A Scalable Location Aware Service Platform for Mobile
Applications Based on Java RMI

Olaf Droegehorn, Kirti Singh-Kurbel, Markus Franz, Roland Sorge, Rita Winkler,
and Klaus David

IHP, Im Technologiepark 25, D-15236 Frankfurt (Oder), Germany
{droegehorn, singh, franz, sorge, rwinkler,
david}@ihp-microelectronics.com

Abstract. In this paper, a generic service platform for supporting location
aware applications is presented. The platform is based on Java to be
independent of operating systems. We use RMI (Remote Method Invocation)
for communication in the distributed system and Jini as an additional tool to
offer and find services. The mobile client invokes methods on platform objects
via RMI and offers its own remote methods to be used by the platform. To
ensure the scalability of the system, central units (platform servers) are
replicated in accordance with the deployment scenario. A new mechanism for
the hand-over of objects, shared by clients and servers, between platform units
is described. We introduce a new concept of objects and auras for efficient
support of innovative location aware applications. The platform is also extended
for thin clients without a JVM (Java Virtual Machine). A thin client
communicates with the platform via a platform gateway using e.g. HTTP.

1. Introduction

For the future success of W-LAN and cellular systems, innovative applications and
the underlying middleware platform are important building blocks. Like several other
researchers, we believe that location and context based applications have a significant
scope in this field of mobile computing [2]. The applications developed and
investigated up to now by the research community were basically prototyped
applications. On one side these applications demonstrate the potential of taking
location and context awareness into account, however, on the other side, it can be
seen that these applications are nontrivial to create for two reasons: First, these
applications are very complex, they require special skills and knowledge of
underlying communication infrastructure. Second, these applications were developed
as prototypes and can be used only by few terminals but not with a mass of users.

Location and context aware applications need a common set of functions. To unify
the application programming interface for all applications concerning this topic, a
universal platform is needed. The platform must be generic in order to be independent
of a specific communication network or positioning system. Furthermore, it is
important to support a variety of applications, not restricted on a specific business
model.

C. Linnhoff-Popien and H.-G. Hegering (Eds.): USM 2000, LNCS 1890, pp. 296-301, 2000.
© Springer-Verlag Berlin Heidelberg 2000

A Scalable Location Aware Service Platform for Mobile Applications 297

In the literature, several approaches for the design of a service platform have been
reported. For example, in [8] a platform called MASE was designed to support mobile
users. For this platform, applications like a city guide, mobile multimedia services,
etc. were developed. These applications were prototypes and the issues of real world
like scalability were not addressed in this project. Furthermore, features like tracking
a mobile user and finding local available services were not supported by this platform.

An important aspect of a location aware service platform is keeping track of mobile
objects in a scalable way [1]. The Globe project [6, 9, 10] concentrates on the
development of an efficient search mechanism for mobile objects. The same issue is
addressed by the Nexus project [3, 7].

In this paper, we introduce a platform architecture, which takes care of the basic
communication infrastructure required for mobile wireless systems and basic
functions required by a location aware application. It is designed to be flexible
enough to replicate the platform server as often as necessary in order to fulfil the user
requirements concerning the response time of the system. The platform itself is
realized in Java RMI/Jini technology in order to be independent of a specific
operating system. We introduce a concept of auras. An aura defines a space of interest
for an object and can have any dimensions. Auras enable a large number of new
services which are not possible by just stating the physical location of an object.
Based on the aura concept, the user can register for events such as "object A has
entered aura X". The support of thin clients which have limited computational
capability is also considered.

The rest of the paper is organized as follows. Section 2 describes the overall
architecture of the platform. In section 3, the concept of auras and objects is
explained. The support of not Java enabled thin clients is introduced in section 4.
Section 5 summarizes the paper and gives an outlook of future work.

2. Service Platform Architecture

Our service platform intends to integrate all functions that are required to support
innovative location aware applications. The platform consists of several components
responsible for special functions. The platform itself is based on Java RMI/Jini
technology in order to be independent of the underlying operating system. Platform
server units can be replicated as often as required to fulfil the user requirements
concerning the system’s response time.

We decided to use Java RMI and not CORBA as the communication mechanism,
since CORBA seems to be less suitable for mobile terminals due to the complexity of
a CORBA client. Moreover, we are developing the system from the scratch and no
legacy systems have to be taken into account. We utilize RMI to transfer Java specific
objects between platform servers to avoid the transformation of object types.

The service platform operates at two different locations, one part on the server side
and the other on the mobile terminal which is, in our case, the client. The part of the
platform, which resides on one or several platform servers implements the desired
functionality for each component. The structure of a platform server is shown in
Fig. 1.

The location management component deals with location awareness and provides
all necessary functions concerning this topic. For example, the application can inquire

298 O. Droegehorn et al.

the location of an object. This object can be a logical element defined by the
application, e.g. a service available only at specific locations or just another mobile
terminal. To provide these location based functions the platform needs to handle
several things. On the first hand it must use multiple databases to store the locations
of the desired objects. It is important that this subsystem is implemented very
efficiently because this database can be very large for cellular systems.

