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Abstract. Unlike traditional routing schemes that route all traffic along a single 
path, multipath routing strategies split the traffic among several paths in order 
to ease congestion. It has been widely recognized that multipath routing can be 
fundamentally more efficient than the traditional approach of routing along 
single paths. Yet, in contrast to the single-path routing approach, most studies in 
the context of multipath routing focused on heuristic methods. We demonstrate 
the significant advantage of optimal solutions. Hence, we investigate multipath 
routing adopting a rigorous (theoretical) approach. We formalize problems that 
incorporate two major requirements of multipath routing. Then, we establish the 
intractability of these problems in terms of computational complexity. 
Accordingly, we establish efficient solutions with proven performance 
guarantees. 
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1   Introduction 

Current routing schemes typically focus on discovering a single "optimal" path for 
routing, according to some desired metric. Accordingly, traffic is always routed over a 
single path, which often results in substantial waste of network resources. Multipath 
Routing is an alternative approach that distributes the traffic among several "good" 
paths instead of routing all traffic along a single "best" path.  

Multipath routing can be fundamentally more efficient than the currently used 
single-path routing protocols. It can significantly reduce congestion in "hot spots", by 
deviating traffic to unused network resources, thus improving network utilization and 
providing load balancing  [13]. Moreover, congested links usually result in poor 
performance and high variance. For such circumstances, multipath routing can offer 
steady and smooth data streams  [6]. 

Previous studies and proposals on multipath routing have focused on heuristic 
methods. In  [16], a multipath routing scheme, termed Equal Cost MultiPath (ECMP), 
has been proposed for balancing the load along multiple shortest paths using a simple 
round-robin distribution. By limiting itself to shortest paths, ECMP considerably 
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reduces the load-balancing capabilities of multipath routing; moreover the equal 
partition of flows along the (shortest) paths (resulting from the round robin 
distribution) further limits the ability to decrease congestion through load balancing. 
OSPF-OMP  [21] allows splitting traffic among paths unevenly; however, the traffic 
distribution mechanism is based on a heuristic scheme that often results in an 
inefficient flow distribution. Both  [22] and  [24] considered multipath routing as an 
optimization problem with an objective function that minimizes the congestion of the 
most utilized link in the network; however, they focused on heuristics and did not 
consider the quality of the selected paths. In  [17], a scheme is presented to 
proportionally split traffic among several “widest” paths that are disjoint with respect 
to the bottleneck links. However, here too, the scheme is heuristic and evaluated by 
way of simulations. 

Simulation results clearly indicate that multipath solutions obtained by optimal 
congestion reduction schemes are fundamentally more efficient than the solutions 
obtained by heuristics. For example, in Section 5, we show that if the traffic 
distribution mechanism in the ECMP scheme had been optimal, the network 
congestion would have decreased by more than three times; moreover, if paths other 
than shortest had been allowed, the optimal partition would have decreased the 
network congestion by more than ten times. Hence, the full potential of multipath 
routing is far from having been exploited. 

Accordingly, in this study we investigate multipath routing adopting a rigorous 
approach, and formulate it as an optimization problem of minimizing network 
congestion. Under this framework, we consider two fundamental requirements. 
First, each of the chosen paths should usually be of satisfactory "quality". 
Indeed, while better load balancing is achieved by allowing the employment of 
paths other than shortest, paths that are substantially inferior (i.e., "longer") may 
be prohibited. Therefore, we consider the problem of congestion minimization 
through multipath routing subject to a restriction on the "quality" (i.e., length) of 
the chosen paths.   

Another practical restriction is on the number of routing paths per destination, 
which is due to several reasons  [17]: first, establishing, maintaining and tearing down 
paths pose considerable overhead; second, the complexity of a scheme that distributes 
traffic among multiple paths considerably increases with the number of paths; third, 
often there is a limit on the number of explicitly routing paths (such as label-switched 
paths in MPLS  [19]) that can be set up between a pair of nodes. Therefore, in practice, 
it is desirable to use as few paths as possible while at the same time minimize the 
network congestion.  

