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Abstract
This chapter considers the challenges surrounding the management of
extreme volcanic risk. We examine eruption scenarios based on past
episodes and assess the key issues that might arise should similar events
occur in the future. The nature of such eruptions will entail transboundary
and multi-scalar hazards. In a globalised world, the geopolitical and
societal issues that are likely to emerge cannot all be predicted, and
communication technologies themselves are likely to be affected. We
explore two aspects: communication prior to the eruption, and commu-
nication during the eruption. To the best of our knowledge, all large
eruptions are presaged by sensible phenomena but the enduring challenge
for volcanic hazard assessment and risk management will remain the
uncertainty surrounding evaluations of the likelihood, timing, nature and
magnitude of potentially damaging activity. At present, too, communica-
tion of volcanic risk beyond the borders of the country where the volcano
is located is generally patchy and unsystematic in most parts of the world
(with the exception of the threat of ash clouds to aviation). In the
preparatory phase, it is also critical to establish robust communication
strategies that are resilient during an eruption. Such strategies would be
essential for communicating the availability of supplies, the extent and
nature of damage, and the ongoing status of the eruption.
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1 Introduction: Extreme Eruptions

Large magnitude volcanic eruptions are rare
events with typically long return-periods (less
frequent than *1 in 1000 years) at any single
volcano (Oppenheimer and Donovan 2015).1

These range from large magnitude effusive
basaltic lava eruptions to explosive
super-eruptions. Basaltic lava eruptions, such as
the 1783–4 Laki eruptions, are hazardous largely
through their emissions of sulphur and halogens to
the atmosphere, both locally and via long-range
atmospheric transport. Such impacts include
problems with air quality, disturbance of terres-
trial and marine ecosystems, local contamination
of water supplies (e.g. by fluorine leached from
ash particles) and climate change. These eruptions
may continue episodically for years. In contrast,
large magnitude explosive eruptions usually last
days or weeks, but can have more prolonged
impacts. One estimate for an eruption with 100
times the sulphur yield of Pinatubo suggests that it
would impact the climate strongly for approxi-
mately ten years (Timmreck et al. 2012). Such an
event could have major impacts on food security,
energy security and other critical networks.

The challenge of communicating these risks is
multi-scalar and multi-dimensional: the potential
impacts in the near-field to the far field are diverse,
but are linked through the structures that manage
them, such as local authorities and nation states.
Such events and their impacts can transcend scale
and are better defined by relationality: the rela-
tionships between groups of scientists with dif-
ferent responsibilities, political/policy groups,
populations in different places, and a particular but
as yet unidentified volcano. The volcano can be
viewed as a geographical anchor in the physical
landscape, to which different types of human net-
work are connected. When we discuss communi-
cation of extreme volcanic risk, we are effectively
examining the nature of the network connections
and how they operate. Volcanic risk from large

eruptions is fundamentally a systemic risk of low
probability but high impact. Communicating such
risk requires a very broad approach: the events are
potentially global, they would require manage-
ment by institutions at multiple levels, and they
would involve input from a very wide range of
experts, stakeholders and citizens (Fig. 1).

Here, we concentrate on aspects of the prob-
lem in two different timeframes (pre-eruption and
immediate) and two particular but overlapping
communication types (those between scientists
and policymakers, and between scientists and
populations). Initially, we define two scenarios
for a large magnitude eruption. We then focus on
the nature of systemic risks, and explore gener-
alities of the communication of global systemic
risks, focussing on the pre-eruption timeframe
(by which we mean the period prior to any
detection of anomalous activity). We examine
the immediate period, when signals are detected
and then an eruption commences. We argue that
these two timeframes are not entirely distinct: it
is critical that relationships and knowledge
exchange takes place pre-eruption in order that it
underpins communication in an immediate set-
ting. The subject of this paper is challenging
because it deals with scenarios not experienced
in recent history, and therefore the discussion is
sometimes necessarily speculative. However, we
have drawn on examples both from volcanic
crises and from the wider risk literature.

2 Volcanic Risk Scenarios

In this section, we outline two particular extreme
volcanic risks, and discuss the likely challenges
presented by each. This provides the context for
the subsequent discussion in the paper.

2.1 Large Magnitude Basaltic
Eruptions

The 1783–4 Laki Fissure eruption has been
extensively studied (e.g. Thordarson and Self
1993, 2003; Thordarson et al. 1996; Schmidt
et al. 2011, 2012; Hartley et al. 2014).

