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Abstract

For decades, and especially in recent years, there has been an increasing
amount of research using statistical modelling to produce volcanic
forecasts, so that people could make better decisions. This research aims to
add confidence by arming users with quantitative summaries of the chaos
and uncertainty of extreme situations, in the form of probabilities—that is
to say the measure of the likeliness that an event will occur.

Introduction

Probabilistic terms and associated jargon are
often part of the working environment of volca-
nologists. Research activities about volcanic
hazard and the quantification of volcanic risk
even led to officially defining volcanic hazard in
terms of probability (Blong 2000). The last dec-
ade has produced a comprehensive framework of
studies, surveys and computer-assisted proce-
dures for transforming field data into probabilities
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of occurrence of a particular scenario (Newhall
and Hoblitt 2002; Marzocchi et al. 2004, 2008,
2010; Aspinall 2006; Marti et al. 2008; Neri et al.
2008; Sobradelo and Marti 2010, 2015; Sobra-
delo et al. 2013). Following the successful
development of probabilistic tools, came the
challenge of communicating their results.
Research and operational strategies started to
incorporate the enhancement of the communica-
tion of these probabilistic forecasts to decision
makers and the public (Marzocchi and Woo 2007,
Marzocchi et al. 2012; Sobradelo et al. 2014). At
the same time, extensive work has been done in
the psychological and sociological aspects on the
perception and interpretation of uncertainty, for
both volcanology and across other hazards.
Despite this extensive use, sometimes there is
confusion surrounding the statistical interpreta-
tion of probabilities, partly due to unclear statis-
tical concepts like: What is a probability? What is
statistical science? How much can I rely on a
probability estimate? What are they used for?
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What is uncertainty? How does uncertainty and
probability relate to each other? Why are statistics
and probabilities sometimes misunderstood?
Why is it that scientists and/or users (officials)
don’t fully appreciate the uncertainty surrounding
a probability estimate?

In this chapter we try to address the above
questions by focusing on the statistical meaning
of probability estimates and their role in the
quantification and communication of uncertainty.
We hope to provide some insights into best
practices for the use and communication of
statistics during volcanic crises.

Quantifying and Communicating
Uncertainty in Volcanology

Volcanology is by nature an inexact science.
Deciphering the nature of unrest signals (volcanic
reactivation), and determining whether or not an
unrest episode may be an indication of a new
eruption, requires knowledge on the volcano’s
past, current and future behaviour. In order to
achieve such a complex objective experts in field
studies, volcano monitoring, experimental and
probabilistic modelling, amongst other, work
together under pressure and tight time constrains.
It is important that these stakeholders communi-
cate on a level that caters for the needs and
expectations of all disciplines; in other words, it is
important to agree on a common technical lan-
guage. This is particularly relevant when volcano
monitoring is carried out on a systematic survey
basis without continuous scientific scrutiny of
monitoring protocols or interpretation of data.
By definition, uncertainty is the state of being
uncertain. It is used to refer to something that is
doubtful or unknown. It means lack of confidence
about something. Hence, it is directly related to
the amount of knowledge we have about a pro-
cess. A forecast, in the form of a probability
estimate, is an attempt to quantify this uncertainty
and support decision-making. Forecasting poten-
tial outcomes of volcanic reactivation (unrest)
usually implies high levels of scientific uncer-
tainty. Anticipating whether a particular volcanic
unrest will end with an eruption and where
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(temporal and spatial uncertainty) requires scien-
tific knowledge of how the volcano has behaved
in the past, and scientific interpretation of pre-
cursory signals. Whilst this may be less chal-
lenging for volcanoes that erupt often, it is far
more difficult for volcanoes with long eruptive
recurrence and less data available, and even more
so for those without historical records.

