A Typed Access Control Model for CORBA

Gerald Brose*

Institut fiir Informatik
Freie Universitat Berlin, D-14195 Berlin, Germany
brose@inf.fu-berlin.de

Abstract. Specifying and managing access rights in large distributed
systems is a non—trivial task. This paper presents a language—based ap-
proach to supporting policy—based management of access rights. We de-
velop an object—oriented access model and a concrete syntax that is
designed to allow both flexible and manageable access control policies
for CORBA objects. We introduce a typed construct for access rights
called view that allows static type checking of specifications and show
how a realistic example policy is expressed using our notation.
Keywords: Access control, roles, types, CORBA.

1 Introduction

Due to the heterogeneity inherent in open distributed systems such as CORBA
[OMG99], security requirements cannot be enforced by operating systems with
their established set of mechanisms alone. Rather, it is the middleware that
has to provide platform—independent security services. The correct design and
implementation of security mechanisms according to the Object Management
Group’s (OMG) Security Service Specification [OMGI8] are not, however, the
only technical challenges in ensuring proper overall protection in a distributed
object system.

The design, specification, and implementation of security policies and the
management of the corresponding access rights at runtime are both error—prone
and security—critical. There are few methods or tools that provide adequate sup-
port for application designers and security administrators in distributed object
systems. The main problems are ensuring scalability while at the same time al-
lowing the description of fine—grained accesses, which requires appropriate grou-
ping constructs. A related problem is manageability. To make large numbers of
fine—grained access rights manageable, it is necessary not just to group these
rights but also to provide abstractions that represent the underlying policies.
Otherwise, the inherent logic is lost and administrators are left with just “raw
data”. Unfortunately, the existing access control model for CORBA as specified
in [OMG9S] is inadequate in all these respects [Kar98/Bro99).

In this paper, we are concerned with support for specifying access control
policies. In general terms, an access control policy is a description of which

* This work is funded by the German Research Council (DFG), grant No. LO 447/5-1.

F. Cuppens et al. (Eds.): ESORICS 2000, LNCS 1895, pp. 88-[I05] 2000.
© Springer-Verlag Berlin Heidelberg 2000

A Typed Access Control Model for CORBA 89

accesses are allowed and which are denied. In a more technical, but still abstract
sense, an access control policy is a set of rules that, when parameterized with
access control information, is evaluated by an access decision function to yield
a boolean result, i.e. an access is either allowed or denied. We take a language—
based approach to the problem of specifying and managing access control policies
and devise a formal notation that allows designers and administrators to deal
with abstractions that are adequate for their tasks. Our aim is to reap all the
benefits of language support like documentation, structuring, type—safety, reuse,
and enhanced communication between developers and administrators.

An interesting aspect of this work is that providing a usable and manageable
environment has implications for the underlying access model. Existing access
control models [HRUT76/San92/BN&9], which have been designed to make certain
safety properties tractable or to allow certain classes of security policies that
were not expressible in other models, either do not apply well to CORBA or do
not support high—level language constructs that help writing specifications. The
contributions of this paper are the introduction of a typed grouping concept
for access rights called view and the definition of a view—based access control
language for CORBA that allows static type—checking to ensure the consistency
of specifications. The resulting model is intended to serve as a basis for the
development of a comprehensive set of tools.

The rest of this paper is structured as follows. Our access model is presented
and discussed in section 21 Section [3 contains a realistic example for a policy
with dynamic rights changes. Related work is discussed in section[d. The paper
concludes with a brief summary and an outlook on future work.

2 A View—Based Access Control Model

To address the scalability and manageability problems outlined in section [I] we
need to define the appropriate grouping concepts and abstractions. While the
main contribution of this paper is a typed grouping construct for access rights,
our policy language also relies on roles as a concept for grouping users. Rather
than introducing a new role model, we describe a few basic assumptions for
suitable role-based authentication systems in the context of our model. The
remainder of this section then introduces our access control model both formally
and in a concrete syntax, the view policy language VPL [Bro99).

2.1 Roles

To support flexible development, deployment, and management of policies in
potentially diverse environments, we cannot rely on the actual identity of users
because they are not known in advance. With regard to object invocations, the
most suitable abstraction for users is that of a role as it allows us to concentrate
on the specific, logical function in which a principal is operating on application or
system objects. Our notion of role is different from the widely—used role concept

90 G. Brose

in role-based access control (RBAC) [SCEY96] where roles represent a combi-
nation of user groups with sets of authorizations, or just a set of authorizations
[FK92].