1In this paper, we focus on the impact of large magnitude
eruptions. However, we note that a smaller eruption at the
wrong time and in the wrong place could produce an
extreme event, and some of the implications discussed in
this paper may be relevant to such a scenario.
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Thordarson and Self (1993) estimated that this
eruption produced fire fountains up to 1.4 km
high, sourcing plumes that rose into the strato-
sphere. Schmidt et al. (2011) modelled the
potential air quality consequences of a compa-
rable eruption occurring today and suggested that
the long-range exposure to volcanogenic partic-
ulate it could significantly increase cardiopul-
monary mortality across Europe. Thordarson and
Self (2003) further implicated the eruption in the
hot summer of 1783 and cold winter of 1783–4.
Beyond climate impacts, such an eruption in the
contemporary world could have a significant
impact on aviation—especially if the eruption
continued for months or years.

The 2014–15 volcanic eruption in Holuhraun,
north of Vatnajökull, in Iceland represents an
analogue for such an eruption, albeit at about a
tenth of the magnitude scale. Precursory activity
to this eruption was roughly two weeks in
duration, with evidence for dyke propagation
(Sigmundsson et al. 2014) from a central vol-
cano, starting on 16 August 2014 and the first
subaerial eruption on 29 August. Based on this
scenario, there would be roughly two weeks’
warning that magma was rising. As was
demonstrated during the precursory activity

however, it is very challenging for volcanologists
to forecast what is to the uncertainty in inter-
preting monitoring data from volcanoes, in gen-
eral, is a theme that pervades the literature (e.g.
Baxter et al. 2008; Marzocchi et al. 2012).

A large magnitude basaltic eruption could
produce two primary hazards over large areas—
gas hazard and climate forcing. In the near-field,
lava flows and tephra could be a problem. Gas
hazard would affect the immediate area around
the volcano, but its dispersion would be heavily
dependent on the height of the plume and the
meteorological conditions (e.g. Schmidt 2014).
For example, SO2 from the Holuhraun eruption
reached parts of Ireland and Norway (Schmidt
et al. 2015; Gettelman et al. 2015). The extent of
any climate forcing would be dependent on
aerosol formation and transport, at least in the
short term, and on the duration, seasonality and
latitude of the eruption (e.g. Schmidt et al. 2012).
In this scenario, then, the hazard would be spa-
tially specific but long-range and variable.
Forecasts of the hazard would be heavily
dependent on meteorological data and models
and source constraints—such as SO2 flux mea-
surements and plume height distribution. Man-
agement of the hazard would defer to individual

Fig. 1 Examples of the
complex web of ideas,
institutions, infrastructure
and groups involved in the
management of extreme
volcanic risk
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nation-states in the first instance, but in the event
of more prolonged and regional scale climatic
disturbance there would be a need for a collab-
orative response to manage any adverse impacts
on food production and distribution. If the
eruptions occur in a populated area and/or a
small country, evacuations to other nations might
be necessary. Air quality deterioration would
affect healthcare provision, especially for those
with existing respiratory illness. Air quality
issues and airborne ash could also affect aviation
at regional scale, and airspace closures would
have to be managed reflexively during a long,
fluctuating eruption.

2.2 Large Magnitude Explosive
Eruptions

Large magnitude explosive eruptions (>M6,
according to the scale of Mason et al. (2004)),
and super-eruptions (M8) can result in regional
to global scale effects on climate (depending on
sulphur yield to the atmosphere, location and
timing) and regional scale devastation. Climate
impacts from a 100× Pinatubo SO2 release, for
example, were modelled by Timmreck et al.
(2012), and include decadal-scale global cooling
of several degrees. This kind of scenario has
major implications for food production globally.
It would also affect trade, transportation and
communication, particularly close to the source
but with ripple-effects worldwide due to the
nature of commercial aviation and global mar-
kets, and supply and distribution networks.
Super-eruptions may even pose an existential
risk (e.g. Rampino 2002). The complexities and
diversity of the direct and indirect consequences
of such large events make it very difficult to
assess the risks in a meaningful way, and indeed
it could be said that there have been no com-
prehensive efforts to assess the integrated
impacts of a super-eruption on global society.
Hereafter, we focus on an M8 scenario similar to
that of the Youngest Toba Tuff (YTT) eruption,
circa 74 ka BP.

