
Using Reflection as a Mechanism for Enforcing
Security Policies in Mobile Code

Ian Welch and Robert J. Stroud

University of Newcastle-upon-Tyne, United Kingdom NE1 7RU
{I.S.Welch, R.J.Stroud}@ncl.ac.uk,

WWW home page:http://www.cs.ncl.ac.uk/people/
{I.S.Welch, R.J.Stroud}

Abstract. Several authors have proposed using code modification as
a technique for enforcing security policies such as resource limits, ac-
cess controls, and network information flows. However, these approaches
are typically ad hoc and are implemented without a high level abstract
framework for code modification. We propose using reflection as a mecha-
nism for implementing code modifications within an abstract framework
based on the semantics of the underlying programming language. We
have developed a reflective version of Java called Kava that uses byte-
code rewriting techniques to insert pre-defined hooks into Java class files
at load time. This makes it possible to specify and implement security
policies for mobile code in a more abstract and flexible way. Our mecha-
nism could be used as a more principled way of enforcing some of the
existing security policies described in the literature. The advantages of
our approach over related work (SASI, JRes, etc.) are that we can gua-
rantee that our security mechanisms cannot be bypassed, a property we
call strong non-bypassability, and that our approach provides the high
level abstractions needed to build useful security policies.

1 Introduction

We are interested in applying ideas of behavioural reflection [11] to enforcing
security mechanisms with mobile code. Mobile code is compiled code retrieved
from across a network and integrated into a running system. The code may not
be trusted and therefore we to need ensure that it respects a range of security
properties. The Java security model provides a good degree of transparent enfor-
cement over access to system resources by mobile code but it does not provide the
same degree of transparency for control over access to application level resour-
ces. A number of authors [4][5] have tackled this problem and made use of code
modification in order to add more flexible enforcement mechanisms to mobile
code. However, although they have provided higher level means of specifying the
security policies they wish to enforce, they have used code modification techni-
ques that have relied upon structural rather than behavioural changes. We argue
that reflection can be used to provide a model for behavioural change that is im-
plemented using code modification. This provides a greater degree of separation

F. Cuppens et al. (Eds.): ESORICS 2000, LNCS 1895, pp. 309–323, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



310 I. Welch and R.J. Stroud

between policy and implementation than the current systems provide. It also
addresses some of the drawbacks of existing schemes. In particular, it makes it
possible to specify security policies at a more appropriate level of abstraction.
Another advantage of our approach is that it provides a property we call strong
non-bypassability. This guarantees the enforcement of security mechanisms by
removing the opportunity to bypass them using the same mechanisms that were
used to produce them. For example, approaches that use renaming are vulnerable
to attacks that discover and exploit the real name of the underlying resource.

The paper is structured as follows. In section 2 we introduce the Java security
model, describing its evolution and pointing out some of its drawbacks. In section
3 we describe our use of reflection to enforce security and introduce our reflective
Java implementation Kava. In section 4 we provide two examples of how Kava
can be used and show how it integrates with the existing Java security model.
In section 5 we describe and evaluate some related work. Finally in section 6 we
conclude with a discussion of the advantages and disadvantages of our approach.

2 Evolution of Java Security Model

Java [10] is a popular choice for researchers investigating mobile code technolo-
gies. Java has strong support for mobility of code and security. The Java class
loader mechanism supports mobile code by allowing remote classes to be loaded
over the network, and a security manager enforces checks on the use of local
system resources by the mobile code. The ability to supply a user-defined class
loader and security manager makes it possible to customise these mechanisms
to a certain extent.

In the past few years the Java security model has undergone considerable
evolution. In the JDK1.0 security model [9] any code run locally had full access
to system resources while dynamically loaded code could only access system re-
sources under the control of a security manager. System libraries have predefined
hooks that cause check access methods provided by the security manager to
be called before sensitive methods were executed. The default security manager
sandbox provided minimal access and in order to support a different security
model a new security manager would have to be implemented.

The concept of trusted dynamically loaded code was introduced in JDK1.1
[14]. Any dynamically loaded code that was digitally signed by a trusted code
provider could execute with the same permissions as local code.