Our Results: Consider first the problem of minimizing the congestion under the 
requirement to route traffic along paths of "satisfactory" quality. We first show that 
the considered problem is NP-hard, yet admits a pseudo-polynomial solution. 
Accordingly, we design two algorithms. The first is an optimal algorithm with a 
pseudo-polynomial running time, and the second approximates the optimal solution to 
any desired degree of precision at the (proportional) cost of increasing its running 
time (i.e., an ε-optimal approximation scheme). In addition, we show that these 
algorithms can be extended to offer solutions to reliability-related problems.  
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Consider now the requirement of limiting the number of paths per destination. 
We show that minimizing the congestion under this restriction is NP-hard as 
well. Accordingly, we establish a computationally efficient 2-approximation 
scheme1. Then, we generalize the 2-approximation scheme into a bicriteria result 
and establish a (1+1/r)-approximation scheme that, for any given r≥1, violates 
the constraint on the number of routing paths by a factor of at most r. Finally, we 
broaden the scope of this problem and establish an efficient approximation 
scheme for the dual problem, which restricts the level of congestion while 
minimizing the number of paths per destination.  

Due to space limits, several proofs and technical details are omitted from this 
version and can be found (online) in  [4]. 

2   Model and Problem Formulation  

A network is represented by a directed graph G(V,E), where V is the set of nodes and 
E is the set of links. Let N=|V| and M=|E|. A path is a finite sequence  
of nodes p=(v0,v1,…vh), such that, for 0≤n≤h-1, (vn,vn+1)∈E. A path is simple if all its 
nodes are distinct. A cycle is a path p=(v0,v1,…,vh) together with the link (vh,v0)∈E 
i.e., (v0,v1,…,vh,v0).

 2  
Given a source node s∈V and a target node t∈V, P(s,t) is the set of (all) directed paths 

in G(V,E) from s to t. For each path p∈P(s,t) and link e∈E, let ∆e(p) count the number 
of occurrences of e in p. For example, given a non-simple path p=(v0,v1,v2,v3,v1,v2,v4) 
and a link e=(v1,v2), we have ∆e(p)=2. 

Each link e∈E is assigned a length le∈Z+ and a capacity ce∈Z+. We consider a link 
state routing environment, where each source node has an image of the entire 
network. 

Definition 1: Given a (non-empty) path p, the length L(p) of p is defined as the sum 

of lengths of its links, namely, L(p) ∑e∈ple.
 

Definition 2: Given a (non-empty) path p, the capacity C(p) of p is defined as the 
capacity of its bottleneck link, namely, ( ) { }e

e p
C p Min c

∈
.  

Definition 3: Given are a network G(V,E), two nodes s,t∈V and a demand γ. A path 

flow is a real-valued function f:P(s,t)→R+∪{0} that satisfies the flow demand 
requirements, i.e., ( , )s t pp P

f γ
∈

=∑ . 

                                                           
1  i.e., an algorithm that provides a solution that, in terms of congestion, is within a factor of at 

most 2 away from the optimum. 
2  As shall be shown, all our solutions consist of simple paths exclusively. Cycles and non-

simple paths are included in our terminology to simplify the presentation of the solution 
approach.  
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Definition 4: Given is a path flow f:P(s,t)→R+∪{0} over a network G(V,E). A link 

flow is a real-valued function f:E→R+∪{0} that satisfies, for each link e∈E, 

( , ) ( )s te e pp P
f p f

∈
∆ ⋅∑ . 

Definition 5: Given a network G(V,E) and a link flow {fe}, the value e

e

f

c
 is the link 

congestion factor and the value max e

e E
e

f

c∈

⎧ ⎫
⎨ ⎬
⎩ ⎭

 is the network congestion factor.  

As noted in  [3], [13], [22] the network congestion factor provides a good indication 
of congestion. In  [4], we show that the problem of minimizing the network congestion 
factor is equivalent to the well-known Maximum Flow Problem  [1]. Hence, when 
there are no restrictions on the paths (in terms of the number of paths or the length of 
each path), one can find a path flow that minimizes the network congestion factor in 
polynomial time through a standard max-flow algorithm.  

We are ready to formulate the two problems considered in this study. The first 
problem aims at minimizing the network congestion factor subject to a restriction on 
the "quality" (i.e., length) of each of the chosen paths.  

Problem RMP (Restricted Multipath) Given are a network G(V,E), two nodes 
s,t∈V, a length le>0 and a capacity ce>0 for each link e∈E, a demand γ>0 and a length 
restriction L for each routing path. Find a path flow that minimizes the network 
congestion factor such that, if PŒP(s,t) is the set of paths in P(s,t) that are assigned a 
positive flow, then, for each p∈P, it holds that L(p)≤L. 