The main goal of volcano (eruption) fore-
casting is to be able to respond to questions of
how, where, and when an eruption will happen
(Sparks 2003). To address those questions we
often use probabilities in an attempt to quantify
the intrinsic variability due to the complexity of
the process. The communication of those prob-
abilities will have to adapt to the recipient of that
information. Making predictions on the future
behaviour of a volcano follows similar reasoning
as in other natural phenomena (storms, land-
slides, earthquakes, tsunamis, etc.). Each volcano
has its own characteristics depending on magma
composition, physics, rock rheology, stress field,
geodynamic environment, local geology, etc.,
which makes its behaviour unique. What is
indicative in one volcano may not be relevant in
another. All this makes the task of volcano
forecasting challenging and difficult, especially
when it comes to communicating uncertainty to
population and decision-makers.

During a volcanic emergency, relevant ques-
tions are first how to quantify the uncertainty that
accompanies any scientific forecast, and second,
how to communicate it to policy-makers, the
media and the public. Scientific communication
during volcanic crises is incredibly challenging,
with no standardized procedures on how this
should be done among the stakeholders involved
(scientists, governmental agencies, media and
local populations). Of particular importance is the
communication link between scientists and
decision-makers (often Civil Protection agents). It
is necessary to translate the scientific understand-
ing of volcanic activity into a series of scenarios
that are clear to decision-making authorities.
Direct interaction between volcanologists and the
general public is also important both during times
of quiescence and activity. Information that comes
directly from the scientific community has a
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special impact on risk perception and on the trust
that people place on scientific information.
Therefore, the effective management of a volcanic
crisis requires the identification of practical
actions, to improve communication strategies at
different stages and across different stakeholders:
scientists-to-scientists, scientists-to-technicians,
scientists-to-Civil Protection, scientists-to-
decision makers, and scientists-to-the general
public.

The Role of Statistics
and Probabilities
in the Quantification of Uncertainty

Concepts, Definitions
and Misconceptions

Formally speaking, Statistics is a body of prin-
ciples and methods for extracting useful infor-
mation from data, assessing the reliability of that
information, measuring and managing risk, and
supporting decision-making in the face of
uncertainty. Rather than drowning in a flood of
numbers, statistics helps to make better man-
agement decisions and gives a competitive
advantage over intuition, experience and hunches
alone.

Probability shows the likelihood, or chances,
for each of the various future outcomes, based on
a set of assumptions about how the world works.
It allows handling randomness (uncertainty) in a
consistent, rational manner and forms the foun-
dation for statistical inference (drawing conclu-
sions from data), sampling, linear regression,
forecasting, and risk management.

With statistics, we go from observed data to
generalizations about how the world works. For
example, if we observe that the seven hottest
years on record occurred in the most recent
decade, we may conclude (perhaps without jus-
tification) that there is global warming. With
probability, we start from an assumption about
how the world works, and then figure out what
type of data we are likely to see under that
assumption. In the above example, we could
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assume the null hypothesis, Hy: There is no
global warming, and then test how likely is it to
observe the seven hottest years within the last
decade if Hy was true. We then use the observed
data to look for significant statistical evidence to
reject Hy in favour of the alternative, H;: Some
phenomena related to global warming may be
ongoing. To some extent, we could say that
probability provides the justification for statistics.

However, there is no precise definition for
probability. All attempts to define it must ulti-
mately rely on circular reasoning. According to
the Oxford Dictionary, probability is “the state of
being probable; the extent to which something is
likely to happen or be the case”. Roughly speak-
ing, the probability of a random event is the
“chance” or “likelihood” that the event will occur.
To each random event A we attach a number P(A),
called the probability of A, which represents the
likelihood that A will occur. The three most useful
approaches to obtaining a definition of probability
are: the classical, the relative frequency, and the
subjective (Jaynes 2003; Colyvan 2008), dis-
cussed further below.