A large magnitude eruption would yield
>10 km3 of tephra in a matter of hours or days. In
explosive eruptions of this size, substantial ash
clouds are generated and associated plumes
would circumnavigate the globe within a few
weeks. Pyroclastic flows would likely extend
tens of km from the volcano. The estimated
minimum tephra mass for the YTT is 2 × 1015 kg
(Rose and Chesner 1990): an eruption of this
magnitude could affect the continental scale with
severe implications for farming and agriculture.
A major uncertainty in such an eruption is the
volatile budget. There has been considerable
debate concerning the sulphur yield of the YTT
eruption, for example (e.g. Rampino and Self
1992; Oppenheimer 2002; Williams 2012), and
there is even less consensus on the halogen yields
of such large eruptions. Cadoux et al. (2015) for
example showed that halogen inputs from the
large Minoan eruption of Santorini could have
had significant impacts on atmospheric ozone. In
any case, contamination of water supplies and
ecosystems over large areas would likely lead to
major food security problems. This could pro-
voke or exacerbate epidemics and social unrest
(Oppenheimer and Donovan 2015). While the
prospect of such a global hazard can result in a
return to environmental determinism (e.g. Ram-
pino 2002), so widely condemned in the disasters
literature (e.g. Raleigh et al. 2014), it neverthe-
less raises the question of global vulnerability
and the complexity of networked societies and
nations. While many studies have examined the
impacts of past large magnitude eruptions (e.g.
Oppenheimer 2011), there are no recent ana-
logues to assess the impact of such an eruption
on modern globalised society—particularly the
impacts on technologies, including communica-
tion, transportation and power.

2.3 Volcanic Risk Webs

Approaches to volcanic eruption management
have traditionally attempted to follow the
so-called linear model, in which scientists
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produce evidence that they use for a risk
assessment, which is then presented to policy-
makers who make decisions and then commu-
nicate those decisions to the public (e.g.
Marzocchi et al. 2012). However, the empirical
literature in volcanology and in other fields of
environmental policy demonstrates that the linear
model is flawed in practice because scientists and
policymakers are part of the “public” and make
social inferences throughout the process, as well
as being affected by a range of political factors
(e.g. Owens 2005; Owens et al. 2006; Jasanoff
1990, 2005; Donovan and Oppenheimer 2014).
In essence, decision-making is networked and
web-like, not linear, and communication and
decision-making are not readily disentangled,
since decisions will be interrogated by stake-
holders. For example, during and after the 2010
eruption of Eyjafjallajökull in Iceland, the UK
press attacked the Met Office’s handling of the
crisis (Harris 2015). Furthermore, large magni-
tude eruptions will not fit easily into human
boundaries—national or institutional. Their
management will depend not only on scientific
monitoring and information, but also on the
complicated networks of food production, secu-
rity, transportation, electricity, political powers,
water supply and communication, for example—
and on the connections and dependencies
between these networks. Risks of large magni-
tude volcanic events are best conceptualised in
the context of networks or webs of interactions
between critical infrastructure, institutions,
political powers and the Earth system itself.

In the event of a super-eruption, for example,
the impacts on global aviation and even shipping
would have major impacts on supply chains of
both food and technology (see Fig. 2). This
would be significantly compounded by poor
harvests in regions affected by
volcanically-forced climate change. Increased
food prices can trigger or exacerbate civil unrest
and public health problems, limiting economic
growth (e.g. Benson and Clay 2004). Areas and
nations less affected by transport restrictions or
more self-sufficient in terms of food requirements
would be able to adjust to some extent but a
severe economic impact on key banks in, for

example, East Asia, would cause liquidity crises
in Europe and the United States.

As the eruption continues, or ash fallout
across wide areas becomes re-suspended, much
of the globe could have to manage repeated air-
space closures and trade disruption. Climate
impacts could be felt for years after the eruption
(e.g. Timmreck et al. 2012), with poor harvests
driving the global economy further into crisis and
causing conflicts over resources (e.g. Godfray
et al. 2010; see also Gassebner et al. 2010).
Communication technologies could be badly
affected as ashfall damages infrastructure
including telecommunications masts, limiting the
scope of cooperative risk management across and
within national borders. In this scenario, we can
only scope out the potential impacts, but several
attempts have been made to rationalise such an
extreme event (e.g. Denkenberger and Pearce
2014; Rees 2013). Modelling such events is
highly complex, not least because it depends on
numerous source factors which have large ranges
(such as sulfur load, timing, location) as well as
on the fragilities and vulnerabilities of the global
food system, transport systems and governance
systems. On top of this, uncertainty—both sci-
entific and social—has to be taken into account
to produce meaningful results. The problem is
transdisciplinary because it requires action by
experts (scientists, social scientists), governments
and other stakeholders (Fig. 1). The uncertainty
is therefore likely to be amplified because of the
combination of monitoring methods, models and
interpretation across different groups.

