Secure Anonymous Signature-Based
Transactions

Els Van Herreweghen

IBM Research, Zurich Research Laboratory, 8803 Riischlikon, Switzerland
evh@zurich.ibm.com

Abstract. Electronic commerce protocols often require users to reveal
their identities and other information not necessary for reasons of se-
curity. Some applications such as contract signing are often argued to
require a signer’s authenticated identity; but this authentication may
give the recipient a false feeling of security if certificate registration pro-
cedures do not guarantee a mapping to a liable person, or correctness of
certificate data. In this paper, we propose a separation of identity from
liability. Liability-aware certificates allow certificate issuers to make ex-
plicit which liabilities it takes with respect to the transaction, the certi-
ficate data or the signer’s identity. We illustrate their use in the design
of a pseudonym service providing pseudonym certificates for secure ano-
nymous transactions.

1 Introduction

Many electronic commerce services and protocols are not designed with the goal
of protecting the privacy or anonymity of end users. In fact, they often require
the user to give a lot of information not strictly necessary for reasons of security.
Such information can be present in the certificates certifying the user’s public
key.

As the collection and exploitation of information becomes more of a concern,
users are less willing to give out information. It is therefore desirable to re-
examine the need for giving out certain information items as part of business
processes. Necessary is only the information from which the recipient of a digital
signature (representing a payment, an auction bid, a contract) derives trust that
the payment is valid, that the bidder will pay upon winning the bid, that the
signer is liable to execute the contract. Most often, this trust is not based on the
signer’s identity. Rather, it is based on the identity and trustworthiness of the
authority certifying the signer’s key, thereby implicitly or explicitly ‘vouching’
for transactions made with that key.

Also, the liability of certification authorities with respect to certificate regi-
stration procedures is often unclear. When a party relying on a signature requires
that it be made by a certified ‘real’ identity, there may be an assumption but no
guarantee that a legal person can be held liable for this signature. Rather than
receiving a signature by an authenticated ‘real’ identity certified under uncertain

F. Cuppens et al. (Eds.): ESORICS 2000, LNCS 1895, pp. 55-[71] 2000.
© Springer-Verlag Berlin Heidelberg 2000

56 E. Van Herreweghen

liability rules, it would be more useful for the relying party to have the certifier’s
guarantee that a legal person can be held liable for the signature.

In this paper, we demonstrate a separation of identity from liability and
certification. We transform a number of signature-based protocols into pseud-
onymized versions. We show how to provide maximal security for the relying
party by including issuers’ liabilities into signers’ certificates. We distinguish
between liability for data in the certificate, liability for transactions made with
the certificate, and liability to reveal a signer’s real identity under specified con-
ditions.

The outline of the paper is as follows. In Section Bl we introduce the concept
by describing a pseudonym server transforming certificates in a generic account-
based payment system into single-use pseudonym certificates. We show that it
is possible for the payment recipient to have a guarantee of payment, without
affecting the protocol, and without introducing any liability for the pseudonym
server. In Section Bl we discuss the value of certificates and signatures for more
general applications, and introduce a liability-aware certificate format. In Sec-
tion M this certificate format is used in the design of a generic pseudonym server,
issuing pseudonym certificates for a potentially large set of applications. Section Bl
discusses related work and suggestions for future research; Section [6 concludes
the paper.

2 Pseudonymizing a Generic Payment System

The generic payment protocol in Figure [Tl follows the model of the iKP [TJ2] and
SET [3] protocols. Its exact format, however, is derived from the requirements for
disputable payment protocols in [4]. After presenting the protocol, we analyze its
implicit guarantees and liabilities. We then introduce a pseudonym server (PS)
into this system and design a pseudonymized version of the payment protocol.
The goal is to preserve existing payment guarantees for the relying party while
minimizing the pseudonym server’s liability.

2.1 The Generic Payment Protocol

The participants in the protocol are C (Customer), M (Merchant) and A (Ac-
quirer). C’s certificate CERT ¢ is issued by I (Issuer) and specifies I’s liability
for payments made using CERT ¢; I’s certificate CERT] is assumed to be issued
by a root certification authority.

We use the following notation:

SKx, PKx: X’s secret signature key and public key in a digital signature scheme.
Sx(M): Signature with SKx over message M — does not include M.

Ev(M): Encryption of M under Y’s public encryption key.

CERTYx: X’s public-key certificate (certifying PKx).

role: Role in the payment system (‘customer’, ‘merchant’, ‘issuer’, ‘acquirer’).