The number of volcanic eruptions of magni-
tude greater than 1 in the next 7 years in a par-
ticular area is an example of a random variable,
Y. When we try to quantify the value of Y we are
implying that a true value exists, and we want to
anticipate to it, so that we can make advanced
decisions. That is, we want to estimate a range of
values that we think will contain the true value of
the random variable Y. The most common way
of showing this range of values is by presenting a
best estimate + confidence margin. Here, we
could distinguish between two types of uncer-
tainty, the one surrounding the best estimate,
type A, and the one that accounts for the level of
confidence that we have in that best estimate,
type B. It is not enough to provide a best guess
(point estimate) for a parameter, we also need to
say something about how far from the true
parameter value such an estimator is likely to be.
The confidence interval is one way of conveying
our uncertainty about a parameter. With that, we
report a range of numbers, in which we hope the
true parameter will lie.
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Measures of Uncertainty

Probability can be used as a measure of uncer-
tainty, both type A and B. The way we under-
stand probabilities depends on the degree of
numeracy we have. It is common in our daily
lives to make choices with some level of uncer-
tainty, for instance, whether or not to order the
fish of the day in a new restaurant, or whether to
buy one or two bags of fruit in a new shop. To
make those simple decisions, we unconsciously
go through previous knowledge on similar
experiences to work out some kind of odds of
making the right choice. Suppose now that we
are being rushed to make up our mind at the
restaurant, we will have to rush our decision. The
main difference between this and the decision of
whether to evacuate a populated area threatened
by a destructive volcanic event is the penalty or
loss for making the wrong decision. In the first
case, the loss is negligible to our daily lives, but a
wrongly timed evacuation decision could have
serious consequences. For this reason, the inter-
pretation of probability must be in the context of
how much we are willing to lose if we make the
wrong decision. The difference between proba-
bility, the extent to which something is likely to
happen; and risk, a situation involving exposure
to danger; means that the relevance of a proba-
bility estimate for the occurrence of an event will
depend on the associated risk, this is, on how
much exposure to danger is in the occurrence of
the event. Suppose the odds are one to ninety
nine (1:99) that our car breaks down in the
middle of a trip. We would most likely still take
our family on that trip. Instead, suppose we are
given the same odds for an airplane crash. We
would most likely not want to take our loved
ones on that plane. In both cases the probability
is the same, but the risk is different. This illus-
trates how probability estimates must be inter-
preted in the context of their associated risk.
Clearly emotions, values, beliefs, culture and
interpersonal dynamics play a significant role in
decision-making processes. Extensive work in
the field of psychology and sociology has
examined perceptions and interpretation of
uncertainty for both volcanology and across
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other hazards (weather, tsunami, operational
earthquake  forecasting, climate  change)
(Fischhoff 1994; Cosmides and Tooby 1996;
Kuhberger 1998; Windschitl and Weber 1999;
Bruine De Bruin et al. 2000; Gigerenzer et al.
2005; Patt and Dessai 2005; Risbey and Kand-
likar 2007; Morss et al. 2008; Budescu et al.
2009; McClure et al. 2009; Joslyn et al. 2009;
Mastrandrea et al. 2010; Jordan et al. 2011; Eiser
et al. 2012; Doyle et al. 2014a, b). However, that
is not the scope of this chapter. For the purpose
of our argument, we focus on the ‘rational side’
of decision-making. That is, the quantification of
uncertainty using statistical theory.

What makes statistics so unique is its ability to
quantify uncertainty, so that statisticians can
make a categorical statement about their level of
uncertainty, with complete assurance. But the
statements have to be made taking into account
all possible factors (sources of uncertainty) and
making sure the data are correctly selected to
eliminate all sources of bias. These could have a
significant impact and involve matters of life and
death. So far we assumed that the probability
estimates have been calculated using the right
methods. For the restaurant or supermarket
examples this could be a simple arithmetic mean.
Forecasting the occurrence of a volcanic event
will require more elaborated mathematical mod-
elling. The accuracy in the probability estimate
will depend largely on the model selection.