Recently JDK1.2/Java2 [15][16] (see figure 1) has introduced an extensible
access control scheme that applies both to local code and dynamically loaded
code. Fine-grained access to system resources by code can be specified in a
policy file on the basis of the source of the code, the code provider (indicated by
who cryptographically signed the code), and the user of the code. Unlike earlier
versions of the JDK this policy file allows the security model to be adjusted
without writing a new security manager. This is because the security manager
has standard access control checkpoints embedded in its code whose behaviour
is determined by the selection of permissions enabled in the policy file. The



Reflection as a Mechanism for Enforcing Security Policies 311

Fig. 1. Overview of Java2 Security Architecture

evaluation of the permissions is handled by an access controller that defines how
different permissions are reconciled to give an overall access control decision.
New permissions can be defined but explicit checks for the permissions must be
added to the security manager or application code if the permissions apply to
application resources rather than system resources.

2.1 Example: Extending the Java Security Model

To provide a flavour of the problems of the current Java security model we
provide the following example of the definition of a customised security policy.

Imagine that an application developer has created a program for watching
television broadcasts over the Internet called WorldTV. We may want to impose
a security policy on the application to constrain which channels a user may
watch. For example, if a machine is provided in a public place we might restrict
the channels to a selection of local news channels.

The recommended steps for customising the Java security model in order to
support such a policy [8] are:

– Define a permission class.
– Grant permissions.
– Modify resource management code.

A new permission class that represents the customized permission to watch a
channel must be defined. It is realized by defining a class com.WorldTV.Channel
Permission that subclasses the abstract class java.Security.Permission.



312 I. Welch and R.J. Stroud

Then the appropriate permission must be granted by adding entries into
the security policy. In the example below we allow any application to watch
channel 5.

grant
{

permission com.WorldTV.ChannelPermission "5", "watch";
}

Finally, we must add an explicit check into the application’s resource mana-
gement code that calls AccessController’s checkPermission method using a
com.WorldTV.ChannelPermission object as the parameter. If the application
has not been granted the permission then an AccessControlException is rai-
sed. AccessControlException is a runtime exception so does not need to be
declared in the class’ interface.

public void watchChannel(String channel) {
com.WorldTV.ChannelPermission tvperm = new

com.WorldTV.ChannelPermission(channel, "watch");
AccessController.checkPermission(tvperm);
...

}

2.2 Discussion

The ability to define application specific permissions makes the Java security mo-
del easily extensible. In previous versions of the Java security model the only way
to implement application specific policy was to create a new SecurityManager
class. For the example above a new method checkChannel would have had to
been added to the SecurityManager class. By the time all possible checks had
been added to SecurityManager the resulting interface would be too large and
unwieldy for use and analysis. Through the use of typed access-control permis-
sions and an automatic permission handling mechanism (implemented in the
AccessController class) only a single method checkPermission is required.
This represents an extensible and scalable architecture.

However, the application developer must still identify where the permission
checks should be added into the application code and manually insert the checks.
This means that security code is tangled with application code and this makes
management and maintenance difficult. Whenever a new permission type is ad-
ded then the application developer must access the source code of the application
and modify then recompile. This raises the possibility of error as the modificati-
ons are made, and it is possible in the case of mobile code that the source code
itself is not available.

A better approach would be to use something similar to the SecurityMana-
ger approach for system classes where hooks are added to the system classes



Reflection as a Mechanism for Enforcing Security Policies 313

that force the check methods of the SecurityManager to be invoked when cer-
tain critical methods are executed. Essentially it should be possible to take ap-
plication code and automatically add hooks that invoke security mechanisms at
appropriate places. For example, instead of manually modifying watchChannel
the application developer should just be able to specify that the permission
ChannelPermission is checked before this method can be invoked. This would
result in a better separation of concerns between application code and security
code.

3 A Reflective Approach Using Kava

Our approach is based on the use of metaobject protocols to provide flexible
fine-grained control over the execution of components. The metaobject protocol
implements the security mechanisms that enforce security policies upon appli-
cation code. This effectively allows security checks to be inserted directly into
compiled code, thus avoiding the need to recode applications in order to add
application specific security checks. Figure 2 below presents the Kava reflective
security architecture. We discuss each aspect of the architecture in the following
sections.

3.1 Reflective Object Oriented Model of Computation

A reflective computational system [12] is a system that can reason about and
make changes to its own behaviour. Such a system is composed of a base le-
vel and a meta level. The base level is the system being reasoned about, and
the meta level has access to representations of the base level. Manipulations of
the representations of the base level at the meta level result in changes to the
behaviour of the base level system.

