously impose a distribution. It is noted
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that [19] has succeeded in doing so in a single-link setting with homogeneous input
(i.e., flows have the same job-size distribution, round-trip times, and access rates).

In the present paper we build on the results of [12, 19], but we add a number of sub-
stantial enhancements. Relative to [19], a first contribution of our work is that we allow
for heterogeneous input at the flow level: several classes are distinguished (character-
ized by flow arrival rate, flow size, round-trip time, and access rate). Then the procedure
is that we first apply packet-level models to compute the (per-class) throughputs for a
fixed number of flows present, which we use as the input for a PS-type of flow-level
model. It is noted that the PS model that arises in this setting has the flavor of a so-
called discriminatory processor sharing (DPS) system, which is in general notoriously
hard to study analytically, see, e.g., [10]. A second improvement over [19] is that our
multiple time-scale framework lends itself to being extended to network settings. The
model can be used to assess the effect of user heterogeneity in often highly complex
multi-link situations. Compared to [12] the major improvement is that we, as in [19],
derive the flow-level distribution (i.e., the joint distribution of the number of ‘concurrent
flows’ of the various types), rather than that we impose a priori some distribution.

It is noted that, particularly in the situation that the number of user classes grows
large, it may become extremely time-consuming to numerically solve the flow level.
For those situations we propose a ‘hybrid’ method: the packet-level is solved numeri-
cally, and the resulting throughputs are used as input in the simulation of the flow level.
It is noted that such an approach is still substantially faster than detailed time-scale
(NS2) simulations, as only the flow-level jumps need to be simulated rather than the
full packet-level dynamics. We remark that a somewhat similar hybrid approach was
developed in [4]; there the simulated jumps correspond to congestion epochs.

The remainder of this paper is organized as follows. In Section 2 we introduce our
packet/flow level model for heterogeneous TCP-controlled traffic transmitted over a
buf-fered link. Quantitative validation of the model, as reported in Section 3, is done
by using the simulator NS2 [13] as a benchmark. Also a number of other numerical
experiments are performed, with a strong focus on the impact of the heterogeneity in
round-trip times on the throughputs experienced by the various user classes. We give
some further comments on the relation with discriminatory processor sharing. Section
4 describes the extension of the single-link model of Section 2 to non-cyclic multiple-
link network scenarios. Importantly, it is shown that ‘packet-level parameters’ such as
buffer sizes, do have a significant impact on the way TCP allocates bandwidth. Section
5 concludes the paper.

2 Integrated Packet/Flow Level Modelling Approach

In this section we introduce a mathematical model that describes a buffered network
link fed by a fluctuating set of heterogeneous TCP flows. As argued in the introduction,
a model that captures all the details is far too complex to analyze.

A commonly used resort is to rely on time-scale decomposition: distinguish
between multiple time-scales, solve these separately, and integrate them into the per-
formance measures of interest. We here follow such a decomposition approach, by de-
coupling the packet level and the flow level. Recall that the packet level describes the
performance when the link is used by a fixed set of persistent flows, whereas the flow
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level describes the fluctuations of the number of flows simultaneously present. Interest-
ingly, the decomposition allows us to analyze the effect of typical packet-level parame-
ters (buffer size, round-trip times, etc.) on flow-level performance (the average number
of flows in the system, flow transfer times, etc.). It is stressed that our specific focus is
on assessing the impact of user heterogeneities on the performance. To this end, we will
introduce m classes of flows.

Modelling Assumptions. Each class i, for i = 1, . . . , m, is characterized by four param-
eters. (i) The rate at which flows of class i are initiated is denoted by λi; it is assumed
that these arrivals follow a Poisson process. (ii) Flows of class i have an exponentially
distributed size with mean µ−1

i (packets); it is assumed throughout this paper that pack-
ets are equally sized. (iii) The ‘physical’ round-trip time of a class-i packet, i.e., due
to propagation and all other non-congestion-dependent factors, is given by RTT0

i time
units (in other words: the queueing delay in the buffer is not incorporated in RTT0

i ).
(iv) The access rate of a class-i user is given by Ri (packets per time unit). Notice that
the maximum window size Wmax,i and the round-trip time also put a limit on the users’
transmission rate: Ri ≤ Wmax,i/RTT0

i .
The link, to be interpreted as a bottleneck link, is characterized by its service speed

(or link rate) C (expressed in packets per time unit) and buffer size B (packets). The
service discipline is first-in-first-out. The m traffic classes share these common network
resources. For reasons of stability, the incoming load is limited to the system’s capacity:∑m

i=1 λi/µi < C. Now we subsequently describe the packet level and flow level, and
describe how these allow the computation of the performance measures of our interest.