Disciplines and Schools of Thought

To quantify uncertainty using statistics there are
three main disciplines statisticians rely on:
(i) data analysis, (ii) probability, and (iii) statisti-
cal inference (Cooke 1991; Pollack 2003; Kirkup
and Frenkel 2006). The first step is always the
data analysis, that is, the gathering, display and
summary of the data. In the case of volcanoes,
we look at past and monitoring data, and we
make the necessary adjustments for any incon-
sistencies (e.g.: Sobradelo and Marti 2015). The
second step is the formal study of the laws of
chance, also called the laws of probability, whose
birthplace is in the 17th century for no other
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reason than to be used in gambling (Cooke
1991). Probabilities are the result of applying
probability models to describe the world, and this
is done using the concept of random variables,
that is, the numerical outcome of a random
experiment or a random process we are trying to
understand, so that we can forecast its future
outcome (height, weight, income, eruptive events
in the last 500 years, number of seismic events in
one day, etc.). Finally, we use the above so that
we can make inferences in the real world with a
certain degree of confidence (Rice 2006).

Approaches to developing probability models,
associated with different schools of thought, are:
(1) the classical, based on gambling ideas, which
assumes that the game is fair and all elementary
outcomes have the same probability; (2) the rel-
ative (objective) frequency approach which
believes that if an experiment can be repeated,
then the probability estimate that an event will
occur is equivalent to the proportion of times the
event occurs in the long run; and (3) the personal
(subjective) probability approach which believes
that most of the events in life are not repeatable
(Cooke 1991; Jaynes 2003). They base the
probability on their personal belief of the likeli-
hood of an outcome, and then update that prob-
ability as they receive new evidence (Cosmides
and Tooby 1996). An objectivist uses either the
classical or the frequency definition of probabil-
ity. Subjectivists, also called Bayesians, apply
formal laws of chance to their own personal
probabilities. What makes the Bayesian approach
subjective is the choice of models and a priori
beliefs to define the prior probabilities, even if
the rules and observed data to update and com-
pute the posterior probabilities are quite “objec-
tive”. The Bayesian approach claims that any
state of uncertainty can be described with a
probability distribution, making it suitable for the
study of volcanic areas where very little or no
data exists, other than theoretical models or
expert scientific beliefs. These initial probabili-
ties get updated each time new information
arrives, making the approach quite dynamic and
easy to apply.

For many years there has been controversy
over the “frequentist” versus “Bayesian” methods.
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However, neither the Bayesian nor the frequentist
approaches are universally applicable (Jaynes
2003). For each situation, some approaches and
models are more suitable than others to produce
probability estimates as accurately as possible
with high confidence. It is the task of the statisti-
cian to decide and justify the model selection to
ensure reliability of the results. But a brilliant
analysis is worthless unless the results are suc-
cessfully communicated, including its degree of
statistical uncertainty.

Often presented as an alternative to the
probabilistic approach, is the deterministic
approach. Events are completely determined by
cause-effect chains (causality), without any room
for random variation. Here, a given input will
always produce the same output, as opposed to
probabilistic models that use ranges of values for
variables in the form of probability distributions.
This approach is sometimes used in fields with a
lot of data, like in weather forecasting, or where
the underlying process can be explained with
physics-based models, such as in seismology. In
any case, the reliability of probabilistic versus
deterministic forecasts is sometimes a cause of
debate, and is often a mixed of both, a deter-
ministic and a probabilistic approach, the pre-
ferred option.

How Reliable Is a Forecast: Data
and Methodology

By giving an expected value for a forecast we are
already quantifying a measure of uncertainty.
This value will have an interpretation based on
the degree of confidence which the estimate is
made with, which will depend on the type,
amount, quality and consistency of the evidence
upon which the estimate is made, usually past
data or theoretical models.

The degree of confidence, or certainty, is
quantified and expressed via the variance or
standard deviation (squared root of the variance).
Suppose we have three measurements of a ran-
dom process (e.g. inter-event time in years) of 2,
3, and 4 years, and want to draw some conclusion
about the inter-event time based on these values.
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We use 3 years, a simple arithmetic mean, as the
estimate of the inter-event time. The three mea-
surements are equally distant and symmetrical
around the mean. The variance, which measures
the dispersion of the values around the mean, is 1,
and the median, which is the value in the middle,
is 3 as well as the mean. Suppose we do the same
exercise with measurements 1, 3, and 5, we still
get a mean of 3, but now we can see the values 1,
and 5 are two units away from the mean, and so
the variance, as a measure of dispersion around
the mean, is now 4, instead of 1. Note, however,
that the values are symmetrically distributed
around the mean, and that the mean and median
are still the same as before, 3. The only thing that
has changed is the variance, now larger. The
lower the variability around the point estimate,
the more reliable is our estimate. Let’s take a
sample with 10 measurements: 1, 1.4, 2, 2.1, 2.2,
2.3, 3, 4, 5, 7. The estimated inter event time,
based on a simple arithmetic mean, is still 3, but
we based this estimate on 10 rather than 3
observations. The more data we have to compute
our estimates, the more confident we are in these
results (Rice 2006).