Remark 1: For convenience, and without loss of generality, we assume that the length 
le of each link e∈E  is not larger than the length restriction L. Clearly, links that are 
longer than L can be erased.  

The next problem considers the requirement to limit the number of different paths 
over which a given demand is shipped while at the same time minimizing the network 
congestion factor.  

Problem KPR (K-Path Routing) Given are a network G(V,E), two nodes s,t∈V, a 
capacity ce>0 for each link e∈E, a demand γ>0 and a restriction on the number of 
routing paths K. Find a path flow that minimizes the network congestion factor, such 
that, if PŒP(s,t) is the set of paths in P(s,t) that are assigned a positive flow, then |P|≤K. 
Remark 2: In both problems, the source-destination pair (s,t) is assumed to be 
connected i.e., ( ), 1s tP ≥ .  

3   Minimizing Congestion Under Path Quality Constraints  

In this section we investigate Problem RMP, i.e., the problem of minimizing 
congestion under path quality constraints. We begin by establishing its intractability.  
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( ) { }( ) , , , ,{ },{ }, ,e eG V E s t l c LγProgram RMP  

Minimize  α          (1)
 
Subject to: 

( ) ( )

0el
e e

e O v e I v

f f λλ −

∈ ∈

− =∑ ∑  { } [ ]\ , , 0,v V s t Lλ∀ ∈ ∀ ∈     (2)

( ) ( )

0el
e e

e O s e I s

f f λλ −

∈ ∈

− =∑ ∑  [ ]1,Lλ∀ ∈       (3)

0

( )
e

e O s

f γ
∈

=∑          (4)

0

L

e ef cλ

λ
α

=

≤ ⋅∑   e E∀ ∈       (5)

0ef
λ =    [ ], 0, ee E L lλ∀ ∈ ∉ −     (6)

0ef
λ ≥     [ ], 0,e E Lλ∀ ∈ ∈      (7)

0α ≥           (8)

Theorem 1: Problem RMP is NP-hard. 

The proof  [4] is based on a reduction to the Partition Problem  [11].  

3.1   Pseudo-Polynomial Algorithm for Problem RMP  

The first step towards obtaining a solution to Problem RMP is to define it as a linear 
program. To that end, we need some additional notation. 

Recall that we are given a network G(V,E), two nodes s,t∈V, a length le>0 and a 
capacity ce>0 for each link e∈E, a demand γ>0 and a length restriction L for each 
routing path. Let α be the network congestion factor. Denote by ef

λ  the total flow 
along e=(u,v)∈E that has been routed from s to u through paths with a total length  of 

.λ  Finally, for each v∈V, denote by O(v) the set of links that emanate from v, and by 
I(v) the set of links that enter that node, namely O(v)={(v,l)|(v,l)∈E} and 
I(v)={(w,v)|(w,v)∈E}. Then, Problem RMP can be formulated as a linear program 
over the variables { }{ }, ,ef

λ α as specified in Fig 1. 

The objective function (1) minimizes the network congestion factor. Constraints 
(2), (3) and (4) are nodal flow conservation constraints. Equation (2) states that the 

traffic flowing out of node v, which has traversed through paths p∈P(s,v) of length 

( ) ,L p λ=  has to be equal to the traffic flowing into node v, through paths p'∈P(s,u) and 

Fig. 1. Program RMP
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links e=(u,v)∈E, such that ( ') eL p l λ+ = ; since [ ]0,Lλ ∈ , the length restriction is 

obeyed; finally, equation (2) must be satisfied for each node other than the source s and 
the target t. Equation (3) extends the validity of equation (2) to hold for traffic that 
encounters source s after it has already passed through paths with non-zero length. 
Informally, equation (3) states that "old" traffic that emanates from s not for the first 
time (through a directed cycle that contains the source s) must satisfy the nodal flow 
conservation constraint of equation (2), which solely focuses on nodes from { }\ ,V s t . 

Equation (4) states that the total traffic flowing out of source s, which has traversed 
paths of length 0L = , must be equal to the demand γ. Informally, equation (4) states 
that the total "new" traffic that emanates from the source s for the first time must satisfy 
the flow demand γ. Equation (5) is the link capacity utilization constraint. It states that 
the maximum link utilization is not larger than the value of the variable α  i.e., the 
network congestion factor is at most α. Expression (6) rules out non-feasible flows and 
Expressions (7) and (8) restrict all variables to be non-negative.  