We use the term role as a synonym for actors as in use case diagrams. In
other words, roles are sets of users and group principals based on their com-
mon aspects in different interaction contexts. We assume a public—key based
service that issues privilege attribute certificates that represent role membership
[HBM98| to principals upon request and whose signature is trusted by the ac-
cess decision function. A security service like [OMGO98] can then manage access
sessions between callers and objects so that objects always see “users in roles”
rather than individual users.

Role names for sets of users are declared in roles clauses as in Fig. [If we
wanted to write a policy that describes accesses to objects representing resources
in a university setting, we might want to refer to principals in roles such as
lecturer, student, or examiner.

roles
head, lecturer, student, examiner
role assertion
card(examiner and student) == 0;
card(head) ==

Fig. 1: Roles and role assertions

In addition to referring to logical actors, some policies may make assump-
tions on the way roles are structured, and on the way membership is granted.
Role assertions express requirements on the authentication service used to aut-
henticate users in roles and can be written as in Fig.[Il Here, we require that the
intersection of examiner and student is empty, i.e. the authentication service
must ensure that no principal who is a member of role student is ever granted
membership in role examiner. Another possible assertion is that membership in
certain roles, e.g. the role head in the example, is only ever granted to a single
principal.

A deployer of a policy must check that role membership is certified in accor-
dance with the assertions expressed in the policy. The assignment of individual
users or whole user groups to roles is not expressed in a static policy description
but is performed at deployment time. In case the authentication service does not
already offer certificates for the roles listed in a policy specification, the deployer
can perform a simple renaming operation for role identifiers to map them onto
existing roles, e.g., to map an existing role professor onto role lecturer. If
existing roles do not map well, new roles need to be set up in the authentication
service.

2.2 Views

To address the requirements outlined in section [[lwe propose an object—oriented
access model based on views. A view is a named set of access rights. These access

A Typed Access Control Model for CORBA 91

rights are both permissions or denials for operations on objects. While access
decisions are made based on individual rights, views are the units of description
and of granting or revoking.

The need for such a concept is motivated by the observation that it is not
adequate to describe object systems using a limited set of generic rights such as
“read”, “write”, and “execute”. Thus, unlike the classical access matrix model
[Cam74] or the standard CORBA access model [OMG99], individual rights in
our model directly correspond to operations in the target object’s interface.
While this allows access policies that are more expressive and suitable for object—
oriented systems, it also introduces additional complexity because the set of
access rights is open and potentially very large. To make these access rights
manageable, we need to exploit their inherent structure.

An important property of views is that they are typed by the object interface
they control. Views are defined as part of the policy specification. Figure Rlshows
an example of a view definition in VPL. Views are defined as access controls for
a particular IDL interface, which is referenced in the controls—clause of the
view definition.

view NameResolver controls CosNaming::NamingContext {
allow
resolve;
list;

+;

Fig. 2: A view definition

In the example, the view NameResolver controls the IDL type CosNaming: :
NamingContext, which is the IDL interface for the CORBA name service
[OMGY97]. Permissions are listed after the keyword allow, denials would be in-
troduced by deny. In the example, only operations to list the name bindings in
the context and to resolve a name are allowed.

More formally, let U be the set of user identifiers (i.e., public keys) and ROLE
the set of roles. At any one time, a user interacts with an object in a single role,
so we define the set of subjects S : U x ROLE as users in roles. Let O be the
set of objects and V the set of views. We model a system’s protection state as
a tuple (5,0, M), where S C S, 0 C O and M : S x O — P(V) is an access
matrix, P denoting the power set. The matrix entry M, ,) contains subject s’s
views on object o.

Let Mode = {allow, deny} be the set of rights modes, Prio = {strong, weak}
the set of priorities and Op the set of operation names. Priorities are used for
conflict resolution as described below. We define the set of rights as R = Op x
Mode x Prio. A right r € R is thus a tuple (op,m,p), so any right has a
corresponding operation, a priority and is either a permission or a denial.

The set of views V is defined as P(R) x T, where 7 denotes the set of object
types. A view V € V is thus a tuple (R,T), i.e. a set of rights and a controlled
object type. We define a number of restrictions for views that ensure their well-

92 G. Brose

formedness. We demand that the operations for all rights in a view are operations
of the object type controlled by the view (). Also, views may only contain one
right definition for any given operation, so a view has no conflicting rights (2]).

Let the function rights : ¥V — P(R) associate a view with its rights. The
function controlled : V — T maps a view to its controlled object type, and
function ops : T — P(Op) maps an object type to the set of its operation names.
Note that in CORBA IDL, ops(t) is indeed a set, i.e. all operation names in a
type must be unique, so overloading of operation names is not possible.