Secure Anonymous Signature-Based Transactions 57

C M A

Customer Merchant Acquirer
SIGc

Sc(C, M, A, amount, ref)

SIG1nm

Sm(M, A, C,amount,ref), SIGc

SIGA

Sa(M, A, C,amount,ref)

SIG2y

Sm(C, M, A, amount,ref), SIGa

Fig. 1. Generic payment protocol

With SIG¢, C authorizes a payment to M, who then adds its own signature
SIG1y to form an authorization request. SIGa constitutes A’s authorization
response. M creates a payment receipt SIG2); and sends this together with SIG
to C.

The parameter ref contains at least a transaction identifier trx_id and a tran-
saction time, possibly also a goods description or a hash thereof. We only repre-
sent the actual signatures; which of the components of a signature are actually
sent as part of the protocol messages, or as part of a previous negotiation proto-
col, is not relevant to this discussion: it is assumed that the verifier of a signature
possesses the data constituting the signed message (including the necessary cer-
tificates to verify them).

M may verify SIG¢ to validate the correctness of transaction data. M’s pay-
ment guarantee, however, is derived from A’s authorization SIGA. A’s autho-
rization, in turn, is based on the validity of SIG¢, the contents of CERT ¢ and
CERT], and the terms of the contract between A and I. The combination of
CERT¢, CERT; and this contract provide A with a guarantee such as “I will
honor validly constructed payments with PK¢ up to an amount of $1000 subject
to the condition that CERT ¢ nor CERT| were on a revocation list accessible by
A at the time A authorized the transaction”. As I may not be able to verify
exactly when A authorized the payment, I may allow a maximum processing
delay : “...were on a revocation list 12 hours before A presents the transaction
to I for clearance”.

Liabilities or revocation conditions may not actually be part of existing cer-
tificates; rather, they are part of contracts, implicit agreements or implicit pro-

58 E. Van Herreweghen

cedures and are thus implicitly present in a certificate. We can then represent a
certificate CERTY, issued by Y 1.

CERTx = Sy(role, X, PKx, Y, L = {amount, condition})

where L stands for Y’s liability for transactions made with PKx. L consists of
an amount and possibly the conditions related to revocation.
In the example above, assuming that I is directly certified by a root authority:

CERT¢ = Si(customer, C, PK¢, I, L = {amount=$1000, maxdelay = 12 hrs})
CERT1 = Sioot(issuer, I, PK;, root, L = {amount=$10,000, maxdelay = 12 hrs})

2.2 Requirements for a Secure Pseudonymized Version

We now develop a pseudonymized version of the above generic payment proto-
col. C, possessing a long-term payment certificate CERT ¢, can obtain one-time
pseudonym certificates CERTp from a pseudonym server PS, allowing C to make
payments under the pseudonym P and remain anonymous towards M and A. (We
assume that we cannot change the existing payment infrastructure and thus that
the interface between C and I, such as registration, account definition and pay-
ment processing, is fixed. In this infrastructure, C has a non-anonymous account
with I, and I expects a valid payment order to be linked to that account. There-
fore, we do not consider anonymity of C towards I. However, the constructions
introduced to anonymize C towards M and A can also be applied to anonymize
C towards I if we relax the previous assumption and allow a change to the in-
terface between C and 1.) PS, of course, needs to be a recognized issuer in the
specific payment system in order for CERTp to be considered a valid certificate
by the relying party.

We first list the different criteria against which we will measure the pseud-
onymized version.

Guarantees towards relying party (A). A valid signature SIGp over a
transaction has the same guarantee of payment as a valid signature SIG¢ over
the same transaction.

For general signature-based protocols (as discussed in Sections B and H]), a
relying party may want the pseudonym certificate to express the conditions (e.g.,
fraudulent behavior) under which it can obtain a real identity of the signer. In the
specific case of a payment protocol, however, we assume that only the guarantee
of payment is relevant to the relying party. It should therefore be unnecessary
to ever reveal the real identity of even a dishonest or fraudulent C to A (or M).

! The notation for liability is intuitive and does not define a specific format or language.
The certificate format is merely a symbolic representation; additional information
such as expiration time, attributes etc. are represented only when relevant to the
discussion.

Secure Anonymous Signature-Based Transactions 59

No extra risk for I. I wants proof of C’s payment authorization even if the
payment is made under pseudonym P: if I does not trust PS, I has no reason
to debit C’s account for pseudonymous payments under a pseudonym P which
allegedly represents C. Even if T trusts PS (e.g., I operates PS as a service), I
may need to prove C’s authorization to a third party, e.g. in order to protect
itself against repudiation by C.