Packet Level. In the packet-level model there is a fixed number ni of persistent TCP
flows of class i, for i = 1, . . . , m. The main objective of the packet-level analysis is to
compute, for a given vector n̄ := (n1, . . . , nm), the throughputs t1, . . . , tm of the various
classes.

In our approach we rely on a relation between the mean throughput, the packet-loss
probability, and the round-trip time, that was derived for the case of just one class of
TCP connections, see e.g. [15, 21, 23]; in our study we will rely on the formula given
in [15]. Suppose there are n flows with round-trip time RTT and access rate R, who
experience a packet-loss probability p. Then the (total) throughput in the congestion-
avoidance phase is approximated by

t(n) = min

{
nR,

n

RTT

√
2(1 − p)

p

}
;

evidently, the left-hand argument of the min function simply limits throughputs to the
access rate R. By borrowing the above formula, we obtain for our case of m heteroge-
neous traffic classes:

ti(n̄) = min

{
niRi,

ni

RTTi

√
2(1 − pi)

pi

}
, i = 1, . . . , m. (1)
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It is clear that the round-trip time RTTi consists of its fixed component RTT0
i , in-

creased by the queueing delay experienced by class i. With δi denoting the mean queue-
ing delay of class i, we could write RTTi = RTT0

i + δi. Regarding loss and delay, it
seems reasonable to assume that there will not be too much discrepancy between the
classes, which allows us to write δi = δ and pi = p, for i = 1, . . . , m.

Having expressed the throughput in terms of the packet loss and delay, we have to
find loss and delay as a function of the throughput; clearly, having these relations at
our disposal, we are able to compute the ti(n̄). To this end, we make the approximation
that, at the packet level, packets (of equal size) arrive at the buffer according to a Poisson
process. Hence, we can approximate the packet-loss probability and the mean delay by
those of the corresponding M/D/1/B queue. In self-evident notation:

p ≡ p(n̄) = pM/D/1

(
m∑

i=1

ti(n̄), C, B

)
; δ ≡ δ(n̄) = δM/D/1

(
m∑

i=1

ti(n̄), C, B

)
. (2)

Techniques for computing (or approximating) both the loss probability and mean
delay in M/D/1 queues are described in, e.g., [24–Section 15.1]; the mean delay is given
by their Eq. (15.1.2), whereas the loss probability could be accurately approximated by
exponential expansion in the spirit of their Eq. (15.1.6).

The assumption of Poisson arrivals at the packet level has been very common in the
literature, see e.g. [3, 12, 17]. Given the fact that many flows are multiplexed, and in
the absence of a detailed description of the packet arrival process, we have chosen to
do so. It can obviously not be justified that this choice yields the best match with the
actual queueing behavior. We emphasize, however, that the methodology presented here
does not critically rely on this Poisson assumption; if there is a reason to assume that
some other arrival process provides a better match, one could employ the corresponding
queueing model instead.

It is clear that inserting (2) into (1) yields a fixed-point problem of m non-linear
equations with m unknowns (i.e., t1, . . . , tm; we suppress the n̄ for convenience). Now
consider the right-hand side of (1) as a function of ti, for fixed tj , j �= i. Evidently, both
the mean queueing delay δ and the loss probability p increase in ti. It can be verified
easily that this implies that the right-hand side of (1) decreases in ti, and has limit 0. As
the left-hand side (i.e., the identity function) increases from 0 to ∞, we conclude that
there is, for given tj , j �= i, a fixed point.

Flow Level. The flow level describes the dynamics related to arrivals and departures
of flows (i.e, TCP connections). When there are n̄ flows in the system, we assume that
class i is served at a rate si(n̄) := ti(n̄)(1 − p(n̄)), where ti(n̄) and p(n̄) follow from the
packet-level fixed-point equations; si(n̄) is often referred to as the class-i ‘goodput’. All
individual flows of type i are assumed to get a ‘fair share’ si(n̄)/ni of the class-i good-
put. It is remarked that our time-decomposition entails that we implicitly assume that,
when the number of active flows changes, service rate adaptation takes place instantly.
Put differently, our approach neglects the rate fluctuations at the packet level (which are
due to the window-size dynamics, in response to packet losses).