A further source of uncertainty is the trans-
boundary nature of these large magnitude sce-
narios. Both of these scenarios pose challenges
that transcend national boundaries, but will
nevertheless be significantly affected by them, as
nations differ in how they manage volcanic risk.
At present, the management of volcanic risk is
primarily the work and responsibility of indi-
vidual nation states. Institutional frameworks
vary considerably between nations (e.g. Donovan
and Oppenheimer 2015a), and are not necessarily
readily combined. Volcanoes are inevitably sited
in particular places, and if other nations are
affected by an eruption, they will be dependent at
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least in part on the “host nation” for information.
This has been demonstrated in recent eruptions in
Iceland (Donovan and Oppenheimer 2012), and
also in Ethiopia and Eritrea (where the lack of
diplomatic relationships caused problems as
well; Yirgu et al. 2014). Information about the
eruption of Nabro volcano in Eritrea was pri-
marily sourced from satellite data, demonstrating
the importance and significance of recent devel-
opments in remote sensing of volcanoes (e.g.
Biggs et al. 2014).

An additional challenge of transboundary
events is the issue of consistency. Nations may
vary in their responses to eruptions and in their
willingness to issue evacuation orders. One
country may evacuate its citizens from the
immediate proximity of the volcano and another
may not. In the event of threats to air quality
from volcanic emissions, one country may pro-
vide free masks and another not. These factors
are important because of the potential for the
situation to be exacerbated by social unrest as
citizens in one state feel less well provided-for
than those in another. Hence, such an eruption
could reverberate through global social networks,
amplifying uncertainties and significantly affect-
ing social stability. There are also spatial differ-
ences in vulnerability and exposure: societies

will not be affected equally, and this could create
significant challenges for security and for the
allocation of resources. The Millennium Decla-
ration, for example, states that “global challenges
must be managed in a way that distributes the
costs and burdens fairly in accordance with basic
principles of equity and social justice” (UN
General Assembly 2000, p. 1, paragraph 6). This
effectively refers to “risk sharing”: the principle
that risk is reduced for those most affected if it is
shared with those who are less affected. This
would be challenging in the event of an M8
eruption in which there are global impacts, and
requires careful planning at an international level
prior to the event.

The probability of either of the scenarios in
this paper being realised is very low, if it is based
on frequency analysis of past events.
Frequency-based probabilistic assessments are
commonly used in volcanology as “base-rates”
(e.g. Mader et al. 2006; Self 2006). However, as
a volcanic crisis unfolds, additional information
may become available—such as an increase in
seismic activity for example. Many volcanolo-
gists would argue that this information suggests
that there is an increased probability of an
eruption—but a frequency-based analysis cannot
incorporate this information as it generally

Fig. 2 Global flight routes (black lines). Also shown are volcanoes listed in the LaMEVE database (Crosweller et al.
2012) and population density (green to red)
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requires higher levels of judgement, and
belief-based probabilistic methods may be used
(e.g. Bayesian methods, expert elicitation; Mar-
zocchi et al. 2007; Aspinall et al. 2003; Newhall
and Pallister 2014). The scenario then becomes a
“single event” problem (Gigerenzer 1994). These
two scenarios—the longer term risk from large
magnitude eruptions and the immediate potential
for such an eruption—represent our two time-
scales hereafter. Initially, we argue that the
longer-term risk from these eruption scenarios
requires engagement with policymakers at all
levels to ensure that there is awareness of the
risk—it has to be on the global agenda as a
systemic risk. We then explore some of the
implications of this for scientists. Finally we
discuss the evolution of a scenario into a single
event problem, and the ensuing challenges of
communication.

3 Systemic Volcanic Risk: Global
Communication Structures
and Decision-Making Systems

Ultimately, the risks associated with these sce-
narios are systemic: they occur at the interface
between the human and the physical, and require
a holistic approach to risk management.
According to Renn and Klinke (2004), “A
holistic and systemic concept of risk must
expand the scope of risk assessment beyond its
two classic components: extent of damage and
probability of occurrence.” Haldane and May
(2011) compare the complex systems of banking
to the complexity of ecosystems, for example:
there are multiple connections between actors
and institutions that are dependent on one
another and that transcend scale. Global systemic
risk is a direct result of globalisation: it is a
networked risk. While networks make risk more
manageable in some ways by adding robustness,
they can also increase fragility (Beale et al. 2011;
Goldin and Vogel 2010), because a break in one
part of the network affects the whole network.