Minimal trust by C in PS. PS should protect C’s privacy and not give away
information about C, or reveal the linking between C and the pseudonyms it uses.
PS may publish privacy policies stating to which end, under which conditions
and to whom PS may reveal which information about C. As mentioned in the
first requirement, PS should never have to reveal any information about C to M
or A. (Of course, if PS ever has a dispute with C, PS may need to reveal C’s
identity to a third party.) It is difficult to enforce and verify the PS’s compliance
with its privacy policies; C has to trust PS to adhere to them. This requirement
holds for the various pseudonym server scenarios in this paper, and we will not
repeat it when discussing their security.

Another of C’s requirements is for PS not to be able to frame C. This require-
ment seems easy to fulfill if C is allowed to issue its own pseudonym private keys.
We will see, however, that PS may have an interest in issuing the pseudonym
private keys if it wants to limit its own risk.

Minimal risk for PS. PS is liable for transactions made with certificates it
issued. PS can rigorously limit that liability, e.g., by issuing single-use CERTp
only after receiving a valid SIG¢ from C. Then, when PS is held liable for a
payment (CERTp, SIGp), it can show (to I or a to a third party) a payment
(CERT(, SIG¢) for which T is liable. Still, revocation issues need to be taken into
account: for PS to assume no liability at all, the possibility should be excluded
that CERTp can be valid after CERT ¢ has been revoked.

In the following sections, we investigate different possibilities for pseudonym-
izing the previous protocol, with different impact on liability of PS, on efficiency,
and on PS’s infrastructure requirements for revocation.

2.3 Design for Maximum Security: PS Online, CERTp Linked to
Transaction

In this first design, PS issues a different pseudonym key pair (PKp, SKp), pseud-
onym certificate (CERTp) and signature SIGp for C for each transaction. PS is
thus always on-line and participates in the transaction. The pseudonym certifi-
cate is linked to the specific transaction; this guarantees that it can be used only
once.

Description of the protocol. The P-M-A transaction in the pseudonymized
protocol is the same as the C-M-A transaction in the original protocol, with

60 E. Van Herreweghen

C’s identity, signature and certificate replaced by P’s identity, signature and
certificate. M and A see P as customer; and PS as the issuer of P’s certificate:

SIGp = Sp(P,M,A time,amount,ref)
SIG1y = Sy (M,A,P time,amount,ref)
SIGA = Sa(M,A,P,time,amount,ref)
SIG2y = Sy (P,M,A, time,amount,ref)

PS issues SIGp only after having received and validated a transaction sig-
nature SIG¢ from C. SIG¢ is PS’ proof of C’s commitment to the transaction.
PS includes SIG¢ in CERTp, allowing I to check SIG¢: this protects PS against
repudiation by C and protects C against framing by PS.

New certificates introduced in the system are then:

CERTpg is a root-issued issuer certificate:
CERTps = Syoot(issuer, PS, PKpg, root, Lot)-
CERTp = Sps(customer, P, PKp, PS, Lpg, issuer_data)

with issuer_data = Ei(SIG¢, C), the encryption of C’s identity and transac-
tion signature. It can only be decrypted by I and provides I with proof of C’s
authorization.

The resulting protocol is depicted in Figure 2. To highlight the difference
with the original version, we also show the transport of certificates belonging to
C (and I) and P (and PS).

C PS M A
SIGc,
CERT ¢, CERT}
—_——
generates P,
SKp, PKp
SIGp,
CERTp,
CERTpg
SIG1m, SIGyp,
CERTp,
CERTps
_—
SIGa
SIGa, SIG2Mm
H—.;
SIGa, SIG2Mm
<—

Fig. 2. Pseudonymized payment protocol: on-line PS; one-time pseudonym certificate

Secure Anonymous Signature-Based Transactions 61

The settlement between A and I (not shown in the figure) may be done at a
later point in time. Depending on A’s ‘awareness’ of pseudoymized certificates,
A may initiate a settlement with PS by sending {SIGp, CERTp} to PS and PS
sending issuer_data to I. Alternatively, A directly sends issuer_data to I.

To hide the linking between C and P also towards outsiders, the channel
between C and PS additionally needs to be encrypted. Also, traffic anonymizers
or MIXes [BI6[7] used on the C-PS and C-M channels can help to unlink the
pseudonym request from the pseudonym use, and to hide the linking of C or P
to a network address. These extensions apply to the different pseudonym server
designs in this paper but are not discussed here.