As the flow sizes were assumed to be exponential, we can model the flow-level
dynamics by a (continuous-time) Markov chain. The fact that any flow gets a fair share
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of the per-class goodput, gives our model the flavor of a processor-sharing system. The
single-class system can be solved explicitly; see [19], relying on the results of [9]. The
user heterogeneity, as present in our model, however, makes the analysis considerably
more difficult. As mentioned in the introduction, the flow-level model that arises in this
setting has the flavor of a DPS system, a class of models that is in general hard to study
analytically.

We now give the transition rates of the continuous-time Markov chain governing the
flow level, with state space N

m
0 . The transition rate corresponding to an arrival of a type-

i flow, denoted by q(n̄ + ei | n̄), is clearly equal to λi; here ei := (0, . . . , 0, 1, 0, . . . , 0),
where the 1 is put on the ith position. It can be verified easily that the transition rate
from n̄ to n̄ − ei, i.e., q(n̄ − ei | n̄), equals µisi(n̄) (under the proviso that ni > 0;
otherwise n̄ − ei clearly does not belong to the state space). Having these transition
rates, we can compute the equilibrium distribution π(n̄).

In case solving the system of balance equations leads to numerical problems (the
iterative solution techniques may yield oscillations), these can be overcome by using
simulation at the flow level. This procedure could be characterized as a hybrid approach,
between computation and simulation. An alternative could be to simulate both packet-
level and flow-level dynamics, for instance by using NS2, but such an approach is sub-
stantially slower. Clearly, the main difference lies in the fact that our integrated approach
does not need to simulate the detailed packet-level dynamics; these are summarized by
the (computed) throughput values. In this respect there is an interesting similarity with
the hybrid simulation/computation approach proposed in [4]; an important difference is
that in our approach the flow-level fluctuations (flow arrivals, flow departures) are the
jump epochs, whereas in [4] this role is played by the congestion epochs.

3 Validation; Impact of User Heterogeneity

This section presents the quantitative validation of our packet/flow level approach by
using NS2 simulations; we have chosen to use NS2 [13] as a benchmark, motivated by
the fact that it mimicks TCP at a detailed time-scale. Hence, comparing results obtained
by using our methodology with results obtained under NS2, we assess to what extent it
is justified to replace the packet-level dynamics by a static bandwidth allocation accord-
ing to the rates si(n̄) (when there are n̄ flows in the system), as is done in our approach.

We also perform a number of further experiments assessing the impact of hetero-
geneity on the performance bias (i.e., the difference between the classes in, e.g., the
mean file transfer delay) with emphasis on the impact of packet-level parameters (such
as the buffer size).

Scenarios. We consider the single bottleneck scenario as in Section 2, with m = 2

traffic classes. Recall that the number of concurrently active flows within each class (n1

and n2) is varying over time due to flow arrivals and departures.
In our experiments we chose the loads per class 1 and 2 to be equal: λ1/µ1 =

λ2/µ2 = ρ/2, where ρ < C is the system load. We concentrate on the heterogeneity
with respect to round-trip times and file sizes; we assume that all connections have the
same access link rate, i.e., R1 = R2. We set the link rate C equal to 10 [Mbit/s]. All
transmitted packets have a size of 1500 [bytes] (cf. MTU size).
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Fig. 1. Mean number of connections for two classes, under varying load. Access rates 1
[Mbit/sec.], RTT0

1 = 100 and RTT0
2 = 200 [msec.], buffer size 10 [packets]

In practical situations round-trip times vary, roughly speaking, over a range of 50 to
200 msec. Therefore we have chosen to consider round-trip times of 50, 100, and 200
msec. We study the influence of small and large buffer sizes, i.e., 10 and 50 [packets],
and access rates, i.e., 1 and 2 Mbit/sec. In the sequel we provide a comparison of results
for a full permutation of all the above parameters, where, in addition, both classes have
different round-trip times. We have set the mean file size to 500 [packets] for all flows.
Recall that we took a constant packet size of 1500 bytes.

Numerical Results. For different values of the system load ρ, Figure 1 shows the mean
number of active connections per class n�

i ; the graph contains both the values obtained
by using our method, and the values obtained by using NS2 (including their confidence
intervals).