The complexity of global networks sits
uneasily with the existence of nation states (e.g.
Sassen 2006): “bits of territory, authority and

rights” are assembled on multiple scales that
transcend the traditional “local to national to
global” scalar distinctions. Sassen (2006) argues
further that “new types of orderings” are
emerging. The global community of volcanolo-
gists also exists in this precarious spot between
national and global—volcano monitoring scien-
tists work within the institutional structures of
governments, yet also participate in a global
scientific debate about methods, new interpreta-
tions and new data—all of which can feed into
their work within a state. This can have the
positive effect of adding robustness to risk
management within a nation, but can also pro-
duce culture clashes between the scientific per-
ception and the local response (e.g. Donovan
et al. 2014a, b). Such culture clashes have
materialised in connection with outputs from the
Intergovernmental Panel on Climate Change
(IPCC), for example (e.g. Hulme 2009, 2014),
and also in debates in different countries about
issues such as genetically-modified crops. The
focus in discussions around the IPCC is not
merely a result of the evidence and uncertainties,
but also a matter of how evidence is presented
(Hulme and Mahoney 2010).

Communication of extreme volcanic risk at a
global scale is thus immensely complex. It is
affected by geography—availability bias, for
example, will make some people more readily
able to conceive of volcanic impacts than others
(Tversky and Kahneman 1974). There are cul-
tural variations not only in the way that risk is
perceived, but also in the way that it is managed
(e.g. Dake 1992). In the case of extreme volcanic
risk that affects multiple nations and cultures,
effective communication would have to use a
range of media, and would require the involve-
ment of a wide range of actors and institutions
with a consistent and culturally sensitive
narrative.

3.1 Managing Communication

The volcanic ash advisory centres (VAACs) have
some experience in communicating transbound-
ary volcanic hazard from ash plumes. They
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require governments to monitor their volcanoes
and provide information, usually via volcano
observatories, when eruptions are imminent or
ongoing. Models are run by the VAACs to assess
the trajectory of ash clouds and information is
provided for use by aviation authorities. It thus
addresses a very specific problem with key actors
who have some control over operations. How-
ever, the systematic allocation of areas of the
globe to particular VAACs does ensure that
responsibility is clear, and the information is
available to those who need it in a straightfor-
ward way.

The requirement that there are global systems
in place for managing global risks can, however,
obfuscate the complexity of the problems at
smaller scales. There is, for example, wide vari-
ation in the use of colour codes and alert levels
between nations (and sometimes within them).
This can depend on historical experience and on
dominant types of volcanism, for example (e.g.
Potter et al. 2014; Fearnley et al. 2012). The use
of alert levels is also not very reliable at present
(Winson et al. 2014). There are therefore some
issues with any potential “global alert level sys-
tem”, and while there is a global aviation colour
code system, it is hazard-specific to ash plumes
that might affect aircraft.

The absence of any international mechanisms
for volcanic risk assessment and communication
is problematic for several reasons, not least
because it means that any response will be
reactive. Goldin and Vogel (2010) note that
many of the “obvious” international
decision-making institutions (such as the World
Bank and United Nations) “are already over-
loaded”: they have been stretched beyond their
original remits by globalisation. Global gover-
nance itself is highly complex and driven by
regulation, but it is also in its infancy, and is
beset by issues such as the achievement of global
democracy. There are also, importantly, much
more pressing issues for global governance to
deal with than the small possibility of a large
magnitude eruption. Volcanologists are familiar
with the difficulties of getting governments to act
(e.g. Oppenheimer 2011): volcanoes are not that
important. Hence there is no mechanism for

international scientific advice in large magnitude
events.

Recent work on volcano early warning sys-
tems (e.g. Fearnley et al. 2012; Potter et al. 2014;
Winson et al. 2014) has demonstrated some of
the challenges of applying such systems in
practice. Similarly, work on scientific advisory
mechanisms has also demonstrated their social
complexity (Donovan and Oppenheimer 2015b;
see also for example Hulme 2014 on the IPCC).
Nevertheless there is a strong argument that
mechanisms for providing global warnings about
volcanic activity are needed. It is worth noting
that the Sendai Framework for Disaster Risk
Reduction 2015–2030 called for a greater role for
science (including social, economic, engineering,
physical and medical sciences) in disaster risk
reduction, and this presents an opportunity for
the development of international advisory sys-
tems that fully integrate expertise from all of
these fields, learning from the experiences of
similar bodies such as the IPCC.