VoeV :V (op,m,p) € rights(v) : op € ops(controlled(v)) (1)
VoeV :V (opi,mi,pi), (opj, mj,p;) € rights(v) :
op; = op; = my; = m; A p; = Dpj (2)

Matrix entries must be well-typed, i.e. they must satisfy condition (), which
ensures that views entered into the access matrix are always applicable to the
object in the matrix’s column. i.e. that the object has the same type or a subtype
of the view’s controlled type. Subtyping of object types is denoted by C and has
the usual substitution semantics.

Yo eV,0€0,s€S8:veE Mgy, = type(o) E controlled(v) (3)

For each object access the views held by the calling subject are checked to
determine whether they contain a permission for the requested operation. If
they do and, as explained in 2.3, no denials override this permission, the access
is granted.

View extension. Like object types, views may be directly or indirectly related
through extension so that definitions can be reused. A derived view inherits
all its base view’s rights — both permissions and denials — and may also add
new rights. These added rights may only increase the permissions in the view,
however. It is not possible to declare any denials in a derived view.

The semantics of view extension is thus one of monotonically adding per-
missions, just like interface inheritance adds operations to interfaces and never
removes them. As a result, a derived view is substitutable for any of its base
views. For the access decision function, this means that if a subject holds mul-
tiple views, only the most derived views need to be checked for permissions.

In VPL, extension is expressed by listing base view names after a colon. In the
example in Fig.[3, all view definitions directly or indirectly extend NameResolver,
so they inherit the permission for the operation resolve and additionally permit
the operations listed in their own definitions.

In the example, the view NameBinder extends NameResolver by additio-
nally allowing the bind operation. The view NamingContextManager allows two
more operations: new contexts can be created with new_context or created and
at the same time bound to a given name with bind new_context. Note that

A Typed Access Control Model for CORBA 93

view NameBinder: NameResolver {

allow
bind;
s
view NamingContextManager: NameBinder {
allow
new_context;
bind_new_context;
}s

Fig. 3: View extension

NamingContextManager does not have an explicit controls clause, the control-
led type is inherited from its base view. In the case of multiple base views, the
controlled object type must be listed explicitly.

Formally, extension on views is denoted by < (“extends”) and has the follo-
wing properties:

VoweV:v<w=

controlled(v) C controlled(w) A rights(w) C rights(v) A (4)
Y(op,m,p) € rights(v) \ rights(w) : m = allow (5)

Property) requires a derived view to control the same or a more derived
object type than its base views and that it has at least as many rights. Property
(B) requires all rights introduced in the derived view to be permissions. Note
that we do not exclude extension of multiple base views here. View hierarchies
can thus be designed along object type inheritance hierarchies.

2.3 Implicit Authorizations, Denials, and Conflict Resolution

An implicit authorization [RBKWI] is one that is implied by other authoriza-
tions whenever a grouping construct is used for granting. If, e.g., a view v on an
object is granted to a role, this implies granting v to every individual user who
may take on this role.

While it is more convenient to specify general access rules this way than to
grant each of the implied authorizations individually, it must also be possible to
express exceptions to rules, e.g., that users in one particular role are denied one
particular operation on an object. Because the absence of a permission cannot
be used to override an existing permission, it is necessary to define a means by
which negative authorizations [Sti79] or denials can be explicitly specified, as
shown in Fig. @

If it is possible to define both permissions and denials, conflicts can arise,
some of which may represent exceptions. We now describe a strategy that deter-
mines whether, in a given conflict situation, the denial or the permission takes
precedence. Our conflict resolution strategy relies on the extension relation bet-
ween views and on explicit priorities in view definitions.

94 G. Brose

view BaseView controls T { view DerivedView : BaseView {
allow allow
op-1; op-4;
op-2; strong op-3; // incorrect
deny b
strong op_3;
op-4;
s

Fig. 4: Denials and explicit priorities

Priorities in our model can only take one of two values: strong or weak. As
in [RBKWO91], the intention of marking a right as “strong” is that it should not
be possible for another right to override the strong right in case of conflicts. As
an example for explicit priorities, consider again Fig. @l In the definition of the
view BaseView, the keyword strong marks the denial for operation op_3 and
the permission for the same operation in DerivedView as “strong”; all remaining
rights in both views are weak.