We can solve Program RMP (Fig. 1) using any polynomial time algorithm for linear 
programming  [15]. The solution to the problem is then achieved by decomposing the 

output of Program RMP (i.e., link flow { }ef
λ ) into a path flow that satisfies the length 

restriction L. This is done by modifying the flow decomposition algorithm  [1] (that 

transforms link flows { }ef  into path flows { }pf ) in order to consider length 

restrictions i.e., transform link flows with "lengths" { }ef
λ

 
into path flows that obey 

the length restrictions. Due to space limits, the description of this algorithm is omitted 
and can be found in  [4]. 

In the remainder of this subsection we consider the complexity of the overall 
solution (henceforth, Algorithm RMP), which is dominated by the complexity of 
Program RMP  [4]. It follows from  [15] that the complexity incurred by solving 

Program RMP is polynomial both in the number of variables { }ef
λ  and in the number 

of constraints needed to formulate the linear program. Thus, since both of these 

numbers are in the order of M·L, the complexity of Algorithm RMP is polynomial in 

O(M·L) i.e., Algorithm RMP is a pseudo-polynomial algorithm  [11]. Thus, whenever 
the value of L is polynomial in the size of the network, Algorithm RMP is a 
polynomial optimal algorithm for Problem RMP. One such case is when the hop 

count metric is considered (i.e., le ≡1), since then L≤N-1.  

3.2   ε-Optimal Approximation Scheme for Problem RMP 

In the previous subsection we established an optimal polynomial solution to Problem 
RMP for the case where the length restrictions are sufficiently small. In this 
subsection we turn to consider the solution to Problem RMP for arbitrary length 
restrictions. As Theorem 1 establishes that Problem RMP is NP-hard for this general 
case, we focus on the design of an efficient algorithm that approximates the optimal 
solution.  
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    Our main result in this setting is the establishment of an ε−optimal approximation 
scheme, which is termed the RMP Approximation Scheme. This scheme is based on 
Algorithm RMP, specified in the previous subsection, which was shown to have a 

complexity that is polynomial in M·L. Given an instance of Problem RMP and an 
approximation parameter ,ε  we reduce the complexity of Algorithm RMP by first 

scaling down the length restriction L by the factor 
L

N

ε⋅∆  and then rounding it into 

an integer value. Obviously, as a result, we must also scale down the length of each 
link. However, in order to ensure that the optimal network congestion factor does not 
increase, we relax the constraints of the new instance with respect to the constraints of 
the original instance. Specifically, after we scale down the length restriction and the 
length of each link by the factor ,∆  we round up the length restriction and round 
down the length of each link. Then, we invoke Algorithm RMP over the new instance, 
in order to construct a path flow that minimizes congestion while satisfying the 
relaxed length restrictions. Finally, we convert each non-simple path in the output of 
Algorithm RMP into a simple path by eliminating loops; this is essential, since the 
total error in the evaluation of the length of each path depends on the hop count. In 
Theorem 2, we establish that the resulting path flow violates the length restriction by 
a factor of at most (1+ε) and has a network congestion factor that is not larger than 
the optimal network congestion factor. The proof can be found in  [4]. 

Theorem 2: Given an instance <G,{s,t},{ce},{le},γ,L > of problem RMP and an 
approximation parameter ε, the RMP Approximation Scheme has a complexity that is 
polynomial in 1 ε  and the size of the network; moreover, the output of the scheme is 
a path flow f  that satisfies the following: 

a. ( , )s t pp P
f γ

∈
=∑  i.e., the flow demand requirement is satisfied. 

b. If α∗ is the network congestion factor of the optimal solution, then, for each 

e∈E, it holds that   ( , )

*( )s t e p ep P
p f cα

∈
∆ ⋅ ≤ ⋅∑ , i.e., the network congestion 

factor is at most α∗. 
c. For each path p∈P(s,t), if fp>0 then p is simple and L(p)≤(1+ε)·L, i.e., the 

length restriction is violated by a factor of at most (1+ε). 

3.3   Further Results 

In the following, we outline two important extensions to Problem RMP. 

Multi-commodity Extensions: In  [4], we consider a multi-commodity extension of 
Problem RMP, i.e., a problem with several source-destination pairs. Following 
basically the same lines as in Subsections 3.1 and 3.2, we present a pseudo-
polynomial solution for this problem and establish an ε-optimal approximation.  