Rare events require three things from scien-
tific advisors: imagination, flexibility and rapid
response. Even where governments have no
interest in preparing, scientists can be ready to
offer advice: after all, governments will want it
quickly when the need arises! In spite of this,
there is a need for at least a mechanism for sci-
entific advice during large magnitude eruptions.
The model of the Volcanic Disasters Assistance
Program is useful here—it gives precedence to
local scientists whilst also providing resources
(Pallister 2015). A further consideration, how-
ever, is the integration of social sciences
throughout the processes of risk assessment and
communication. Risk communication in an
extreme event would require several character-
istics: consistency, transparency and reflexivity.
Consistency does not mean that the communi-
cation should always say the same thing about
the risk; it rather means that messages should be
internally consistent and clear about what is and
is not known. It can be damaging when one
group claims to have better information than
another. This is therefore aided by transparency
about the information itself and how it is being
used, as well as about uncertainty. Reflexivity
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refers to the subjectivity of those doing the
communicating, and how they manage it
(Donovan et al. 2014b; see also Alvesson and
Sköldberg 2009; Gibbons et al. 1994, for general
discussions of reflexivity). This requires a level
of personal integrity and self-awareness. It
becomes threatened if the communicator has too
much emotional investment in the information,
for example.

3.2 The Nature of Communication

The systemic nature of these risks requires a
long-term scientific and social scientific engage-
ment with decision makers in international,
regional, national and local institutions (see
Fig. 1). Work in risk communication has
demonstrated unequivocally that communication
links that are established prior to a crisis are
critical in facilitating communication during a
crisis (e.g. Donovan and Oppenheimer 2012;
Marzocchi et al. 2012; Barclay et al. 2008; Bird
et al. 2008; Haynes et al. 2008). One key rec-
ommendation is therefore that experts ensure that
they are in communication with civil protection
organisations even when volcanic activity is low.
Such contact does not have to be continuous, but
it should be relatively regular (for example, a
meeting every six months—though this is likely
to vary between institutions and circumstances).
Meetings might include simulated drills, discus-
sions of earthquake activity and monitoring data
over the last few months, updates on response
plans and discussion of new results.

Risk communication has different require-
ments depending on whether one considers
high-frequency low impact events or
low-frequency high impact events, especially at
the extreme event end of the scale. This requires
judgement: one of the problems with extreme
events that have low probabilities but high
impacts is that they can capture scientists’ and
journalists’ imaginations. As Pidgeon and
Fischoff (2011) point out, listening is also a form
of communication, and so is silence. Govern-

ments have struggled to identify the “right” time
to tell populations about extreme risks, and sur-
vey respondents generally want to be told but
recognise that the issue is ambiguous (e.g. Eiser
et al. 2014; Donovan et al. 2014a, b). In general,
low probability risks are communicated if the
probability increases. Setting a threshold for this
can, however, be challenging because of the fear
of “false alarms”. Volcanologists have struggled
with this balance in the past, and this has fed into
studies to find appropriate statistical approaches
(e.g. Woo 2008; Aspinall et al. 2003). Successful
management depends on the communication not
only of risk but of uncertainty. In the presence of
high uncertainty, there is no such thing as a false
alarm (e.g. Hincks et al. 2014, showed that the
evacuations on Guadeloupe in 1976 were justi-
fied even though there was no eruption, because
there was very high uncertainty). However, high
uncertainty regarding a low probability but high
impact risk is challenging, and is also a situation
in which the precautionary principle can produce
paralysis rather than rational decisions (e.g.
Sunstein 2005), not least because of the high
economic cost of always erring on the side of
precaution. With regard to extreme volcanic risk
pre-crisis, communication with the public has to
be carefully considered and framed. It also has to
be transparent: the results of the L’Aquila trial
demonstrate the importance of clear and open
communication, for example. After the 2009
earthquake, inhabitants felt that they had been
misled because they had been explicitly reas-
sured (Alexander 2014), rather than told that the
risk was low but not zero.

Framing is a critical aspect of risk communi-
cation (e.g. Barclay et al. 2008). A frame is a
social construct that allows the interpretation of
complex information. Frames can be negotiated
through dialogue between all the participants in a
conversation to ensure that they are appropriate
and effective. It is important not only to state
scientific knowledge and uncertainty, but also to
engage with the audience. Scientists’ perceptions
of the audience are also likely to affect their
communication (Donovan et al. 2014a) and must
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be handled carefully. This is a subjective process,
but can be rationalised through collaboration and
discussion between physical scientists, social
scientists, policymakers and the public.