To control how derived views may redefine inherited rights, we add a restric-
tion to the definition of derived views: A derived view may only redefine weak
rights. Strong rights may not be redefined:

VoweV: v<w=VY (op,m' p) € rights(v), (op,m,p) € rights(w) :
m' #m = p = weak (6)

Property (€) allows redefinitions that change an inherited right’s mode, but
because of property (B) only denials can be redefined as permissions and not vice
versa. A redefinition may also be used to make a right strong without changing
the right mode, so that it cannot be further redefined in derived views. When we
check the definitions in Fig. @] using (@), DerivedView is found to be incorrect
because the strong denial of op_3 in BaseView cannot be redefined.

Conflict resolution. Basically, conflicts between a permission p and a denial
d can only arise in two cases. The first case is that the views that contain the
definition of p and d are related by extension. In this case, the more derived view
takes precedence.

Two views are only related by extension if one view is directly on the path
along the extension hierarchy from a view to the root of hierarchy. Otherwise,
two views are unrelated even if they have a common ancestor. In the case that
conflicting views are not related, the stronger right takes precedence. If the two
conflicting rights’ priorities are both weak, the denial takes precedence. To gu-
arantee that a strong permission cannot be overridden in a conflict, however,
requires static analysis of view definitions to detect potential conflicts. In case
such a potential conflict is discovered, those view definitions that could potenti-
ally violate the semantics of “strong” must be rejected.

A Typed Access Control Model for CORBA 95

For the data model defined by OMG IDL, we can statically detect view
definitions with potentially inconsistent rights definitions. A type checker can
reject specifications or at least print warnings if potentially conflicting definitions
are both strong. For two unrelated views, conflicts between rights definitions
are only possible if their controlled object types are either equal or related by
inheritance. This is the only way that two identical operation names can refer
to the same operation in an IDL interface. Note that this restriction on the data
model, which prevents interfaces inheriting operations with the same name from
different supertypes, is not present in other languages, e.g., in Java. If we were
to use Java as the distributed object model, a type checker would not be able to
guarantee that a strong right cannot be overridden.

If the following condition holds, we must reject the specification:

Jov,weV:ivLwAvFwA T, = controlled(v) N\ T, = controlled(w) A
(T, CTy,VT, 3T,) N3 (opl,ml,pl) € rights(v), (op2, m2, p2) € rights(w) :
opl = op2 A ml # m2 A pl = strong A p2 = strong (7)

Note that checking this condition requires system—level analysis, i.e., all exi-
sting views must be checked. To make this analysis and the administration of
views in general practical, we assume that the scope of object type extensions
and the visibility of view definitions is restricted by the boundaries of policy
management domains [Slo94]. We do not further address domains as a grou-
ping concept for objects in this paper, but it is obvious that manageability of
large—scale systems depends on appropriate domain management concepts.

The resolution strategy presented above is simple, flexible and sound. It is
possible to express both denials and permissions as the exceptional case, and
the use of explicit priorities is straightforward. The downside of this approach
is that some view definitions must be rejected simply because of their potential
for conflict, even if the conflicts might never actually arise.

2.4 Dynamic Rights Changes

A system’s protection state is usually not constant. Objects and subjects are
added to or deleted from a system, and rights may be granted and revoked for
the purposes of delegation of responsibility or as part of an application—specific
security policy. We distinguish the following three cases:

1. Discretionary granting or revocation occurs when a grantor explicitly calls
a grant operation provided by the security service, thereby inserting views
into or removing views from access matrix entries.

2. Automatic granting or revocation is performed implicitly by the security
service. This occurs when operations are invoked that were defined as triggers
in an application—specific policy such as Chinese Wall [BN89].

3. Delegation occurs implicitly during the course of an operation invocation
when the target object delegates the call to another object. This might

96 G. Brose

require to pass on security attributes of the caller, such as role members-
hip certificates. A number of different delegation policies are possible here
[OMG9§]|, which also depend on whether the target object has security attri-
butes of its own. We do not describe delegation in more detail here. Suffice
it to say that, in general, these attributes do not correspond to rights, so
no new rights are added to the system. Rather, receiving subjects may now
qualify for membership in additional roles and thus gain additional access
rights.

Discretionary Granting. A granting subject can pass on only views that it
possesses and that are also marked as grantable. Rights granted in this way are
restricted to permissions, so a subject cannot restrict another subject’s allowed
operations by granting its own denials. With this restriction, there is no need for
recipients to explicitly accept granted views. A simple example is given in Fig.

Bl

view GrantableView controls T {
allow
grant {tech_staff, janitor};
enter;

+s

Fig. 5: A grantable view

To allow for explicit, discretionary granting the view GrantableView is mar-
ked grantable by allowing the operation grant. While grant is in fact a meta—
right that corresponds to the enter command in matrix models such as [HRU76,
San92|, it is modeled just as any other right and may be both a permission or a
denial. It can also be marked as strong.