In Figures 2 and 3 we have focused on the perhaps somewhat more appealing per-
formance measure of the mean flow transfer delay Di, related to n�

i through Little’s law
Di = n�

i /λi. Bearing in mind the complex TCP dynamics, the figures show that our
model results coincide remarkably well with the NS simulation results, and it does so
for a wide set of parameter combinations.
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Fig. 2. Mean file transfer delay [sec.]; access rates 1 [Mbit/sec.], RTT0
1 = 50 and RTT0

2 = 200

[msec.], buffer size left panel: 10 [packets], buffer size right panel: 50 [packets]
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Fig. 3. Mean file transfer delay [sec.]; access rates 2 [Mbit/sec.], RTT0
1 = 50 and RTT0

2 = 200

[msec.], buffer size left panel: 10 [packets], buffer size right panel: 50 [packets]

We now discuss in detail the accuracy of our packet/flow level modelling approach.
We mention the following observations:

• For low values of the load, our model predicts nearly identical performance for
class 1 and class 2. The NS2 simulations, however, show that these results are
systematically too optimistic and that the flows with the short round-trip time expe-
rience the smaller delay. We suspect that this behavior is caused by the fact that our
method does not incorporate the effects of TCP’s slow-start phase: the time-scale
decomposition entails that we do as if the flow is, after being initiated, immedi-
ately in its ‘stationary behavior’. It is noted that, during the slow-start phase, the
round-trip times play a crucial role, as they dictate how fast the window size can
grow. In [19] the effects of the slow-start phase were successfully compensated, in
order to avoid too optimistic estimates; one could pursue the development of such
a procedure for the model under study.

• When comparing Fig. 2 (access rate of 1 Mbit/sec.) with Fig. 3 (access rate of 2
Mbit/sec.), it could be concluded that for low values of the load the transfer de-
lays are not so much determined by the round-trip times, but rather by the access
rate constraints. This is reflected by the fact that the transfer delays in Fig. 2 are
(roughly) two times as high as in Fig. 3.

• The numerical results (also the ones not shown here) indicate that our model (par-
ticularly for class 2) is less accurate for large buffers (B = 50) than for small buffers
(B = 10). It is expected that this is due to the fact that the real packet arrival process
is often substantially burstier than Poisson, leading to errors in the approximation
of the loss probability p and queueing delay δ, which are typically smaller for a
small buffer than for a large buffer.

Refinements of our approach, which take into account the issues identified above,
are subjects for future research.

Quantification of the Bias; Equalizing Effects. We finally say some words on the
quantification of the bias, in the situation of heterogeneous round-trip times. There are
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Fig. 4. ‘Normalized goodput ratio’ (s1(n1, n2)/n1)/(s2(n1, n2)/n2) plotted as function of
the states (n1, n2); access rates 1 [Mbit/sec.], RTT0

1 = 100 and RTT0
2 = 200 [msec.], buffer

size 10 [packets]

Table 1. ‘Normalized goodput ratio’, buffer sizes are in packets

B = 10 B = 50

r = 2 1.90 1.63
r = 4 3.45 2.38

several papers on this issue, see for instance [1, 18]. We here study the claim that per-
flow throughputs are inversely proportional to the flow’s round-trip time, in line with
formula (1), see, e.g., [15, 21, 23]. In case of two classes sharing a bottleneck link, this
would mean that

s1(n̄)/n1

s2(n̄)/n2
≈ RTT2

RTT1
. (3)

Consider a situation with RTT0
2/RTT0

1 = 2. We plot the left hand side of (3), by using
the numbers obtained in our packet-level model, see Figure 4.

Indeed, the ratio is nearly constant for somewhat larger values of n1, n2, and has
indeed value 2; for ‘low’ states the ratio is significantly smaller. In fact, close to the
origin the ratio is nearly 1, as such a small number of connections (with limited access
rate) is not able to ‘fill up the link’.

There are circumstances under which the performance asymmetries tend to be‘equal-
ized’. In the first place, this is clearly the case for low and medium loads, and limited
access rates. For such loads the most probable states are relatively close to the origin,
and Figure 4 then indicates that the ‘normalized goodput ratio’ will be close to 1.