4 Single Event Communication

Once volcanic activity is detected and expert
opinion is that the eruption may be very large,
the volcanic risk web has to be “activated”.
Figure 3 is a map of the world showing the
location of tweets with the hashtag #Holuhraun
from 29 August to 2 September 2014 (there was
a small eruption on 29 August, and then the
fissure re-opened from 31 August 2014 to 27
February 2015). It demonstrates the velocity with
which information about volcanic eruptions
travels the web. Secrecy about a potential large
eruption would be very difficult to maintain for
any length of time. Ultimately, the communica-
tion of such risk would be the responsibility of
governments, but it would be strongly dependent
upon relationships between scientists, social
scientists and governments—and the trust that is

placed in them by industry, NGOs and other
stakeholders, including the public.

In Donovan et al. (2012), we introduced a
modified framework for the management of risk in
volcanic crises, based on the Science Studies lit-
erature (Wynne 1992; Stirling 2007). A simplified
version of this is shown in Fig. 4, demonstrating
the transdisciplinary nature of the problem: the
types of question that are generated from such a
systemic risk are multi-dimensional. There are
risks, uncertainties, ambiguities and ignorance
that affect multiple connected groups and entities.

The management of such a situation would
quickly escalate beyond nations, and require
coordination (e.g. by UN institutions). It would
require coherence and clarity about the potential
impacts of the eruption, and about its manage-
ment by different groups in the risk web (e.g.
distinguishing the responsibilities of government
from those of individuals). In this respect, the
communication of risk moves far beyond volca-
nologists—but also requires that volcanologists
retain their integrity as sources of expert infor-
mation. In the next subsection, therefore, we
discuss some of the broad issues that affect

Fig. 3 Tweet map, showing tweets with the hashtag
#Holuhraun between 29 August and 2nd September.
Colours and size represent the day: red 29 August, orange
30 August, yellow 31st August, light green 1 Sept, dark

green 2 Sept. Note that only tweets from users who
disclose their geolocation can be mapped; this amounts to
*2500 tweets, of a total of *5600
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volcanologists involved in expert advice. This
affects both long-term and single event commu-
nication: we suggest that the communication of
extreme volcanic risk, though conceptually bro-
ken into these two aspects, actually depends on
their integration. The management of an extreme
volcanic event is likely to be dependent upon
communication networks that are instituted prior
to the detection of activity.

4.1 Professionalising Volcanology

Some of the issues that have been raised in this
chapter speak directly to IAVCEI’s Crisis Pro-
tocols (Newhall et al. 1999). Recent events, such
as the trial of six seismologists in L’Aquila, Italy
(e.g. Marzocchi 2012; Alexander 2014) have led
to renewed calls for protocols and guidance for
volcanologists who are involved in policy advice
(e.g. Aspinall 2011). Volcanology in certain
circumstances comes to resemble a formal pro-
fession (such as medicine or law; Baxter et al.
2008). In light of social media developments as
well as an increasingly litigious world, the
importance of individual responsibility cannot be

ignored in the context of global risk. Figure 3, for
example, shows that the interest in the Holuhraun
eruption was global and not scaled. In Iceland,
researchers were asked not to tweet photos of
themselves that were inconsistent with doing
scientific work: the government was under pres-
sure to allow tourists into the restricted area,
which was a flood plain that would be affected
rapidly in the event of subglacial eruption. The
additional requirement to monitor social media
sites may be an important consideration for
future planning by volcano monitoring institu-
tions. The interest and availability of information
about volcanic activity—without any quality
controls—is therefore challenging to manage.
Communication technologies such as Twitter and
Facebook are double-edged: they can both
complicate and aid disaster management. Fur-
thermore, they may require additional resources
from responsible institutions in the event of a
crisis. Where there is potential for a large mag-
nitude eruption—for example, an unrest episode
at a known supervolcano—it is likely that media
attention would be significant and that volca-
nologists around the world might be asked to
comment on a volcano about which they know

Fig. 4 Different aspects of uncertainty around volcanoes,
modified from Stirling (2007), Wynne (1992) and Dono-
van et al. (2012). Each category represents a different
aspect of uncertainty that will be represented in each part

of a network, including scientific institutions, infrastruc-
ture (transport, energy, agriculture etc), government
institutions and different social groups
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relatively little. The likely involvement of the
global volcanology community in a large mag-
nitude event necessitate a brief consideration of
these issues here.