Additionally, we assume a relation grantable_to: ¥V x ROLFE which lists legal
recipient roles for a view. In VPL, this relation is expressed by parameterizing
grant with a set of roles that may receive this view. If no recipient roles are
given, a view can be granted without restrictions, otherwise the view may only
be entered into M, o) if s = (u,7) and r is one of the target roles.

As mentioned above, an additional restriction for well-formed views is that
a grantable view must not contain denials:

VoveV: 3 (grant,allow,p) € rights(V) = — 3 (op,deny, q) € rights(V)(8)

By inserting a view v into M, ., a grantor effectively acquires a right on the
matrix entry M, o) that allows him to again remove that view at his discretion,
which potentially leads to further revocations if the grantee has passed on the
view after receiving it.

One potential problem with our approach is that a matrix entry is a set of
views, so if a grantor passes on a view that the grantee already possesses, the
grantor would acquire the right to delete that right at any time — such as in the

A Typed Access Control Model for CORBA 97

very instance the view was granted. In effect, it would be possible for a grantor
to revoke all those views from another subject that both the grantee and the
grantor possess. This can be avoided if we change the model so that either matrix
entries are multisets, or if a grantor only acquires revoke rights on views that
the grantee does not already possess. For practical reasons, we chose the latter
solution because it requires no additional bookkeeping.

Automatic granting. It is appropriate to describe discretionary granting in a
view definition because the ability to grant a view depends only on the possession
and grantability of a view. This is not so for automatic granting or delegation,
however. Both delegation and automatic granting depend only on the invocation
of a particular operation and could thus be described in an extended interface
notation or as IDL annotations. For better integration with other parts of the
policy specification we introduce a new language construct schema.

As an example, we describe how an owner status is assigned to the subject
calling a factory object’s create operation. For this example, we rely on the two
IDL interfaces Document and DocumentFactory in Fig. [6l

interface Document { interface DocumentFactory {
void read(out string text); Document create();
void write(in string text); }s

}s

Fig. 6: Interfaces Document and DocumentFactory

Figure [lists the view and schema definitions. To give owner status for a
newly created object to the caller of the create operation on a DocumentFactory
object, the schema for DocumentFactory has a grants clause for the create
operation. This clause specifies that a view Owner on the result object is to be
granted to caller. result and caller are reserved identifiers with the obvious
meanings. Schema rules must also be able to refer to out parameters of the
operation in case it is necessary to modify views on objects passed to the caller
this way. In these cases, the schema can use the name of the formal parameter,
which is unique in the operation context. This is not shown in the figure.

An Owner view, which gives access to all operations in the interface, allows the
unrestricted granting of this view to other subjects. To also illustrate automatic
revocation the schema also contains a revokes clause which specifies that a User
view is to be revoked from the caller, thereby removing his right to call the create
operation again.

A number of points are worth noting about schemas. First, while schemas
do introduce dynamic state changes whose consequences for a particular po-
licy might be hard to predict, they do not introduce new conflicts. This is only
possible through the definition of new views. Thus, resolvability of all potential
conflicts between rights is still preserved. Second, the grants and revokes clau-
ses can be regarded as operation postconditions with respect to the protection
state of the policy domain as they describe an operation’s effect on this protec-

98 G. Brose

view Reader controls Document {

allow
read;
}
view Owner: Reader {
allow
grant;
write;
}
view User controls DocumentFactory {
allow
create;
}
schema DocumentFactory {
create
grants
Owner on result to caller;
revokes
User on this from caller;
}s

Fig. 7: Views and schema for document creation

tion state. Third, an implementation of this concept must be able to undo the
effects of these clauses if they occur in an invocation context that is later abor-
ted, e.g., because of lack of permissions for a subsequent operation invocation or
because of an exception.

3 An Example Policy

As a case study in VPL we present an application—specific policy for a system
that supports programme committees in reviewing papers for a conferencel’] This
system is a simple workflow application and supports the following procedure:

1. Authors may submit papers until the deadline is reached. The programme
committee (PC) chair assigns a number of reviewers to each paper. This
assignment process is not explicitly supported.

2. Reviewers write and submit reviews. After a reviewer has submitted a re-
view for a paper, he may read other reviews for the same paper — but not
before he submits. He may now also modify his own review, but not others.
(The idea is to shield each reviewer from other reviewers’ influence until he
commits, but to allow the resolution of conflicts between reviews before the
final PC meeting.)