A second factor that has impact on this ‘equalizing effect’ is the buffer size. Table 1
shows the limiting value of the ‘normalized goodput ratio’, i.e., (s1(n̄)/n1)/(s2(n̄)/n2)

for large n1, n2. We do so for varying (i) ratio of the (‘physical’) round-trip times r :=

RTT0
2/RTT0

1, and (ii) buffer size. The link capacity is still 10 [Mbit/sec.].
From the table we conclude that for small buffers the ‘normalized goodput ratio’

is close to the ratio of the round-trip times, whereas for larger buffers this match is
less good. An explanation lies in the fact that for larger buffers the round-trip times are
increasingly determined by the queueing delay (rather than the ‘physical’ delay), and
this queueing delay is the same for both classes.
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We conclude that it is not always accurate to assume goodputs inversely proportional
to the round-trip time. It also entails that it could be inaccurate to approximate the model
with heterogeneous users with discriminatory processor sharing [10], with weights in-
versely proportional to the classes’ round-trip times, as done in, e.g., [2]. Our model
nicely captures the ‘equalizing effect’ of the access rate limitation and the buffer size
on the throughputs, as experienced by flows with different (‘physical’) round-trip times;
it is noted that similar properties were observed in the simulations performed in [5].

4 Extension to Networks

In this section we make a first step towards extending our single-link framework to a
network setting. Model and analysis are presented in Section 4.1. The approach bor-
rows elements of [12], but we remark again that the crucial difference between our
approach and [12] is, that our model finds the distribution of the network population
‘endogeneously’. In Section 4.2, we consider a few examples, and investigate how these
compare to other results on rate allocation.

Modelling and Analysis. Consider a non-cyclic network, consisting of k links, char-
acterized by their link rates Cj and buffer sizes Bj . Flows of class i subsequently pass
a number of links. We say that j ∈ Ri if class i uses link j. Also, we say that j1 ≺i j2 if
j1, j2 ∈ Ri, and in addition j1 lies on this route before j2.

The approach relies again on decoupling the packet level and the flow level. We first
determine the throughput of class i, for a given user population n̄; then this serves as
input for the continuous-time Markov chain model that describes the flow level. The
generalization of the throughput formula (1) is, for i = 1, . . . , m,

ti(n̄) = min

⎧⎪⎨
⎪⎩niRi ,

ni

RTT0
i +

∑
j∈Ri

δj

√√√√ 2
(
1 − ∑

j∈Ri
pj

)
∑

j∈Ri
pj

⎫⎪⎬
⎪⎭ . (4)

Here pj is the loss probability at link j, and δj the mean delay at link j; we assume that
the per link loss probability and mean delay is constant across the user classes.

In return, the loss probabilities and mean delays depend on the load offered to the
links. We can write

pj ≡ pj(n̄) = pM/D/1

⎛
⎝ ∑

i:j∈Ri

ti(n̄) ·
⎛
⎝1 −

∑
k≺ij

pk(n̄)

⎞
⎠ , Cj , Bj

⎞
⎠ ; (5)

δj ≡ δj(n̄) = δM/D/1

⎛
⎝ ∑

i:j∈Ri

ti(n̄) ·
⎛
⎝1 −

∑
k≺ij

pk(n̄)

⎞
⎠ , Cj , Bj

⎞
⎠ . (6)

Notice that the load imposed on link j is ‘thinned’, along the various routes i, by the
losses in its predecessing links (i.e., k such that k ≺i j); the formula uses, as in [12],
the approximation that losses at the various links are independent, cf. also [14], and the
well known approximation

∏
i(1− xi) ≈ 1−∑

i xi for small xi. Combining (5) and (6)
with the throughput formula (4) again yields m equations in m unknowns, which can
be solved numerically.
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The flow level can again be done by constructing a continuous-time Markov chain;
it is obvious that again it can be solved by either solving the balance equations, or by
simulating an m-dimensional random process. It is noted that the flow-level procedure
remains essentially the same, and that the network topology is just reflected by the
packet-level computations.

Examples; Rate Allocation in TCP. It has been claimed that the transmission rates
allocated in TCP’s congestion avoidance are well approximated by the optimizing ti,
i = 1, . . . , m in

min
t1,...,tm

m∑
i=1

(
1

RTTi
0

)2
ni

ti
under

∑
i:j∈Ri

ti ≤ Cj ;

see for instance [6–Eq. (3)]. For a single link fed by m heterogeneous classes, when
performing the optimization, one obtains, with κi defined as (RTT0

i )
−1, that ti(n̄) equals

Cniκi/
∑m

j=1 njκj , i.e., the rate allocation is according to DPS with weights inversely
proportional to the round-trip times. We have seen in the previous section that this
approximation is particularly accurate when buffers are relatively small.