End-to-End Reliability Constraints: In  [4], we also consider the increased 
vulnerability to failures when multipath routing is employed in order to balance the 
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network load. Indeed, when traffic is split among multiple paths, a failure in each 
routing path may result in the failure of the entire transmission. In  [4] we formulate 
the problem and show that it is computationally intractable. However, we show there 
that the RMP Approximation Scheme can be modified in order to constitute 
an ε−optimal approximation scheme for the reliability problem.  

4   Minimizing Congestion with K Routing Paths 

In this section we solve Problem KPR, which minimizes congestion while routing 
traffic along at most K different paths. In  [4], we show that Problem KPR admits a 
(straightforward) polynomial solution when the restriction on the number of paths is 
larger than the number of links M (i.e., K≥M). However, we show in  [4] that, in the 
more interesting case where K<M, the problem is NP-hard. Accordingly, in this 
section we present a 2-approximation scheme for K<M. 

Our approximation scheme is based on solving an auxiliary problem that 
minimizes congestion while restricting the flow along each path to be integral in γ/Κ. 
In order to formulate the corresponding problem, consider first the following 
definition. 

Definition 7: Given are a network G(V,E), a capacity ce>0 for each link e∈E, a 
demand γ and an integer K. A path flow f:P→R+∪{0} is said to be γ/Κ-integral, if for 
each path p∈P(s,t), it holds that fp is a multiple of γ/Κ. 

Problem Integral Routing: Given are a network G(V,E), two nodes s,t∈V, a capacity 
ce>0 for each link e∈E, a demand γ>0 and an integer K. Find a γ/Κ-integral path flow 
that minimizes the network congestion factor, such that the demand γ  is satisfied.  

4.1   Solving the Integral Routing Problem 

The following observation shall be used in order to construct a polynomial solution to 
the Integral Routing Problem. The proof can be found in  [4]. 

Lemma 1: Given an instance <G,{s,t},{ce},γ,K> of the Integral Routing Problem, the 
optimal network congestion factor is included in the set 

[ ]{ }, 0,
e

i e E i K
K c

γα ⋅ ∈ ∈ ∩⋅
1.  

We now introduce Procedure Test, which is given an instance <G,{s,t},{ce},γ,K> 
of the Integral Routing Problem and a restriction α on the network congestion factor. 
Procedure Test performs three sequential steps. Initially, it multiplies all link 
capacities by a factor of α in order to impose the restriction on the network congestion 
factor; indeed, multiplying all capacities by α assures that the flow fe along each link 
                                                           
1  Observe that the size of α  is polynomial in the network size, namely: 

( ) ( )21M K O Mα ≤ ⋅ + = . 
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e∈E is at most ecα ⋅ ; therefore, for each e∈E, the link congestion factor fe/ce, and, in 

particular, the network congestion factor { }max ,e e
e E

f c
∈

 are at most α. Next, the 

procedure rounds down the capacity of each link to the nearest multiple of γ/Κ; since 
the flow over each path in every solution to the Integral Routing Problem is γ/Κ-
integral, such a rounding has no effect on the capability to transfer the flow demand γ. 
Finally, the procedure applies any standard maximum flow algorithm that returns an 
integral link flow when all capacities are integral. Since all capacities are γ/Κ-integral, 
the maximum flow algorithm determines a γ/Κ-integral link flow that transfers the 
maximum amount of flow without violating the restriction α on the network 
congestion factor. If this link flow succeeds in transferring at least γ flow units from s 
to t, then the procedure returns it. Otherwise, the procedure fails. 

Theorem 3: Given is an instance <G,{s,t},{ce},γ,Κ > of the Integral Routing 
Problem. Denote by α* the corresponding optimal network congestion factor. Then, 
Procedure Test succeeds for the input <G,{s,t},{ce},γ,Κ,α> iff  α ≥α*. 
The proof appears in  [4]. 

Theorem 3 has two important implications that enable to construct an efficient 
solution to the Integral Routing Problem. First, the theorem establishes that the 
smallest α  for which Procedure Test succeeds with the input <G,{s,t},{ce},γ,Κ,α > is 
equal to α*.  Therefore, if S is a finite set that includes the optimal network congestion 
factor α*  and α is the smallest network congestion factor in S such that Procedure 
Test succeeds for the input <G,{s,t},{ce},γ,Κ,α >, then α=α*. This fact, together with 

the fact that the set α  includes *α  (as per Lemma 1), imply that, for every instance 
<G,{s,t},{ce},γ,Κ > of Problem Integral Routing, the optimal network congestion 

factor *α  is the smallest α α∈  such that Procedure Test succeeds for the 
input <G,{s,t},{ce},γ,Κ,α >. Moreover, since in case of a success Procedure Test 

returns the corresponding link flow, finding the smallest α α∈  such that Procedure 
Test succeeds identifies a link flow with a network congestion factor of at most *α .  