! This example is designed after a similar system called CyberChair
which is being wused by the ECOOP conferences. For details see
http://wwwtrese.cs.utwente.nk/CyberChair/

A Typed Access Control Model for CORBA 99

3. The final decision for each paper — approval or rejection — must be unani-
mous. (The resolution of all remaining conflicts is left to the involved revie-
wers and is not explicitly supported.)

3.1 Application Design

We can derive use cases or scenarios directly from the above description. Even if,
in simple cases like this one, a use case—-model is not strictly necessary, it is useful
for the design of the application’s security policy. In this example, the following
scenarios occur (the respective actors and interfaces are listed in brackets):

1. Change of processing phases (PC chair, Conference)
2. Submission of papers (authors, Conference)
3. Reviewing (Reviewers, Conference, Paper, Review)

interface Conference {
void callForPapers();
void deadlineReached();
void makeDecision();
void submitPaper(in string paper);
void listPapers(out string list);
Paper getPaper(in long paper);

Fig. 8: Interface Conference

The identified actors are not represented in the system. Notification of aut-
hors is via e-mail and not through remote invocation. Figures Bl and [list the
necessary object interfaces in CORBA IDL.

The main process starts when the PC chair issues a call for papers by in-
voking callForPapers(). Papers are submitted as arguments of the operation
submitPaper () and represented as strings. The conference object creates objects
of type Paper from these strings. When the chair has called deadlineReached ()
to finish the submission phase, reviewers can retrieve submissions by calling
getPaper () and giving a reference number as an argument. The operation
listPapers() is called to list available papers with their reference numbers.

interface Paper { interface Review {
void read (out string text); void read(out string text);
Review submitReview(void update(in string text);
in string review, }s

in long reviewer);
void listReviews(out string list);
Review getReview(in long reviewer);

+s

Fig. 9: Interfaces Paper and Review

100 G. Brose

The interface Paper allows reading and listing reviews that have already been
submitted for this paper. Reviewers who submit by calling submitReview() get
a Review object in return which they can then modify if necessary. After calling
submitReview() they may also retrieve the reviews of other reviewers using
getReview().

3.2 Policy Design

Using the actors identified above we can directly derive the role declarations in
Fig. The role author is meant to be available to all users excluding those
that have been assigned membership in role chair — which may only be done
for a single principal. Membership in role chair implies membership in role
reviewer.

roles
chair, author, reviewer
role assertion
author implies not chair;
chair implies reviewer;
card(chair) ==

Fig. 10: Roles and assertions

Static policy aspects. Designing views for the scenarios sketched above is
straightforward. We define the views in Fig. [Tl to capture the static aspects of
this policy.

view Member controls Conference { view ReviewPaper controls Paper {
allow allow
listPapers; read;
getPaper; listReviews;
} }
view Chair: Member {
allow
callForPapers;
deadlineReached;
makeDecision;

Fig.11: Views

There are two views for reviewers: Member controls objects of type Confe-
rence, and the view ReviewPaper controls Paper objects. A Member view on
conference objects allows listing as well as retrieving papers, a ReviewPaper
view on paper objects allows reading and listing information about reviews that
have been submitted so far. Another view Chair, that extends the member view

A Typed Access Control Model for CORBA 101

that controls Conference, defines the rights to switch between the processing
stages.

To assign initial views on all objects of a type to roles, VPL has a keyword
holds as shown in Fig. If an object’s type can be inferred from the view, it
need not be listed explicitly. It is possible, however, to assign a view on subtypes
of the view’s controlled object type. The scope of an object type extension is
assumed to be restricted by the boundaries of the management domain.

chair holds Chair;
reviewer, chair holds ReviewPaper on Paper, read on Review;

Fig. 12: Initial views

Here, the chair holds an initial Chair view for all Conference objects in
the domain, but the extension of Conference is supposed to contain just a
singleton. At the same time, reviewers and the chair hold two more views, viz.
ReviewPaper on all Paper objects and another, anonymous view that allows
reading all reviews: read is simply a shorthand notation for:
view _ controls Review { allow read; }

Since, at this stage, reviewers have no views that would allow to retrieve
papers using getPaper or to retrieve reviews using getReview, these operations
will in effect only be usable after a Member view has been granted.

Dynamic aspects. The most interesting feature of this policy are the changes
in the protection state when reviews are submitted: before this point, reviewers
may not read other reviews; from then on, they may. Which accesses are permit-
ted thus depends on earlier accesses, similar to the Chinese Wall policy [BN89).
To describe transitions like these that are directly connected to changes in the
application state, we use schemas. In this example there are two schemas, one
for the conference interface and one for submissions.