The ‘receipts’ SIG2y; and SIGa don’t include C’s identity; C may thus not
be able to use them as transaction receipts. One could allow C to prove the
linking between C and P by including such a proof (e.g., a hash H(C,Pref)) in
CERTp and by PS returning CERTp to C together with SIGA and SIG2y;. Still,
this solution requires C to reveal its real identity when proving its participation
in the transaction. This can only be avoided by changing the way receipts are
used. E.g., C could prove ownership of a receipt SIG2y; or SIG4, not by proving
a linking between C and P but by dynamically proving knowledge of a secret
associated with P while showing the receipt. Such a secret could be SKp or
another secret key associated with P, and would be securely communicated by
PS to P. This alternative is a topic for future research.

Security analysis. We now analyze the above protocol in terms of the requi-
rements in Section 22

Guarantees towards relying party (A). We define a valid (SIGp, CERTp,
CERTps) to constitute the same payment guarantee as in the original system,
i.e., PS is liable to honor a valid SIGp under the condition of CERTp and
CERTpg not being revoked.

No extra risk for I. 1 only clears payments based on a valid SIG¢, proof of C’s
transaction commitment.

Minimal trust by C in PS. PS cannot frame C, as I only accepts payments
containing a valid SIG¢.

Minimal risk for PS. PS does not take any risk at all as long as it only issues
CERTYp for a valid SIG¢ and checks that CERT ¢ is not on any revocation list.
This ensures that any valid SIGp is based on a valid SIG¢, i.e., any payment
which is acceptable to A will be honored by I, and thus PS can transfer any
liability to I. PS only increases its risk (up to the amount in CERTp) by not
acting honestly or correctly.

The absence of risk for PS strongly depends on PS issuing the pseudonym
key pair. If C were allowed to issue his own (SKp, PKp), it would be possible
for C to generate a SIGp inconsistent with SIG¢, causing liabilities for PS not
covered by I.

62 E. Van Herreweghen

Discussion. The model of PS issuing pseudonym keys and certificates for every
new transaction provides maximum security to all the parties, and a total absence
of risk for the PS. For reasons of efficiency, however, it may be desirable for C to
obtain pseudonym certificates ahead of time, such as to avoid contacting PS for
every transaction. The next section describes such an alternative solution and
its security features.

2.4 Alternative Design: Offline PS

Allowing C to obtain certificates ahead of time has two direct consequences.
First, the pseudonym certificate can no longer be linked to a specific transaction,
and thus has to be valid for a certain amount of time. Second, as C makes
the actual pseudonym payment without PS’s involvement, C has to issue the
pseudonym key pair. This introduces major risks:

1. PS cannot enforce a linking between SIG¢ and SIGp. Or, PS cannot enforce
that P’s payment valid for A contains C’s payment acceptable to I.

2. After issuing CERTp, CERT¢ can be revoked, which leaves PS with the
liability for payments with CERTp until CERTp is revoked or no longer
valid.

The second problem can be addressed in either of the following ways:

— PS issues very short-lived pseudonym certificates (e.g., CERTp lifetime is
smaller than the revocation delay of CERT). Then, even if CERT ¢ is revo-
ked, any outstanding CERTp will be invalid by the time I refuses payments
with CERT¢. This solution, however, defeats the purpose of C obtaining
certificates some time before the actual transaction.

— PS revokes pseudonym certificates by posting Certificate Revocation Lists
(CRLs) to the appropriate CRL directories. It should then frequently verify
revocation status of parent certificates CERT ¢ of outstanding pseudonym
certificates CERTp, and revoke pseudonym certificates as needed.

In order to address the first problem, PS has to take the role of an insurer, resort
to risk management strategies, and charge for the service accordingly. Alterna-
tively, PS may require a deposit or guarantee from C equal to PS’s liability for
the pseudonym certificate. Neither solution, however, gives I or a third party
a proof of transaction by C. The protocol in Figure Bl constructs such a proof
by C committing to the pseudonym (keys) as part of the pseudonym retrieval
procedure; this commitment S¢(CERT ¢, PKp,...) may be encrypted for T and
included in CERTp, in a way similar to SIG¢ in the protocol in Figure 21 Such
a scenario changes the dispute handling rules of the protocol: with the combi-
nation of SIGp and the commitment, I as well as an external verifier should
conclude that C authorized the payment. It may also solve the first problem: if
PS includes the same liability in CERTp as in CERTpg, PS again can transfer
liability to I for every payment valid to A.

Secure Anonymous Signature-Based Transactions 63

1. Pseudonym Retrieval Procedure

C PS
generates P,
SKp, PKp
CERT ¢, PKp, Sc(CERT, PKp, P, expiration?)

CERTp = Sps(customer, P, PKp, PS, L, Ei(C, Sc (CERT,...)))