The second implication of Theorem 3 enables to employ a binary search when we 

seek the smallest α α∈  such that Procedure Test succeeds. Indeed, it follows from 

Theorem 3 that, when Procedure Test succeeds for 1 ,α α∈  it succeeds  for all α α∈ , 

1;α α≥  and when it fails for 2α α∈ , it fails for all α α∈ , 2α α≤ ; thus, if 

Procedure Test succeeds  for 1α α∈  (alternatively, fails for 2α α∈ ) it is possible to 

eliminate from further consideration all the elements of α  that are larger than α1 
(correspondingly, smaller than 2α ). 

Remark 3: Note that performing a binary search over α  requires sorting all the 

elements of α , which consumes  ( ) ( )2log logO O M Nα α⋅ ≤ ⋅  operations  [10].  

Thus, we conclude that the employment of a binary search so as to find the 

smallest α α∈  for which Procedure Test succeeds, establishes a link flow that has 
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the minimal network congestion factor. The optimal solution is then achieved by 
decomposing the resulting link flow into a path flow via the flow decomposition 
algorithm  [1]. Due to space limits, the formal description of this algorithm, termed 
Algorithm Integral Routing, is omitted and can be found in  [4]. Our discussion is 
summarized by the following theorem, which establishes that Algorithm Integral 
Routing solves Problem Integral Routing. Its proof appears in  [4]. 

Theorem 4:  Given is an instance <G,{s,t},{ce},γ,Κ > of Problem Integral Routing. If 
Algorithm Integral Routing returns Fail, then there is no feasible solution for the 
given instance; otherwise, the algorithm returns a γ/Κ-integral path flow that transfers 
at least γ flow units from s to t along simple paths, such that the network congestion 
factor is minimized. 

Remark 4: It is easy to show  [4] that the computational complexity of Algorithm 
Integral Routing is O(MÿlogNÿ(M+ NÿlogN)). 

4.2   A 2-Approximation Scheme for Problem KPR 

Finally, we are ready to establish a solution for Problem KPR. To that end, we show 
that the solution of the Integral Routing Problem can be used in order to establish a 
constant approximation scheme for Problem KPR. The approximation scheme is 
based on the following key observation, which links between the optimal solution of 
Problem Integral Routing and the optimal solution of Problem KPR. 

Theorem 5: Given are a network G(V,E) and a demand of γ flow units that has to be 
routed from s to t. If f1 is a γ/Κ-integral path flow that has the minimum network 
congestion factor and f2 is a path flow that minimizes its network congestion factor 
while routing along at most K paths, then the network congestion factor of f1 is at 
most twice the network congestion factor of f2. 

Proof: Suppose that f1 and f2 satisfy the assumptions of the Theorem. Let α1 and α2 

denote the network congestion factor of path flows f1 and f2, respectively. We have to 
show that α1≤ 2ÿα2. 

Out of the path flow f2, we construct a γ/Κ-integral path flow that ships at least γ 
flow units from s to t and has a network congestion factor of at most 2ÿα2. Clearly, 
such a construction implies that the network congestion factor of every optimal γ/Κ-
integral path flow that ships γ flow units from s to t is at most 2ÿα2; in particular, since 
f1 is one such optimal γ/Κ-integral path flow, such a construction establishes that 
α1≤2ÿα2.  

With this goal in mind, define the following construction. First, double the flow 
along each routing path that f2 employs; obviously, the resulting path flow transfers 
2ÿγ  flow units from s to t along at most K routing paths while yielding a network 
congestion factor of 2ÿα2. Then, round down the (doubled) flow along each routing 
path to the nearest multiple of γ/Κ; in this process, the flow along each path is reduced 
by at most γ/Κ flow units. Hence, since there are no more than K routing paths, the 
total flow from s to t is reduced by at most γ units; therefore, since before the  
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rounding operation exactly 2ÿγ  flow units were shipped from s to t, it follows that 
after rounding is performed, the resulting path flow transfers at least γ flow units 
from s to t.  