� �

�

1 2

3

Fig. 5. Topology of two-link example

Now consider the somewhat more involved case of a network with multiple links.
For ease we concentrate on the simplest, non-trivial model, as depicted in Figure 5,
since this already shows a number of features that are not present in the single-link
case. Let there be two links, both of rate C; let type 1 use link 1, type 2 use link 2, and
type 3 use both links. It can be verified that the above minimization now yields that
t1(n̄) = t2(n̄) and

t1(n̄) =
C ·

√
(n1κ1)

2 + (n2κ2)
2

n3κ3 +
√

(n1κ1)
2 + (n2κ2)

2
; t3(n̄) =

C · n3κ3

n3κ3 +
√

(n1κ1)
2 + (n2κ2)

2
. (7)

We see that this allocation rule is not quite DPS, and we wonder whether it coin-
cides with the throughputs realized in our model and in NS2. Interestingly, even when
RTT0

1 �= RTT0
2, the above allocation indicates that the flows of type 1 enjoy the same

throughput as the flows of type 2. In practice, however, one expects that this hetero-
geneity of round-trip times should have impact.

To study these effects we have performed two experiments. In the first we vary
the heterogeneity between the round-trip times. This is done by choosing RTT0

1 = 1

and RTT0
3 = 3, and RTT0

2 ∈ {0.5, 1, 2, 5, 10}. We have fixed the numbers of users
n1 = n2 = n3 = 10, the buffer size B1 = B2 = 10 packets, and the link rates
C1 = C2 = 100. For ease we assume that no access rate limitations are imposed. The
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Table 2. A. (left) Throughputs ti(n̄) as a function of RTT0
2; the allocation according to (7) is given

between parentheses. B. (right) Throughputs ti(n̄) as a function of B; the allocation according
to (7) would be t1 = 75.4, t2 = 75.4, and t3 = 24.6.

RTT0
2 t1 t2 t3

0.5 72.4 (87.0) 77.1 (87.0) 12.2 (13.0)
1 68.3 (80.9) 68.3 (80.9) 16.7 (19.1)
2 65.6 (77.0) 60.7 (77.0) 19.8 (23.0)
5 64.3 (75.4) 53.0 (75.4) 21.3 (24.6)

10 64.0 (75.1) 48.1 (75.1) 21.6 (24.9)

B t1 t2 t3

2 43.9 22.3 13.7
5 56.9 39.9 18.5

10 64.2 52.9 21.3
20 68.4 62.0 24.6
50 69.9 67.2 26.5

throughputs as derived by our model, as well as those based on (7), are tabulated in Ta-
ble 2.A. We conclude that the heterogeneity does have a significant impact on through-
puts; in particular, there could be a substantial difference between t1 and t2, which was
not predicted by the rate allocation models of, e.g., [6]. Interestingly, class 3 consider-
ably benefits when RTT0

2 increases.
The second experiment studies the impact of the buffer size on the bias. We have

varied B = B1 = B2, and fixed RTT2
0 = 5; the other parameters are the same as in the

first experiment. Table 2.B shows the same ‘equalizing effect’ as we have seen before:
for small buffers the bias is very pronounced, whereas for larger buffers, class 1 and
class 2 see essentially the same round-trip delay (mainly queueing delay), and as a
consequence the bias disappears.

5 Concluding Remarks

We have developed a versatile TCP performance model that explicitly captures user het-
erogeneity. This multiple time-scale model integrates the dynamics at the packet level
with those at the flow level. It is relatively simple, and allows for straightforward nu-
merical evaluation. The accuracy of the model was validated by using TCP simulator
NS2. In extensive numerical experiments, we have studied the impact of heterogene-
ity in the round-trip times on user-level characteristics (throughputs, flow transmission
times). Interestingly, we have seen that the asymmetry caused by this heterogeneity is
somewhat mitigated if the access rates are small (and, in addition, the load is relatively
low), or the buffer is large.

We have pointed out how the single-link model can be extended in a straightforward
way to the general network setting. It is noted that settings with heterogeneous users
(in particular networks) pose interesting questions related to rate allocation. Like in the
single-link case, we have seen that the size of the buffers does affect the rates allocated
by TCP: again for large buffers the performance bias disappears. The network model
opens up the possibility of a careful assessment of those phenomena; it is remarked that
most existing rate allocation results, see, e.g. [6], do not take into account buffering.
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