The Conference schema describes how the protection state changes in reac-
tion to operations on the conference object. If callForPapers is called, views
are assigned to authors that allow to submit papers. These views are again
anonymous and only contain the permission for the operation submitPaper. In
addition, the Member view on the conference object is assigned to reviewers.
After the deadline for submissions is reached, the permission to submit papers
is revoked. At the same time, reviewers receive views that allow them to sub-
mit reviews. Finally, when the reviewing process is ended by the chair calling
makeDecision, reviewers may no longer submit reviews.

The Paper schema defines that the right to submit a review for this Paper
object is revoked for the caller so that only one review may be submitted per
reviewer. When submitting, reviewers receive new views that allow to retrieve
other reviews for this paper.

102 G. Brose

schema Conference {
callForPapers
grants
submitPaper on this to author;
Member on this to reviewer;
deadlineReached
grants
submitReview on Paper to reviewer;
revokes
submitPaper on this from author;
makeDecision
revokes
submitReview on Paper from reviewer;
}
schema Paper {
submitReview
grants
update on result to caller;
getReview on this to caller;
revokes
submitReview on this from caller;

Fig. 13: Schemas

4 Related Work

Language approaches to protection have been know since the 1970s. An early
approach is [JL78] which uses ADTs for enforcing protection. Here, however,
protection is part of an implementation and not described separately. Ano-
ther language-based and also object—oriented model for non—distributed envi-
ronments is [RSC92|. This model does distinguish between different classes of
principals but again does not separate policy specifications from application im-
plementation.

The concept of views as an access control concept was first used for a distri-
buted object system in [Hag94]. Views are also used for protection in relational
and object—oriented databases[SLT91]. Their use for access control purposes re-
sembles the use of type abstraction as a protection concept. Unlike database
views that can span multiple types, a view in our model is restricted to objects
of a single IDL type. Joining views on different IDL types 17, ..., T;, can, however,
be modeled by specifying an additional IDL interface T that extends 77, ..., T},
and defining a view on 7. Another difference is that database views may define
content—specific access controls, e.g., by stating that an attribute may only be
read if its value is above a certain threshold. While this is a possible extension
to our model, it is not possible in its current form.

PolicyMaker [BFL96| is a generic skeleton language for policy statements
in which filter programs can be embedded. Applications perform access checks
themselves by querying a policy database that evaluates unstructured request

A Typed Access Control Model for CORBA 103

strings according to the filters. While this approach addresses distributed sy-
stems and can model complex trust relations between keys, it does not impose
structure on policy specifications nor offer any kind of type checking for policy
statements.

Grouping privileges into named protection domains to enhance support for
the security management of relational databases has been proposed in [Bal90].
Our approach is similar, but more fine—grained and more modular: named pro-
tection domains inherently group not only privileges but also objects, and may
even group users. Views describe authorizations on individual objects and com-
bine with more appropriate management concepts for users and objects, viz.
roles and domains. We believe that protection domains are not applicable to the
richer data models of distributed object systems.

A general framework for defining arbitrary access control policies is propo-
sed in [JSSB97] where policies are formulated as a set of rules in a logic-based
language. This model leaves open all design decisions about how implicit autho-
rizations are derived, how rights propagate in groups, which conflict resolution
strategies are used and how priorities are employed. Rules for these questions
have to be defined first as part of a policy library. The data model for protec-
ted objects is also left open and has to be described separately. The protection
state is extended with a history component that logs all accesses as facts in a
database in order to enable state—based policies like Chinese Wall. This model
exhibits a more complex concrete syntax than ours, policy specifications are less
structured.

Adiron [Adi], a vendor of CORBA Security products, provides an access
control language with their product, but this language is not object—oriented
and also limited to the restricted standard model of access control in CORBA.

5 Summary and Future Work

In this paper we presented a new access control model based on a typed grou-
ping construct for rights called view. We introduced a concrete syntax, VPL,
that allows application developers and security administrators to specify access
control policies for CORBA domains at an abstract language level and gave an
example of how a specific access policy can be expressed using our notation. The
model might be extended with a more general priority system in the future.

We are currently working on a partial implementation of the CORBA Secu-
rity Service for our own CORBA implementation JacORB [Bro97] and on inte-
grating our model with this implementation to prove its feasibility and practical
value. Other current and future work includes refining our notion of domains and
defining language constructs that allow the composition of domains and their
policies, e.g., into domain hierarchies. Building on these concepts, we intend to
develop management tools for policy domains.