Apart from the reliability of the data to pro-
duce an estimate, a crucial aspect of a forecast is
the correct choice of methodology to model this.
Most of the time we do not know the underlying
distribution of a random process (e.g. number of
volcanic eruptions in a time interval and partic-
ular area, assumed to be random), and so we
make assumptions to help us find a function
within a family of known distributions (Normal
or Gaussian, Exponential, Binomial, Beta, Pois-
son, Chi-Squared, Log-normal, etc.) that would
be suitable to model this unknown process (see
Rice 2006; Gonick and Smith 2008; McKillup
and Dyar 2010 for details on these distributions).
This facilitates making inferences and forecasts
based on the conveniently known properties of
these functions. The choice of the distribution
family depends on the characteristics of the
sample data (how many observations are there,
whether it is a symmetrical or a skewed distri-
bution, what type of measurement was used,
etc.). To select the most appropriate distribution,
it is important that the data is an unbiased and
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representative sample of the population. There-
fore, the data gathering process and a preliminary
and exhaustive analysis of the dataset are crucial
to reduce uncertainty and increase confidence in
the final results. Needless to say, the choice of
distribution and assumptions about the sample
data add uncertainty to the results, and must be
taken into account when presenting the final
outcome.

Arithmetical means are pure descriptive mea-
sures used to sum up the information from the data
sample. In practice, we would not use a simple
arithmetical mean to estimate probabilities and
make inferences about complex processes. There
are a large number of statistical modelling tech-
niques (not the scope of this chapter) based on the
type of data we have, its distribution, quality and
quantity and the type of question we want to
answer. In the end, the reliability of the proba-
bility estimate (whereas an inter event time of
3 years or not) will depend on the accuracy, reli-
ability and amount of data used to reach that
conclusion, together with the statistical model and
approach. That is why a probability estimate
should always be presented with some measure of
its variability (estimated error, usually given by
the variance or standard deviation) and it should
be made clear that it is an estimate based on the
available data, and that we have assumed that a
future behaviour of the random event will follow
the same pattern we have observed in this dataset.
This might in fact not be the case, and that is why
sometimes we hear about time series data being
“stationary or not”’, meaning that depending on
what time interval the data comes from, the pat-
tern observed may be different. In short, there are
many assumptions and sources of uncertainty
around a probability estimate that have to be taken
into consideration when interpreting probability.

Taking a bigger picture view, ultimately all
we are doing is drawing some general conclu-
sions about an unknown process (the inter-event
time) from some samples of observations. We do
not have access to all the possible observations of
this process, but still want to anticipate the future
value of this event, so we can be better prepared
should the event strike. This is the reason why
we use statistical approaches to model random
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events, unless we can see into the future, a
probability estimate can never be either 0 or
100%.

Using Probabilities to Communicate
Uncertainty

Since the late 1990s there has been significant
focus on improving communications during vol-
canic crises (IAVCEI 1999; McGuire et al. 2009;
Aspinall 2010; Donovan et al. 2012a, b; Mar-
zocchi et al. 2012; Sobradelo et al. 2014).
A common factor that emerges is the value of
probabilities as a way to communicate scientific
forecasts and their associated uncertainties, for
natural hazards in general (Cooke 1991; Colyvan
2008; Stein and Stein 2013), or more specific for
volcano forecasting (Aspinall and Cook 1998;
Marzocchi et al. 2004; Aspinall 2006; Sobradelo
and Marti 2010; Marzocchi and Bebbington
2012; Donovan et al. 2012¢). However, it also
requires the need to communicate the uncertainty
that accompanies any forecast on the future
behaviour of a natural system.