Thus, we have identified a γ/Κ-integral path flow that transfers at least γ flow units 
from s to t. In addition, since prior to the rounding operation the network congestion 
factor is 2ÿα2  and the rounding can only reduce flow, the network congestion factor of 
the constructed path flow is at most 2ÿα2.                ■ 

Note that, given a network G(V,E) and a demand γ that needs to be routed over at 
most K paths, every γ/Κ-integral path flow satisfies the requirement to ship the 
demand γ on at most K different paths. On the other hand, it has been established in 
Theorem 5 that the network congestion factor obtained by an optimal γ/Κ-integral 
path flow is at most twice the network congestion factor of an optimal flow that 
admits at most K routing paths. Thus, computing a γ/Κ-integral path flow that has the 
minimum network congestion factor satisfies the restriction on the number of routing 
paths and obtains a network congestion factor that is at most twice larger than the 
optimum. We summarize the above discussion in the following corollary, which 
yields an approximation scheme for Problem KPR. 

Corollary 1: Given are a network G(V,E), a demand γ and a restriction on the number 
of routing paths K. The employment of Algorithm Integral Routing for the 
establishment of a γ/Κ-integral path flow that minimizes the network congestion 
factor provides a 2-approximation scheme for Problem KPR with a complexity of 
O(MÿlogNÿ(M+ NÿlogN)).  

4.3   Further Results 

In  [4], we generalize the result of this section into a bicriteria result. Specifically, for 
any given r≥1, we establish a (1+1/r)-approximation scheme that violates the 
constraint on the number of paths by a factor of at most r. Note that, for r = 1, the 
corresponding scheme obtains the same performance guarantees as in Subsection 4.2 
above. In addition, in  [4] we consider the dual problem, which restricts the network 
congestion factor while minimizing the number of routing paths, and present a 
corresponding approximation scheme.  

5   Simulation Results 

In this section, we present a comparison between an optimal solution to multipath 
routing and that provided by a heuristic scheme such as the (popular) Equal Cost 
MultiPath (ECMP) routing scheme.  

We generated 10,000 random topologies, following the lines of  [23]1. For each 
topology, we conducted the following measurements: (a) we measured the network 
congestion  factor  produced  by  invoking  ECMP;  (b)  we  measured  the  network 

                                                           
1 Due to space limits, we omit the details of this construction, which can be found in  [4]. 
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Fig. 2. The ratio between the network congestion produced by an optimal multipath routing 
assignment (for several length restrictions) and the network congestion produced by ECMP 

congestion factor produced by an optimal assignment of traffic to shortest paths and 
to paths with a length that is equal to 1.17·L*, 1.33·L*, 1.5·L*, 1.67·L*, 1.83·L*,2·L* 
and 2.17·L*, where L* is the length of a shortest path. Our results are summarized in 
Fig. 2. Note that if the ECMP scheme had an optimal traffic distribution mechanism, 
the network congestion factor could be reduced by a factor of 3. Moreover by relaxing 
the requirement to route along shortest paths by 33%, the network congestion factor is 
10 times smaller than with the standard ECMP. Thus, by employing Algorithm RMP 
or its e-optimal approximation with *L 1.33 L ,≈ ⋅  congestion can be reduced by a 
factor of 10 with respect to that produced by ECMP. 

6   Conclusion  

Previous multipath routing schemes for congestion avoidance focused on heuristic 
methods. Yet, our simulations indicate that optimal congestion reduction schemes are 
significantly more efficient. Accordingly, we investigated multipath routing as an 
optimization problem of minimizing network congestion, and considered two 
fundamental problems. Although both have been shown to be computationally 
intractable, they have been found to admit efficient approximation schemes. Indeed, 
for each problem, we have designed a polynomial time algorithm that approximates 
the optimal solution by a (small) constant approximation factor.  

While this study has laid the algorithmic foundations for two fundamental 
multipath routing problems, there are still many challenges to overcome. One major 
challenge is to establish an efficient unifying scheme that combines the two problems. 
Furthermore, as in practice there may be a need for simpler solutions, another 
research challenge is the development of approximations with lower computational 
complexity. Finally, as discussed in  [4], multipath routing offers reach ground for 
research also in other contexts, such as survivability, recovery, network security and 
energy efficiency. We are currently working on these issues and have obtained several 
results regarding survivability  [5].  
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