Acknowledgments. I would like to thank Peter Lohr for many valuable discus-
sions. I would also like to thank the anonymous referees for helpful suggestions.

104 G. Brose

References

[Adi]
[Bal90]

[BFL96]

[BN8Y]

[Bro97]

[Bro99]

[FK92]
[Hag94]

[HBMOYg]

[HRU76]

[JL78)

[JSSB97]

[Kar9g]
[Lam74]
[OMGI7]

[OMG98]
[OMG99]

[RBKWO1]

[RSC92]

Adiron. http://www.adiron.com/.

Robert W. Baldwin. Naming and grouping privileges to simplify security
management in large databases. In Proc. IEEE Symposium on Research
in Security and Privacy, pages 116—132, 1990.

Matt Blaze, Joan Feigenbaum, and Jack Lacy. Distributed trust manage-
ment. In Proc. IEEE Symposium on Security and Privacy, pages 164-173,
1996.

David Brewer and Michael Nash. The chinese wall security policy. In
IEEE Symposium on Security and Privacy, pages 206—214, 1989.

Gerald Brose. JacORB — design and implementation of a Java ORB. In
Proc. International Conference on Distributed Applications and Interope-
rable Systems (DAIS’97), pages 143-154, Cottbus, Germany, September
1997. Chapman & Hall.

Gerald Brose. A view—based access model for CORBA. In Jan Vitek and
Christian Jensen, editors, Secure Internet Programming: Security Issues
for Mobile and Distributed Objects, LNCS 1603, pages 237—252. Springer,
1999.

David Ferraiolo and Richard Kuhn. Role-based access control. In Proc.
15th National Computer Security Conference, 1992.

Daniel Hagimont. Protection in the Guide object—oriented distributed
system. In Proc. ECOOP 1994, LNCS, pages 280-298. Springer, 1994.
R. J. Hayton, J. M. Bacon, and K. Moody. Access control in an open
distributed environment. In Proc. IEEE Symposium on Security and Pri-
vacy, pages 3—14, 1998.

M.H. Harrison, W.L. Ruzzo, and J.D. Ullman. Protection in Operating
Systems. Communications of the ACM, 19(8):461-471, 1976.

Anita Jones and Barbara Liskov. A language extension for expressing
constraints on data access. Communications of the ACM, 21(5):358-367,
May 1978.

Sushil Jajodia, Pierangela Samarati, V. S. Subrahmanian, and Elisa Ber-
tino. A unified framework for enforcing multiple access control policies. In
Proc. International Conference on Management of Data, pages 474-485,
1997.

Giinter Karjoth. Authorization in CORBA security. In Proc. ESO-
RICS’98, pages 143-158, 1998.

Butler W. Lampson. Protection. ACM Operating Systems Rev., 8(1):18—
24, January 1974.

OMG. CORBAservices: Common Object Services Specification, November
1997.

OMG. Security Service Revision 1.5, November 1998.

OMG. The Common Object Request Broker: Architecture and Specifica-
tion, Revision 2.3, June 1999.

Fausto Rabitti, Elisa Bertino, Won Kim, and Darrel Woelk. A model of
authorization for next—generation database systems. ACM Transactions
on Database Systems, 16(1):88-131, March 1991.

Joel Richardson, Peter Schwarz, and Luis-Filipe Cabrera. CACL: Efficient
fine—grained protection for objects. In Proc. OOPSLA 1992, pages 263—
275, 1992.

[San92]

[SCFY96]

[S1o94]

[SLT91]

[Sti79]

A Typed Access Control Model for CORBA 105

Ravi S. Sandhu. The typed access matrix model. In Proc. IEEE Sympo-
sium on Security and Privacy, pages 122—-136, 1992.

Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. You-
man. Role-based access control models. IEEE Computer, 29(2):38-47,
1996.

Morris Sloman. Policy driven management for distributed systems. Jour-
nal of Network and Systems Management, 2(4), 1994.

Marc H. Scholl, Christian Laasch, and Markus Tresch. Updatable views
in object—oriented databases. In Proc. 2. Int. Conf. on Deductive and
Object-Oriented Databases, number 566 in LNCS, pages 189-207, Berlin,
Germany, 1991. Springer.

Helmut G. Stiegler. A structure for access control lists. Software —
Practice and Ezperience, 9:813-819, 1979.

	Introduction
	A View--Based Access Control Model
	Roles
	Views
	Implicit Authorizations, Denials, and Conflict Resolution
	Dynamic Rights Changes

	An Example Policy
	Application Design
	Policy Design

	Related Work
	Summary and Future Work