Making predictions on the future behaviour of
a volcano involves analysis of past data, moni-
toring of the current situation and identification of
possible scenarios. Quite often, these predictions
are challenging to quantify and communicate due
to lack of data and past experience. An added
source of complexity is when the probability
estimates are very small, <1%. Most lay people
are not familiar with decimals or small fractions.
A layman will easily understand a probability of
0.2 or 20%, but not so well one of 0.0002 or
0.02%, even when both are associated to the same
level of risk. Scientists responsible for the com-
munication of volcanic forecasts have the difficult
task of selecting the scientific language to deliver
a clear message to a non-scientific audience.

The uncertainty that accompanies the identi-
fication and interpretation of eruption precursors
derives from the unpredictably of the volcano as
a natural system (aleatory or deep uncertainties)
and from our lack of knowledge on the behaviour
of the system (epistemic or shallow uncertainties)
(Cox 2012; Stein and Stein 2013). These
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uncertainties will depend on how well we know
the volcanic system. Active volcanoes with high
eruption frequencies can be more easily predicted
(i.e. they are reasonably well known and so past
events are good predictors of future ones, shallow
uncertainties). In contrast, deep uncertainties are
associated to probability estimates based on
poorly known parameters or poor understanding
of the system, this is usually the case for volca-
noes characterised by low eruption frequencies.
In everyday life we are often quite unaware that
we use probabilities (commonly known as “com-
mon sense”) to evaluate the degree of uncertainty
we face. The question is whether we prefer or
understand better the mathematical expression of
probability (e.g.: 20% chance of an event occur-
ring) or more verbal statements such as likely,
improbable, certainly, to make our decisions.
Greater precision does not necessarily imply
greater understanding of what the message really
is, as it will be perceived differently (Slovic 2016).
Some countries, like USA, prefer to use prob-
abilities to express uncertainties with weather
forecasts, while some European countries prefer
to use verbal expressions. In both cases, people
react according to the forecast. There are different
ways in which probabilities (and uncertainties)
can be described. These include words, numbers,
or graphics. The use of words to explain proba-
bilities tend to use language that appeals to peo-
ple’s intuition and emotions (Lipkus 2007).
However, it usually lacks precision as it tends to
introduce significant ambiguity by the use of
non-precise words such us “probable”, “likely”,
“doubtful”, etc. A probability is the “measure” of
the likeliness that an event will occur, so it makes
sense to expect a numerical value (e.g. percent-
ages) associated to that measure. However, in
volcanology most of the time there is insufficient
observational data to present probabilistic fore-
casts with enough level of confidence. Using only
numerical expressions may fail when the audience
has a low level of numeracy. The interpretation of
probabilistic terms can vary greatly depending on
the educational level of the receptor and whether
verbal or numerical expressions are used (Bude-
scu et al. 2009; Spiegelhalter et al. 2011; Doyle
et al. 2014a; Gigerenzer 2014). To minimise this
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problem, a combination of verbal uncertainty
terms (e.g.: very likely) with quantitative specifi-
cations (e.g.: <90% probability) has been recom-
mended, for example, to better understand results
from Intergovernmental Panel on Climate Change
(IPCC) (Budescu et al. 2009, 2012). Climate sci-
entists working within the IPCC have adopted a
lexicon to communicate uncertainty through ver-
bal probability expressions ranging from “very
likely”, “likely”, “about as likely as not unlikely”,
“very unlikely” and “exceptionally unlikely” to
refer to probabilities (e.g. IPCC 2005, 2007). The
terms are assigned specific numerical meanings
but are typically presented in verbal format only,
so that a probability of occurrence of 1% will be
interpreted as “very unlikely” for that particular
event, and a probability of 66% will be seen as
“likely” for the event to happen. Similarly, any-
thing in the range of 33-66% would be perceived
as “about as likely as not unlikely”.