The implications of this for researchers are,
ultimately, value-driven: they require reflexive
management of subjective tendencies to want to
be involved in every volcanic crisis, and careful
consideration of comments on social media,
following professional guidelines (e.g. from
IAVCEI). Awareness that there may be a politi-
cal context that individuals at a distance cannot
see is also important. However, there are also
implications for volcano monitoring institutions,
particularly concerning the need to monitor
social media but also its potential. Bird et al.
(2008) demonstrated that the level of information
provided by the Icelandic Meteorological Office
on its website was appreciated by the public.
Donovan and Oppenheimer (2012) found that
scientists interviewed in Iceland felt that the
availability of data had led to the public
becoming, over time, able to use that information
effectively. There are considerable advantages to
a long-term dialogue with the public that famil-
iarises people with the kinds of information
available in a crisis—though there may be dis-
advantages and understandable insecurities in
making data too readily available, not least the
potential for misinterpretation (Donovan and
Oppenheimer 2015a, b). Again, this issue is
magnified in the case of supervolcanoes, as data
indicating an increase in activity might cause
widespread concern.

A further uncertainty in the present case—
large magnitude eruptions—is that the source
volcano may not have received much attention,
compared with frequently active systems such as
Etna. There may well be a trade-off between the
involvement of scientists who have experience in
policy advice but no local knowledge, and the
involvement of, for example, a single local sci-
entist who happened to do their PhD studies on
that volcano, but is considerably more familiar
with petrological methods than with providing
hazard advice. Again, reflexivity is an approach
that may aid in this situation.

Comparisons have been made in the past
between volcanology and medicine (e.g. Baxter
et al. 2008), and the introduction of
“evidence-based volcanology” (Aspinall et al.
2003) builds on ideas from the medical literature.
One difference is that volcanologists do not take
the Hippocratic Oath and are not trained to deal
with people or indeed to refer patients to col-
leagues whose specialties might be more appro-
priate. The culture of academia in particular is
not always conducive to effective delegation or
humility, and academics are not trained for the
high pressure of responsibility for matters of life
and death. The detection of signals that suggest a
potentially large magnitude eruption at a previ-
ously unstudied volcano would have major
impacts on the expectations that the public have
of volcanologists, and on the pressure and
responsibility faced by experts. Academic train-
ing, at present, rarely includes mandatory train-
ing in science communication for policy, or
indeed in statistics for risk assessment—but
volcanology is slowly turning into a profession,
and this requires some adjustments in pedagogy.

5 Conclusions

This chapter has addressed some of the issues
around the communication of extreme volcanic
risk. We have demonstrated that such a risk is
fundamentally systemic, not local, and it tran-
scends scale. It is a networked risk that can be
visualised as a web of connections between
governments, institutions, infrastructures, indus-
try, experts and populations, and “grounded”
geographically through an as-yet-unspecified
volcano. Such an event would reverberate
through the risk web, and requires transdisci-
plinary collaboration. It is therefore important
that communication pathways are established
prior to any eruption. Communication about
extreme volcanic risk prior to the detection of
any activity will dictate the nature of communi-
cation when activity is detected. It should be
characterised by four ideas:
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• Appropriate framing: this requires careful
consideration of the social context of the
scientific information and also the potential
impacts that it might have on the population.

• Intersubjective validation: this represents the
importance of some level of scientific con-
sensus—peer review—so that messages are
clear.

• Dialogue and listening: communication is a
two-way process, and this means that con-
cerns from policymakers and populations
have to be taken seriously and addressed

• Reflexive adaptation: in a rapidly developing
situation, it is important that individual fears,
assumptions and anxieties are acknowledged
and addressed within the communication
process.

These concepts are suggested as a means of
structuring discussions between social and phys-
ical scientists, policymakers, officials and popu-
lations: they require transdisciplinary discussions.
In the event of an imminent large-magnitude
eruption, there will not be time to build relation-
ships from scratch, nor to debate the appropriate
role of different stakeholders and experts. Experts
and civil institutions have to work together both
to establish relationships and to assess existing
communication technologies for their resilience
to large magnitude hazards. However, much of
this is required at a political level. The manage-
ment of the high uncertainty in volcanic crises,
the communication challenges and the need for
engagement over the long term suggest that vol-
canology is becoming a profession in which
agreed standards for practice are required.
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