These notions of reflection have been extended to include the concept of the
metaobject protocol [11] where the objects involved in the representation of the
computational process and the protocols governing the execution of the program
are exposed. A metaobject is bound to an object and controls the execution of the
object. By changing the implementation of the metaobject the object’s execution
can be adjusted in a principled way.

In order to use reflection as a mechanism to enforce security properties we
need to be able to control all interactions between the object and its environment.
Therefore we need to be able to control all interactions with an object. This
includes self-interactions. Thus, we need to control the following behaviours:

– Method invocation by an object.
– Method execution.
– Setting and getting of state.
– Object instantiation.
– Object construction.
– Exception raising.



314 I. Welch and R.J. Stroud

The metaobject bound to the object defines the object’s behaviour. Security
enforcing mechanisms can be implemented by the metaobject in order to realise
a security policy. In order to provide a guarantee that the security properties are
honoured it must be impossible to bypass the metaobject. We call this property
strong non-bypassability. We have implemented a reflective Java that implements
this reflective model of object oriented computation and also has the property
of strong non-bypassability.

In the next two sections we introduce the reflective version of Java we have
developed and describe how it achieves this property we call strong non- bypas-
sability.

3.2 Kava Metaobject Protocol

We have developed a reflective Java called Kava [19] that gives the control over
the behaviour of objects that is required to add security enforcement at the
meta layer. It uses byte code transformations to make principled changes to a
class’ binary structure in order to provide a metaobject protocol that brings
object execution under the control of a meta level. These changes are applied
at the time that classes are loaded into the runtime Java environment. The
meta layer is written using standard Java classes and specifies adaptations to
the behaviour of the components in a reusable way. Although neither bytecode
transformation nor metaobject protocols are new ideas, our contribution has
been to combine them. Byte code transformation is a very powerful tool but
it is in general difficult to use, as it requires a deep knowledge of class file
structure and byte code programming. What we do is use a load-time structural
metaobject protocol (such as provided by Joie [1] or JavaClass [3]) in order to
implement a runtime metaobject protocol. Working at the byte code level allows
control over a wide range of behaviour. For example, the sending of invocations,
initialisation, finalization, state update, object creation and exception raising
are all under the control of Kava.

3.3 Meta Level Security Architecture

Security policy enforcement (see figure 2) is built on top of the runtime metaob-
ject protocol provided by Kava. Metaobjects implement the security mechanisms
that enforce the policy upon the application. Each object has a metaobject bo-
und to it by Kava. In effect each metaobject acts a reference monitor for each
application object. The binding is implemented by adding hooks directly into
the binary code of the classes. As this binding exists within the component itself
instead of in a separate wrapper class we argue that we are achieving a strong
encapsulation of components. Outside parties cannot bypass the wrapping and
therefore the security implemented in the metalevel by simply gaining an un-
controlled reference to the object because no such references exist. This type of
binding we refer to as strong non-bypassibility. There are two common techiques
for adding interceptions to Java classes : creation of a proxy class, or renaming
methods in the class and replacing them with proxy methods. The proxies add



Reflection as a Mechanism for Enforcing Security Policies 315

Fig. 2. Overview of Kava Security Architecture

the security enforcement. These approaches only support weak non-bypassability
as there is the possibility that a reference to the real class might escape or the
name of the real method might be discovered. This would make it possible to
bypass the security enforcement.

The Kava system, binding specification and the metaobjects must form part
of the trusted computing base. The Kava system and binding specification are
installed locally and can be secured in the same way as the Java runtime system.
However, the metaobjects may exist either locally or be retrieved across the
network. This raises the possibility that the metaobjects themselves might be
compromised. In order to counter this threat we use a specialised version of a
classloader that verifies the identity and integrity of the metaobject classes using
digital signing techniques. Each metaobject is digitally signed using a private
key of the provider of the metaobject. The public key of the provider exists in
the local public key registry on the host where the Kava system is installed.
The digital signature of the downloaded metaobject is then verified using the
local copy of the provider’s public key. If there is discrepancy then a security
exception is raised and the system halts. This prevents malicious combinations
of application objects and metaobjects.

4 Example

In this section we provide two examples of how Kava can be used as the basis
for implementing security enforcement mechanisms using metaobjects. The first
example reworks the simple example from our discussion of the Java security
model (an example of static permissions), and the second example is of a security
policy that limits the total number of bytes that can written to the local file
system by an application (an example of dynamic permissions).