2. Actual Transaction

C M A
SIGp,
CERTp, CERTps

SIG1m, SIGp,
CERTp, CERTpsg

SIGa

SIGa, SIG2Mm

? C may also want to limit its liability for CERTp

Fig. 3. Pseudonymized payment protocol: off-line PS

Security Features

Guarantees towards relying party (A). We define, as in the previous solution,
a valid (SIGp, CERTp, CERTpg) to represent a payment guarantee for A, on
condition that CERTp or CERTpg are not revoked.

No extra risk for I. From CERTp and the encrypted commitment, I can derive
C’s identity and commitment to P and PKp; from SIGp, P’s authorization of
the transaction. Thus I takes no extra risk on condition that a potential external
verifier applies the same verification rules.

Minimal trust by C in PS. PS cannot frame C, as C generates the pseudonym
keys.

Minimal risk for PS. If PS takes care of the revocation problem (immediately
revoking CERTp in case of a revoked CERT¢) and makes sure not to take more
liability in CERTp than I takes in CERT ¢, PS again limits its liability.

64 E. Van Herreweghen

2.5 Discussion

The designs in Sections and [2.4] both provide equal guarantees towards the
relying party but show some tradeoffs between PS’s liability, and changes of in-
frastructure and efficiency. An off-line PS serving pseudonym certificates ahead
of time may be a more efficient solution. In this case, PS has to limit its liability
by taking care of timely revocation of pseudonym certificates, and by requiring
that the user commit to the pseudonym key. This commitment has to be re-
cognized by an external verifier in order for I to prove the user’s authorization
through P.

An on-line PS issuing transaction-linked certificates is a less efficient solution
but allows PS to rigorously minimize its liability without requiring any changes
in verification and dispute handling infrastructure, and without requiring PS to
handle revocation issues.

3 Generalized Signatures and Liabilities

The pseudonym server designs in the previous section are specific for the payment
protocol and assume that the user already has a long-term certificate for use in
this protocol.

When dealing with more general signatures, such as digitally signed contracts,
it may no longer be possible to attach a fixed value to the transaction, as we did
in the case of payments. The party relying on a signed contract may also attach
a value to the guarantee that the signer is a liable person whose identity will be
revealed under certain conditions, or to the correctness of certain attributes in
the signer’s certificate.

A generic digital signature (with corresponding certificate) can be represented
as:

CERTSgs = S;(Pid, role, S, PKg, I, attrs), SIGg = Sg(trx_data, trx_id)
with

Pid, role: the protocol identifier and S’s role;

S: the signer (of the contract, auction bid, payment, ...);

I: the certificate issuer certifying PKg;

trx_data: describing the type and contents of the transaction;
trx_id: a unique transaction identifier (similar to the ref parameter).

SIGg expresses S’s commitment either to the correctness of trx_data, or to
the execution of some action described in trx_data, such as payment or contrac-
tual obligation. A verifier V can hold S (or, I through CERTYS) liable for this
commitment. In order to determine the potential value of such a liability, we
describe the different damages to V that can be incurred:

— V may suffer loss if attrs in CERTg are not correct; e.g., attrs specify a
quality label of S as a registered construction company and SIGs represents
a bid for constructing a building.

Secure Anonymous Signature-Based Transactions 65

— V may suffer loss if data in trx_data is incorrect; this may be relevant if S’s
commitment is a commitment to data rather than to an action or contract.

— If trx_data represents an action or contractual obligation, V suffers loss if
the promise (contract) expressed in trx_data is not kept (executed). In the
special case of the contract being a payment, it can be the value of the
payment.

In order to express I's or S’s liability for data (attrs or trx_data), it should
be possible to attach a value to their correctness. Also, their correctness should
be publicly verifiable, or, it should be specified which third party or arbiter can
judge this.

3.1 Liability-Aware Certificates

The possible losses described above can be covered by liabilities included into
certificates:

CERTs = Si(Pid, role, S, PKsg, I, attrs, L)

L, the issuer’s liability, consists of a set (0 or more) of individual components,
each of which have one of the following types: Ld (related to data liability),
Lt (related to transaction liability) and Li (related to identity liability). Other
than a type, each component has an amount, a condition for liability, and an
indication of which party can evaluate the condition.

Some examples of individual liability components are:

— aliability {type = Ld, amount = $1000, condition = attrs, verifier = Arbiter}
indicates that the certificate issuer takes a liability of $1000 for any certificate
attributes which are found to be incorrect by Arbiter.