Since 2011 it has been increasingly common
to use graphics to represent probabilities in nat-
ural hazards (Kunz et al. 2011; Spiegelhalter et al.
2011; Stein and Geller 2012). The advantage of
communicating uncertainties (or probabilities)
visually is that people are everyday better pre-
pared and trained to use and understand info-
graphics, as an immediate consequence of the
globalised use of internet and informatics, and a
graphic can be adapted to stress the importance of
the content of the communication and can be
adapted to the needs and capabilities of the
audience (Spiegelhalter et al. 2011).

In addition to considering the way probabilities
(and uncertainties) are communicated, there is a
need to consider the local context of the particular
society in which the volcanic crisis is occurring.
“Odds” is an expression of relative probability
that is well understood by many communities (e.g.
gambling, games of chance) and can be effective
also to communicate volcano forecasting if it is
correctly adapted for the purpose. Regulations
(i.e. legal and commonly accepted norms) fre-
quently determine the articulation of uncertainty
and risk used to manage environmental and nat-
ural hazards. Finally, culture is of key importance
in communication (Oliver-Smith and Hoffmann
1999; Eiser et al. 2012). The way in which risk is
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perceived may change depending on cultural
beliefs of each society, and in the same way the
cultural diversity of societies facing a volcanic
threat may imply that communication methods
that work in one country or culture may not work
in another. Therefore, it is important to investigate
and gain in-depth understanding of the particular
cultural aspects of each society in order to define
the best communication procedures and lan-
guages in each case. There are numerous studies
that demonstrate the importance of public educa-
tion, pre-crisis education programmes, and risk
perception to better understand scientific com-
munication during crisis (e.g. Bird et al. 2009;
Budescu et al. 2012; Dohaney et al. 2015). Most
of them agree that better educated populations on
natural hazards understand better risk communi-
cation and behave in a more orderly way for
managing a crisis. There are additional sociolog-
ical and qualitative aspects to consider when
communicating probabilities beyond the scope of
this chapter, but address issues around risk per-
ception, trust, decision-making, and managing
disasters e.g. Kilburn 1978; Fiske 1984; Tazieff
1977; Paton et al. 1999; Chester et al. 2002;
Sparks 2003; Haynes et al. 2007, 2008; Baxter
et al. 2008; Solana et al. 2008; Fearnley 2013;
Doyle et al. 2015.

What Should Be Communicated?

The key questions focus around what can be
forecasted. Should the forecasting of the outcome
of a volcano be determining whether it will erupt
of not? How big or explosive will it be? When?
Where? What is the dimension of the problem?
These are basic questions that civil protection asks
to the scientist once an alert has been declared,
and the process of managing a volcanic crisis has
started (IAVCEI 1999; McGuire et al. 2009;
Aspinall 2010; Donovan et al. 2012a, b; Mar-
zocchi et al. 2012; Sobradelo et al. 2014). Usually,
scientists can answer these questions with
approximations (probabilities) based on knowl-
edge of previous cases from the same volcano, or
from other volcanoes with similar characteristics,
knowledge of the past eruptive history of the
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volcano, warning signals (geophysical and geo-
chemical monitoring), and knowledge about the
significance of these warning signs. Whilst giving
probabilities as an outcome of a volcano forecast
may be relatively easy for the scientist (depending
on the degree of information available), it may not
be fully understood by the decision-maker or any
other recipient of such information. It is necessary
to find a clear and precise way to communicate
this information between scientists and key
decision-makers, to avoid misunderstandings and
misinterpretations that could lead to an incorrect
management of the volcanic emergency and,
consequently, to a disaster.

In recent years, a way used to improve the
communication of statistics, as well as decision-
maker needs, is through the development of
exercises where a volcanic crisis is simulated and
all key players involved in risk management, such
as scientists, civil protection, decision-makers,
population and media are invited to participate, as
in a real case. Exercises have been carried out at
different volcanoes such as Vesuvius (MESIMEX,
Barberi and Zuccaro 2004), or Campi Flegrei,
Cotopaxi and Dominica (VUELCO Project, www.
vuelco.com), New Zealand (DEVORA), among
others. These simulations facilitate interaction and
cooperation between the stakeholders, and the
sharing and exchanging of procedures, method-
ologies and technologies among them, including
scientific communication. They present an
opportunity for learning the exact role and
responsibilities that each key player has in the
management of a volcanic crisis, as well as
exchanging concerns and feedback on specific
matters.