316 I. Welch and R.J. Stroud

4.1 Overview of Approach

Our approach leverages upon the existing Java security model. As pointed out
earlier in section 2, the main problem with the Java security model is the lack
of automatic addition of enforcement code to application code. Kava provides a
principled way of doing this.

The enforcement Kava adds depends on the particular security policy being
enforced, and the structure of the application. There are two particular phases
in the Kava system. These are loadtime and runtime.

Loadtime. At loadtime Kava must determine what operations are trapped.
These decisions are encapsulated by a MetaConfiguration class. There should
be one for each security policy to be enforced. For example, there might be one
configuration for a multilevel policy where all interactions between object must
be trapped and another configuration for a simple access control policy where
only method invocations are trapped. The MetaConfiguration class is respon-
sible for parsing the policy file which provides additional information about the
application that the security policy is being applied to and the particular policy
settings for that application. For example, what metaobjects to bind to which
classes, and what types of operation to trap. The policy file uses an extended
form of the standard JDK1.2 syntax for security policies.

Runtime. At runtime the traps inserted under the control of the MetaConfi-
guration class switches execution for the base level (the application code) to
the meta level (the metaobject associated with each object). The metaobject
performs the permission checks necessary to implement the particular security
policy. A specialised Policy object associates the permissions with the loaded
classes. This is a specialisation of the default Policy class because it has to map
additional permissions against classes in order to support the security policy.

4.2 Example: WorldTV

Using the Kava approach the developer carries out the first two steps of defining
a permissions class and granting permissions as necessary. However, instead of
taking the application code and editing it the application programmer defines a
new Metaobject class and places the enforcement code here. For example,

import kava.*;
public class EnforcementMetaobject implements Metaobject
{

public boolean beforeReceiveMethod(Reference source,
Method myMethod, Value[] args)

{
com.WorldTV.ChannelPermission tvperm = new

com.WorldTV.ChannelPermission(



Reflection as a Mechanism for Enforcing Security Policies 317

(String)args[0].getValue, "watch");
AccessController.checkPermission(tvperm);
return Constants.INVOKE_BASE;

}
}

This redefines how a method invocation received by an object is handled. It
enforces a check before the execution of the method invocation that the correct
ChannelPermission is held by the thread executing the code.

The next step the application programmer must do is to specify which me-
thods of which class are controlled by this enforcement metaobject. This is in-
cluded in the expanded version of the standard Java policy file.

bind
{

kava.EnforcementMetaobject *::watchChannel(String);
}
grant
{

permission com.WorldTV.ChannelPermission "5", "watch";
}

The bind specification indicates to the MetaConfiguation class which me-
thods of which class should be trapped. In this case any method named watch
Channel with a single parameter of type String belonging to any class will be
trapped and have security checks enforced upon it.

4.3 Example : LimitWrite

The previous example is a traditional fairly static access control security policy.
Kava can also enforce dynamic security policies that depend upon changing
state. The following example shows that Kava could be used to enforce a policy
that places a million-byte limit on the amount of data that may be written to
the file system.

The first task is to define a new permission type that has a dynamic be-
haviour. We define a permission class FileWritePermission that subclasses
java.security.Permission. This new permission’s constructor defines the ma-
ximum number of bytes that may be written to the file system. It also adds a new
method incrementResourceCounter(long n) that increments the global count
of the number of bytes written to the file system. Finally it defines the implies
method so that when the AccessController calls the implies method to see
if the permission being checked is held, the current number of bytes written is
compared with the maximum to determine if this is true or not.

The second step is to specify the enforcement metaobject. It has a straightfor-
ward structure as the security policy decision is specified within the Permission
class.



318 I. Welch and R.J. Stroud

import kava.*;
public class FileEnforcementMetaobject

implements Metaobject
{

public boolean beforeSendMethod(Reference source,
Method myMethod, Value[] args)
{
FileWritePermission perm = new

FileWritePermission();
perm.incrementResourceCounter(Integer.toLong(args[2].
getValue());
AccessController.checkPermission(perm);
return Constants.INVOKE_BASE;
}

}

Here the behaviour of an object sending an method invocation to another
object is redefined. We do this because Kava cannot rewrite library classes un-
less the JVM is changed. A new FileWritePermission is constructed with a
throwaway value. Then the context for the permission is updated by calling
setPermissionContext using the number of bytes written to the file. Here we
are exploiting the knowledge that the third argument always the number of bytes
to be written to the file.