— a liability {type = Ld, amount = $1000, condition = trx_data, verifier =
Arbiter} indicates that the certificate issuer takes a liability of $1000 for any
trx_data signed by the certificate holder which are found to be incorrect by
Arbiter.

— a liability {type = Lt, amount = $1000, condition = any, verifier = Arbi-
ter} indicates that the certificate issuer takes a liability of $1000 if Arbiter
evaluates the transaction (e.g., the contract execution) as failed.

— a liability {type = Li, amount = $10000, condition = trx_data, verifier =
Arbiter} indicates that the certificate issuer is liable for revealing the real
identity of a signer (who is a liable person) if Arbiter evaluates trx_data to
be false or not executed. Failure to reliably reveal a real identity makes the
issuer liable to compensate $10000.

Following are some additional examples of the use of liabilities in specific
applications:

— A liability in a user certificate for a SET-like payment system could look as
follows:

66 E. Van Herreweghen

L = {{type=Lt, amount=$1000, condition=(revocation_delay=12hrs), veri-
fier=Arbiter}}.
Here, the only liability taken by the issuer is to honor payments up to $1000
as long as the revocation condition is fulfilled. The issuer does not take any
liability for attributes or for revealing a signer’s identity.

— A liability in a certificate of a construction company used for contract signing
could be:
L = {{type=Ld, amount=%$1000, condition=attrs, verifier=Arbiter},
{type=Li, amount=%$10000, condition=trx_data, verifier=Arbiter}}.
The issuer takes no liability for the transaction (or its execution); it takes a
liability of $1000 for any false attributes, and guarantees, with a penalty of
$10000, to reveal the real name of a signer if the contract is not executed as
asserted by the verifier.

The above examples are meant to demonstrate the concept; in a detailed
design, the expression of individual liabilities and conditions may require more
complex statements.

In the following section, we now describe the design of the pseudonym server.
We use the liability-aware notation for long-term and pseudonym certificates.

4 A Generic Pseudonym Server

We would like a generic pseudonym server to fulfill following requirements:

1. The pseudonym server issues certificates that can be used in a set of different
protocols, such as contract signing, auction, payment.

2. The pseudonym server can serve certificates in a protocol-independent man-
ner, i.e., does not play an active role in composing protocol-specific signatu-
res.

3. The pseudonym certificates are not necessarily linked to a specific transac-
tion, allowing for pseudonym certificates to be acquired ahead of time.

4. The one-time user of a pseudonymous service or protocol need not have a
long-term certificate for that protocol, i.e., a user registered with the pseud-
onym server may request one-time pseudonym certificates for a number of
protocols. E.g., the PS could be a service provided by a user’s Internet Ser-
vice Provider (ISP) and the user can obtain a one-time SET certificate for
a specific payment.

A user S of such a pseudonym service has a long-term certificate CERTg
recognized by or issued by PS, and can obtain pseudonym certificates from PS
for different protocols and transactions. Figure @] shows such a pseudonymized
transaction. The CERT_REQ - CERT_RES exchange constitutes the core PS
functionality. The other flows illustrate the possible use of pseudonymized certi-
ficates within a specific transaction: in an optional CERT_PROP flow, the verifier
V sends to S the proposed certificate format; the last flow containing SIGp is
S’s actual transaction commitment using pseudonym P.

Secure Anonymous Signature-Based Transactions 67

S(igner) PS V (erifier)

CERT_PROP

generates P, SKp,
PKp

CERT_REQ

-
CERT_RES
(—
SIGp

Sp(trx_data, trx_id), CERTp

Fig. 4. Generic pseudonym server

4.1 CERT_REQ, CERT_RES

We now describe the message and certificate formats in more detail; the design
choices are then clarified when analyzing the security of the pseudonymous tran-
saction.

CERTg = Si(pidg, roles, S, PKg, I, attrss, Li_g)

with Li_g the set of liabilities I takes for data in CERTg and transactions with
CERTs.

CERTp = Spg(pidp, rolep, P, PKp, PS, attrsp, Lps_p)
with Lpg_p the set of liabilities PS takes for data and transactions with CERTp.

CERTp may be linked to a specific transaction by specifying a transaction iden-
tifier as part of the various liability conditions. This limits the risk taken by
PS, and may make it unnecessary for PS to have to deal with revoking CERTp.
Note that PS can be the same entity as I, in which case S simply has a long-term
account with PS. This can be the case if the PS service is offered by a ISP.

CERT,REQ = Sc(CERT,REQ, pidp7 I"Olep7 P, PI(p7 PS7 attrsP, LPS—P),
CERTs
CERT_RES = CERTp

With CERT_REQ, S communicates the desired certificate contents to PS, and
at the same time commits to signatures made with SKp in the context of the
requested CERTp. It can thus be seen as a secure registration procedure where
S takes liability for PKp and the CERTp not yet received, in a way provable by
PS.