Whilst volcanic forecasts centre on scientific
data and probabilities as much as possible, sci-
entists may also recommend safe behaviour
directly to the public, providing advice that saves
people’s lives (e.g. going up a hill if a lahar
threatens). Often this is beyond the legal
requirements of the scientists, who are required
to comment on the volcanic science only, but
they could feel a moral duty to assist (Fearnley
2013). However, this should not imply or be
confused with making decisions on how to
manage a volcanic emergency (e.g. evacuation),
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as this frequently falls under the remit of civil
protection (or other such government organisa-
tions), although in some countries such as
Indonesia the scientists and the civil protection
organisations work together rather than having
distinct roles; it is dependent on the governance
structures of the country.

When Should a Volcano Forecast Be
Communicated?

Ideally, forecasts should be communicated as
early as possible, and then with increasing fre-
quency if, or when, an eruption nears. This means
there should be a permanent flow of information
between scientists, the vulnerable populations,
and policy-makers on the eruptive characteristics
of the volcano, its current state of activity, and its
associated hazards, even when volcanoes do not
show signs for alarm. This is to aid preparation for
when an emergency starts and things need to
move much faster. However, in many cases sci-
entific communication in hazard assessment and
volcano forecasting is just restricted to volcanic
emergencies. When volcanic unrest starts and
escalates, the origin of this unrest needs to be
investigated to assess the level of hazard expected.
Good detection and interpretation of precursors
will help predict what will happen with a con-
siderable degree of confidence. This means that
scientific communication during a volcanic crisis
needs to be constant and permanently updated
with the arrival of each new piece of data. The
longer it takes to make a decision, the greater the
potential losses are likely to be as vulnerability
increases. This constitutes the main challenge in
communicating forecasts and probabilities during
a volcanic crisis. In essence, the relationship
between the decrease of uncertainty in the inter-
pretation of the warning signs of pre-eruptive
processes to acceptable (reliable) levels, and the
time required to make a correct decision, is a
function of the degree of the scientific knowledge
of the volcanic process and of the effectiveness of
scientific communication. Therefore, scientific
communication during a volcanic crisis needs to
be effective from the start.
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Conclusion

In order to improve scientific communication
during a volcanic crisis it is recommended that the
communication protocols and procedures used by
the different volcano observatories and scientific
advisory committees are compared for each level
of communication: scientist-scientist, scientist-
technician, scientist-Civil Protection, scientist-
general public. Experience from other natural
hazards helps, as do clear and effective ways to
show probabilities and associated uncertainties.
Although each cultural and socio-economic situ-
ation will have different communication require-
ments, comparing different experiences will help
improve each particular communication approach,
thus reducing uncertainty in communicating vol-
cano forecasts.

Finally it is worth mentioning that a crucial
aspect in facilitating risk communication is edu-
cation. This, however, is a long-term task that
requires to be conducted permanently in societies
threatened by natural hazards. Risk perception
depends on cultural beliefs but also on whether
or not a society has been educated on its natural
environment and potential hazards. In the same
way scientific communication is better perceived
and understood when the population have pre-
vious knowledge on the existence and potential
impacts of natural hazards. There are numerous
studies that demonstrate the importance of public
education, pre-crisis education programmes, and
risk perception to better understand scientific
communication during crisis (e.g. Bird et al.
2009; Budescu et al. 2012; Dohaney et al. 2015).
Most of them agree that better educated popula-
tions on natural hazards understand better risk
communication and behave in a more orderly
way for managing a crisis. Therefore, best prac-
tices on communication should also consider
improving education of population on natural
hazards, their potential impacts and the ways to
minimise the associated risks, as well as on how
to behave during the implementation of emer-
gency plans in a crisis.

R. Sobradelo and J. Marti
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