The third step is to specify the policy file :

bind
{

kava.FileEnforcementMetaobject
(* extends FileWriter).write(*, int, int);

}
grant {

FileWritePermission "1000000";
}

The policy file determines which methods of which classes are brought under
the control of the metaobject. It specifies that any invocation of write method
of any subclass of FileWriter is to be trapped and handled by the metaobject
FileEnforcementMetaobject. In this way we can ensure that no checks are
accidentally omitted from the source code because of a software maintenance
oversight.

Unlike the previous example we trap invocations made by an object rather
than the execution of a particular method of an object. This is because Kava
cannot rewrite system classes without the use of a custom JVM and so we trap
calls made to the controlled object rather than modify the implementation of
the object itself.



Reflection as a Mechanism for Enforcing Security Policies 319

5 Related Work

The principle of separating security policy and dynamically enforcing security on
applications is not new. In this section we discuss and evaluate four approaches
to implementing this principle.

5.1 Applet Watch-Dog

Applet Watch-Dog [6] exploits the ability of the execution environment to con-
trol code execution. Here the threads spawned by applets are monitored and
controlled in order to protect hosts from denial of service attacks. It is a por-
table approach that requires no changes to the Java platform in order to work.
When applets are loaded in conjunction with the Applet Watch-Dog their use of
memory, priority of threads, CPU usage and other resources is monitored and
displayed in a window. The user can choose to stop or suspend threads as requi-
red. A security policy for resource usage can also be specified so that a thread is
automatically stopped if it exceeds the prescribed maximum usage of a resource.

The Applet Watch-Dog approach can prevent a large class of denial-of-service
attacks. However, it cannot prevent other attacks such as privacy attacks. The
example given by the authors is that it cannot prevent an applet from forging
mail as this would require monitoring port usage. The scope of policies enforcea-
ble by a Watch-Dog is obviously limited by the scope of control the execution
environment has over code execution. For example, if the capability to monitor
ports does not exist then attacks exploiting port access cannot be controlled.
Another problem is that specifying a new type of security policy requires the
rewriting of the Applet Watch-Dog.

5.2 Generic Wrappers

Generic wrappers use wrappers to bring components under the control of a
security policy. The wrappers act as localised reference monitors for the wrapped
components. A well developed example of this approach is found in [7]. Here the
emphasis is on binary components and their interaction with an operating system
via system calls. Wrappers are defined using a Wrapper Definition Language
(WDL) and are instantiated as components are activated. The wrappers monitor
and modify the interactions between the components and the operating system.
Generic policies for access control, auditing, intrusion detection can be specified
using the WDL.

The use of generic wrappers and a wrapper definition language is an attrac-
tive approach as it is flexible and is generalisable to many platforms. However,
there are some drawbacks. Wrappers can only control flows across component
interfaces and cannot control internal operations such as access to state or flows
across outgoing interfaces. Also the wrappers are not at the right level of ab-
straction. The level of abstraction is at a lower level than the application level.
This makes it difficult to specify security policies that control both access to
system resources and application resources.



320 I. Welch and R.J. Stroud

5.3 SASI - Security Automata SFI Implementation

SASI [4] uses a security automaton to specify security policies and enforces po-
licies through software fault-isolation techniques. The security automaton acts
as a reference monitor for code. A security automaton consists of a set of sta-
tes, an input alphabet, and a transition relationship. In relation to a particular
system the events that the reference monitor controls are represented by the
alphabet, and the transition relationship encodes the security policy enforced by
the reference monitor.

The security automaton is merged into application code by a rewriter. It
adds code that implements the automaton directly before each instruction. The
rewriter is language specific (the authors have produced one for x86 machine
code, and one for Java bytecode). Partial evaluation techniques are used to
remove unnecessary checks.

The current system does not have any means for maintaining security related
state which makes some application level security policies difficult to express. The
authors propose extending SASI to include the ability to maintain typed state.

One of the problems the authors found when applying SASI to x86 machine
code was the lack of high level abstractions. For example, the lack of a concept
of function or function calls meant that the SASI rewriter had to be extended
to include an event synthesizer.

SASI is very powerful and can place controls on low level operation such
as push and pop allowing rich security policies to be described. However, the
security policy language is very low level with the events being used to construct
the policies almost at the individual machine language instruction level. The
Java implementation was at a slightly higher level, mainly because the Java
machine code is a high level machine code for an object oriented machine, but
still the policies were quite low level. The authors plan to investigate a Java
implementation that exposes more high level abstractions and make use of high
level security policies. We would argue that reflection provides an appropriate
model for solving this problem.