PS’s decision to issue CERTp depends on its evaluation of risk. This depends
on the liabilities in the requested CERTp, whether it is valid for only one or
more transactions, the contract terms between S and PS, whether or not S
has an account with PS, etc. The processing of CERT_REQ), therefore, may

68 E. Van Herreweghen

involve additional communication between S and PS, such as PS asking for
some guarantee or deposit.

4.2 The Liabilities in CERTp

In some cases, the expected liabilities in CERTp can be derived by V and/or
S from transaction features, such as the amount of a payment or auction bid.
More complex liabilities may be determined by V on a per-transaction basis. V
may have to explicitly communicate expected liabilities to S, as shown with the
CERT_PROP flow in Figure

Such a message could have a similar format as a CERT_REQ and can be
signed by V:

Sv(CERT_PROP,. .. L)

in which case it may a binding commitment, part of the contract between S (P)
and V.

Security Features. We now analyze the CERT_REQ - CERT_RES flows with
respect to the security features listed in Section [2.2] omitting the issuer-specific
requirement which was specific for the payment system.

Guarantees towards relying party V. The relying party V receiving a signature
SIGg in a transaction has a guarantee of I’s liabilities in CERTp, thus of receiving
liability amounts or the real identity of the signer.

Minimal trust of Cin PS. As S generates pseudonym keys and commits to them
using its private signature key SKg, PS is not able to frame S.

PS absorbs minimal risk. In case of a dispute, PS can prove S’s commitment to
a pseudonym key, and thus S’s involvement in a transaction with that key. The
remaining risk depends on the possibilities for PS to ‘recover’ liabilities from I
or S. This depends on contracts between S and PS (or between S and I).

4.3 Example: Auction

We illustrate the above principles with one more example. In this example, an
ISP plays the role of PS for its registered users, billing them for this service
through the existing billing relationship. Registered users have a limited liabi-
lity credit with the PS. A user S, registered with the ISP, wants a pseudonym
certificate to bid on a last minute vacation offer with an auction service. The auc-
tion service accepts anonymous or pseudonymous bids under the condition that
payment is guaranteed, the bidder’s age is above 18, and the winning bidder’s
identity will be revealed to the auction service.

S has a long-term certificate CERTg and private key SKg with which to
authenticate to the ISP/PS. This long-term certificate may contain values of (or

Secure Anonymous Signature-Based Transactions 69

references to) maximum liabilities PS is willing to take for this user, attributes
of the user (such as age) which PS has verified upon registration and is willing
to vouch in a pseudonym certificate.

The pseudonym certificate (and, similarly, CERT_REQ) could look as follows:

CERTp = Sps(CERT_REQ), e-auction, bidder, P, PKp, PS, attrs={{age>18}},
L={{Ld, $100, none, Arbiter},{Lt, $300, none, Arbiter}, {Li, $300, condi-
tion(auction_id), Arbiter}}).

This expresses that PS takes a liability of $100 for the correctness of age, gives
a payment guarantee of $300 for the transaction, and guarantees to reveal S’s
identity on condition of winning the auction with identifier auction_id. Assuming
that PS can prove S’s age to be over 18 to Arbiter, and PS has proof of S’s real
identity, the risk taken by PS is limited to the transaction amount ($100), which
may be below S’s credit limit, in which case PS doesn’t need additional deposits
or guarantees from S.

5 Related and Future Work

In this paper, we focused on existing systems based on X.509 [8] or similar
certificates, on introducing explicit liability statements into these certificates,
and on optimal control of the pseudonym server over its liabilities. Though the
pseudonym server cannot frame users, it still has to be trusted with a large
amount of information about users, their transactions, and the linking of their
pseudonyms. Pseudonym systems based on blind signatures [910]) can provide
stronger anonymity guarantees and require less trust in the pseudonym server
than the designs presented in this paper. They can provide protection against
specific forms of user misbehavior (such as double-spending a coin [11]) through
cryptographic constructs that cause the identity of a misbehaving user to be re-
vealed. It is interesting to investigate to which extent such pseudonym systems
can support the functionality we provided in this paper. The potential comple-
xity of liability conditions (such as the ones for revealing identities), however,
seems to suggest the existence of a trusted party evaluating them, which does
not fit with blind signature schemes. Also, blind signatures may make it much
harder for an issuer or pseudonym server to control the usage of a pseudonym
certificate and thus its liability.