5.4 Naccio - Flexible Policy-Directed Code Safety

Naccio [5] allows the expression of safety policies in a platform-independent way
using a specialised language and applies these policies by transforming program
code. A policy generator takes resource descriptions, safety policies, platform in-
terface and the application to be transformed and generates a policy description
file. This file is used by an application transformer to make the necessary chan-
ges to the application. The application transformer replaces system calls in the
application to calls to a policy-enforcing library. Naccio has been implemented
both for Win32 and Java.

Naccio relies on wrapping methods, the original method is renamed and a
wrapper method with the same name added. The wrapper method delegates the
actual work to the renamed method but can perform policy checking before and
after the call to the renamed method.



Reflection as a Mechanism for Enforcing Security Policies 321

Naccio provides a high level way of specifying application security that is
platform-independent but it is limited in what can be controlled. For example,
Naccio cannot specify a safety policy that prevents access to a particular field of
an object by other objects. Also because Naccio relies on renaming of methods
there is the possibility that the enforcement mechanisms could be bypassed.

5.5 Evaluation

The Applet Watch-Dog approach makes good use of existing capabilities in the
execution environment to prevent denial-of-service attacks. However, it is limi-
ted in the scope of security policies it can support because it relies upon the
capabilities already present in the execution environment. It also is difficult to
specify new types of security policy as this requires the rewriting of the Applet
Watch-Dog.

Generic wrappers, SASI and Naccio provide greater control over code exe-
cution and more flexible policy specification. SASI and Naccio extend earlier
work that used code rewriting for security enforcement that was more ad hoc
in nature and focused on specific classes of security policy. For example, Java
bytecode rewriting has been used to implement fine grained access control [13],
and resource monitoring and control policies [2].

However, there are problems with the level of abstraction and expressiveness
of these approaches.

Generic wrappers work at a low level of abstraction, essentially the level of
the operating system. This limits them to enforcing security policies that control
access to system resources. Although it is possible that a number of application
level security policies could be expressed, the lack of high level abstractions
makes this task difficult.

SASI operates at the level of machine code which provides it with a lot
of power. However, it has difficulties when dealing with application level ab-
stractions where the operations that need to be intercepted are related to the
object-oriented computational model. With the Java version there is the concept
of higher level operations because the Java virtual machine bytecode explicitly
uses object-oriented concepts. A higher level approach would be to base the se-
curity policy automata primitives on an abstract model of object oriented com-
putation. This could be mapped to required behavioural changes which would
then be realized in a platform dependent way.

To some extent Naccio supports application level abstractions. However, it
lacks a rich model for expressing the program transformations. If it had a model
based on behavioural change then it could specify richer policies but still in a
platform independent way.

In our opinion the metaobject protocol [11] approach provides a good basis
for the implementation of security policies. It provides both a high level, abstract
model of the application but also a principled way to describe and implement
changes to the behaviour of the application. The approaches discussed here im-
plement the security policies at too low a level. Instead of implementing traps
for individual machine code instructions or system calls the better approach



322 I. Welch and R.J. Stroud

is to work at the level of the object oriented computational model. For exam-
ple, instead of trapping Java invokevirtual instructions and adding security
enforcement mechanisms at this level, the metaobject approach would trap invo-
cations sent from an object and specify before and after behaviour that invoked
required security mechanisms. The actual mapping to code rewriting would be
handled by the metaobject protocol allowing the security policy developer to
work at a high level. This is the approach that we are taking with our system
Kava.

6 Conclusions and Further Work

Using Kava to implement security mechanisms in Java allows security policy to
be developed separately from application code and then be combined at loadtime.
This makes it ideal for flexible security for securing mobile code where the policies
that the code must obey are defined by the host and the code is delivered in a
compiled form.

As we have shown Kava can be integrated with the current Java security
model and uses high level abstractions in order to specify policy. The difference
between using the standard Java security model and using Kava is that the
permissions checking takes place in metaobjects that are separate from the ap-
plication objects. The metaobjects are only bound at loadtime allowing security
policy to be changed independently of the application code.

Due to the use of bytecode rewriting Kava achieves a strong degree of non-
bypassability than other systems proposed. This is important for making the
case that the metaobject can act as a non-bypassable reference monitor for the
associated object.