This paper has introduced a concept rather than a full design, and leaves
several topics open for investigation. The liability types may need to be refined
as more complex electronic negotiations and transactions are defined. Expressing
liability contents, such as conditions and verifiers, was done using an intuitive
notation; a language and notation need to be developed.

The choice to use pseudonyms as identifiers in certificates was made for
reasons of compatibility with the existing certificate formats. It would be possible
to remove also those pseudonyms from certificates and use strictly anonymous
certificates.

70 E. Van Herreweghen

It should also further be investigated how to use traffic anonymizers (such
as [5]) or MIXes [6l/7] to provide unlinkability between the request for and the
actual use of a pseudonym.

6 Conclusion

In this paper, we have separated the notion of identity from liability, by sug-
gesting that certificates explicitly specify liabilities needed by the party relying
on a digital signature. We have illustrated this principle by introducing a pseud-
onym server that acts as an intermediate certificate issuer in existing certificate-
based systems. The pseudonym certificates provide a relying party with clear
guarantees, while the pseudonym server itself can calculate its own risk and mi-
nimize it through appropriate contracts with or deposits from requesting users.

We demonstrated the separation of identity from liability by applying it to
the anonymization of existing transactions. It is, however, equally applicable in
non-anonymous systems, where the presence of a certified identity may cause
relying parties to make incorrect assumptions about liability guarantees. Also
in these cases, making certifiers’ liabilities explicit may help clarify objective
guarantees, avoid unexpected liability gaps, and enhance trust.

References

1. Bellare, M., Garay, J.A., Hauser, R., Herzberg, A., Krawczyk, H., Steiner, M.,
Tsudik, G., Waidner, M. iKP — A Family of Secure Electronic Payment Protocols.
In: Proc. First USENIX Workshop on Electronic Commerce. USENIX Assoc.,
Berkeley (1995) 89-106.

2. Bellare, M., Garay, J., Hauser, R., Herzberg, A., Krawczyk, H., Steiner, M., Tsu-
dik, G.,Van Herreweghen, E., Waidner, M. Design, Implementation and Deploym-
ent of the iKP Secure Electronic Payment System. IEEE J. Sel. Areas in Commun.
18, April 2000 issue, in press.

3. Mastercard and Visa. SET Secure Electronic Transactions Protocol, Ver-
sion 1.0. Book One: Business Specifications; Book Two: Technical Specifi-
cation; Book Three: Formal Protocol Definition. May 1997. Available from
http://www.setco.org/download.html.

4. Asokan, N.; Van Herreweghen, E., Steiner, M. Towards a Framework for Handling
Disputes in Payment Systems. In: Proc. 3rd USENIX Workshop on Electronic
Commerce, Boston, MA. USENIX Assoc., Berkeley (1998) 187-202.

5. The Anonymizer. http://www.anonymizer.com.

6. Giilgii, C., Tsudik, G. Mixing e-mail With Babel. In: Proc. 1996 Symposium
on Network and Distributed System Security. IEEE Society Press, Los Alamitos
(1996) 2-16.

7. Pfitzmann, A., Pfitzmann, B., Waidner, M. ISDN-Mixes: Untraceable Commu-
nication with Very Small Bandwidth Overhead. In: CI/ITC Conf.: Communica-
tion in Distributed Systems, Mannheim, Germany, February 1991. Informatik-
Fachberichte 267. Springer-Verlag, Heidelberg (1991) 451-463.

8. ISO/IEC 9594-8 (X.509): OSI - The Directory - Authentication Framework.

10.

11.

Secure Anonymous Signature-Based Transactions 71

Chaum, D. Security Without Identification: Transaction Systems to Make Big
Brother Obsolete. Commun. ACM 28 (1985), No. 10.

Lysyanskaya, A., Rivest, R., Sahai, A. Pseudonym Systems. Master’s Thesis, MIT
Laboratory for Computer Science (1999).

Chaum, D., Fiat, A., Naor, M. Untraceable Electronic Cash. In: Advances in
Cryptology — Eurocrypt’89. Springer-Verlag, Berlin (1989) 319-327

	Introduction
	Pseudonymizing a Generic Payment System
	The Generic Payment Protocol
	Requirements for a Secure Pseudonymized Version
	Design for Maximum Security: PS Online, CERT_P Linked to Transaction
	Alternative Design: Offline PS
	Discussion

	Generalized Signatures and Liabilities
	Liability-Aware Certificates

	A Generic Pseudonym Server
	CERT_REQ, CERT_RES
	The Liabilities in CERT_P
	Example: Auction

	Related and Future Work
	Conclusion