The Kava metaobject protocol allows control over more aspects of the beha-
viour than a system such as Naccio, generic wrappers, or the Applet Watch-Dog
and at the same time provides higher level abstractions than a system such as
SASI.

A direction for future work is the development of general policy frameworks
for use with Kava. Currently, as shown in the examples, the security policy is
developed manually. This is a useful feature in some situations but ideally there
should be policy frameworks available that free the developer from having to
develop their own set of permissions and metaobjects . We have proposed else-
where some frameworks for implementing the Clark-Wilson security model [17]
and a Resource Management security model [18]. We are currently integrating
this work with Kava to provide high level support for application security.

Acknowledgements. This work has been supported by the UK Defence Eva-
luation Research Agency, grant number CSM/547/UA and also the ESPIRIT
LTR project MAFTIA.



Reflection as a Mechanism for Enforcing Security Policies 323

References

[1] Cohen, G. A., and Chase, J. S. : Automatic Program Transformation with JOIE.
Proceedings of USENIX Annual Technical Symposium 1998

[2] Czajkowsik, G., von Eicken, T., JRes: A Resource Accounting Interface for Java,
ACM OOPSLA Conference, October 1998.

[3] Dahm, M. : Bytecode Engineering, Java Informations Tage 1999
[4] Erlingsson, U., Schneider, F. : SASI Enforcement of Security Policies: A Retros-

pective. Proceedings New Security Paradigms Workshop, 1999
[5] Evans, D., Twyman, A. : Flexible Policy-Directed Code Safety. IEEE Security

and Privacy, Oakland, CA., May 9-12, 1999
[6] Florio, M.F., Gorrieri, R., Marchetti, G. : Coping with Denial of Service due to

Malicious Java Applets. Computer Communications Journal, August 2000
[7] Fraser, T., Badger, L., Feldman, M. : Hardening COTS Software with Generic

Software Wrappers. IEEE Security and Privacy, Oakland, CA., May 9-12, 1999
[8] Gong, L. : Inside Java(TM) 2 Platform Security. Addison-Wesley, 1999
[9] Gosling, J., Frank Yellin, and the Java Team, ”Java API Documentation Version

1.0.2”, Sun Microsystems, Inc., 1996
[10] Gosling, J., Joy, B., Steele, G. L. : The Java Language Specification, The Java

Series, Addison-Wesley, 1996
[11] Kiczales G., des Rivieres J. : The Art of the Metaobject Protocol. MIT Press,

1991.
[12] Maes, P. : Concepts and experiments in computational reflection, OOPSLA, 1987
[13] Pandey, R., Hashii, B., Providing Fine-Grained Access Control for mobile pro-

grams through binary editing, Technical Report TR98-08, University of Califor-
nia, Davis, August 1998

[14] Java Team, JDK 1.1.8 Documentation”, Sun Microsystems, Inc., 1996-1999
[15] Java Team, Java 2 SDK Documentation”, Sun Microsystems, Inc., 1996-1999
[16] Java Security Team, ”Java Authentication and Authorization Service”, Sun

Microsystems, Inc., http://java.sun.com/security/jaas/index.html, 1999
[17] Welch, I. : Reflective Enforcement of the Clark-Wilson Integrity Model, 2nd

Workshop on Distributed Object Security, OOPSLA, 1999.
[18] Welch, I., Stroud, R. J. : Supporting Real World Security Models in Java. Pro-

ceedings of 7th IEEE International Workshop on Future Treads of Distributed
Computing Systems, Cape Town, South Africa, December 20-22, 1999

[19] Welch, I., Stroud, R. J. : Kava : A Reflective Java based on Bytecode Rewriting.
Springer-Verlag Lecture Notes in Computer Science LNCS 1826, 2000


	Introduction
	Evolution of Java Security Model
	Example: Extending the Java Security Model
	Discussion

	A Reflective Approach Using Kava
	Reflective Object Oriented Model of Computation
	Kava Metaobject Protocol
	Meta Level Security Architecture

	Example
	Overview of Approach
	Example: emph WorldTV
	Example : LimitWrite

	Related Work
	Applet Watch-Dog
	Generic Wrappers
	SASI - Security Automata SFI Implementation
	Naccio - Flexible Policy-Directed Code Safety
	Evaluation

	Conclusions and Further Work