To get informed about the object’s location the platform uses a so called sighting
proxy. This proxy gets notifications from an underlying sighting system (location
system using e.g. cell ID, some form of triangulation or GPS). This system can be
implemented by the network provider or by another service provider.

Location- Lookup Profile -
management service database
API H API H API

Hand-over Engine

Aura

Event & »
—

Engine Object

Engine LUy >

Engine

Profile DB
DB Engine Engine

| RMI - ENGINE |

Sighting Proxy

Fig. 1. Architecture of a platform server.

The DB engine has to filter all the sighting notifications in order to reduce the
amount of information flow. The DB engine forwards not all sighting updates which
it receives from the sighting proxy, but only the first sighting of an object at a
particular server and sighting updates for objects on which an event is registered. For
example, a user who wants to be notified if he is near a particular moving object, the
positions of the objects must be observed. To do this in an efficient way the event
engine registers with the DB engine to get all sighting updates for the objects
involved in the event. The event engine monitors the positions of the objects and
forwards only relevant notifications to other subsystems.

To perform user queries, the engine for auras and objects uses rendering
algorithms. The goal is to find out which objects are located in which aura and to
determine which auras intersect.

For using a lookup service, the platform supports queries on the Jini lookup system
[4, 5]. Users can register their own services with this lookup system or can just use
services offered by other devices. The lookup engine at the server side handles the
queries and sends appropriate objects to the client.

The profile database is responsible for the support of personalization. Each mobile
terminal can give a profile to the platform which contains some common properties of

A Scalable Location Aware Service Platform for Mobile Applications 299

the terminal and the user. For example, security related information can be stored in
this profile. Furthermore, the hardware and software capabilities of a specific terminal
can be described inside this profile database. All processes which will be handled by
the platform in an automatic manner need information about preferences of objects.
These preferences are also stored in the profile component. The main engine for this
profile database resides on the server and realizes an internal distributed database that
is virtually available on each platform server.

To ensure the scalability of our system, the platform unit shown in Fig. 1 is
replicated to distribute the workload among a number of servers. The communication
between the platform servers is based on hierarchical structures.

The platform must be able to offer the right object references on the right platform
server to the mobile client. Because of efficiency reasons not all objects will be
available at all locations by definition. The platform has to move several objects from
one location to another. This is done in the background by the platform and is not
visible to the user or even the platform client. When a client communicates with the
platform, the platform chooses the server for the communication with the particular
client. For the communication, the server holds remote references of objects residing
on the client and vice versa. All the data related to the client (auras, profile, registered
events) as well as the remote references of the client’s objects are stored at the related
platform unit. When the client changes its location and the platform realizes that the
client is now in the responsibility range of a new platform unit, a hand-over of the
client’s remote references and data from the old platform unit to the new one is
required. The new platform unit requests the client’s data from its neighbored platform
units. The old platform unit which holds the data replies by transferring the client’s
remote references and all other client related data to the new platform unit. The server
at the new platform unit registers itself with the client using the clients remote
references. The new platform unit overwrites the RMI references of the old platform
unit at the client with its own.

The part of the platform running on a client is very small because of the limited
computational resources on the wireless terminal. It implements just a proxy for the
platform functions which are available on the server side. The application can use
well defined API’s provided by the components of the platform.

3. Objects and Auras

In the literature, typical approaches concerning location awareness determine just the
position of objects or users. This is done by conventional positioning systems or on
the basis of the communication infrastructure. That leads in most cases to a model of
the real world which deals with mobile terminals and base stations of the wireless
system as physical objects and the area around each base station as the space where a
mobile terminal can be seen. The main disadvantage of this approach is the
dependence of the abstract model inside the service platform on the hardware
infrastructure used. If an application designer wants to define objects or areas of
interests independent of the used hardware it is mostly impossible to design this
model into the service architecture.

For this reason, we propose a very flexible concept of objects and auras. An aura
can have any dimensions and defines a space of interest for an object. Each object can

300 O. Droegehorn et al.

have several auras, which are totally independent of each other. An object can be a
physical entity like a printer or a mobile terminal. Additionally, we include logical
objects in our platform. A service, for example, which is only available in a specific
room is a logical object having the aura of this room. For instance, a mobile client can
request all objects whose auras overlap with its own aura.

Aura of a
printer

Aura of alocal
information service|

mobile client

Fig. 2. Aura concept. For each object one or more auras can be defined.

Based on this approach it is the task of rendering algorithms to check if an object
or an aura crosses another aura. Which properties these logical objects can have is not
specified inside the service platform but in the definition of each application.

With this aura based location aware platform, we are in the position to create a
whole range of innovative applications. For example, person A can get informed
about the event that person B has approached him by a certain distance (B has entered
an aura of A). Upon this, several useful actions can be triggered, like automatic
finding of a free meeting room, ordering some coffee, etc.

4. Enhancement for Thin Clients

Since our platform is based on Java and the Java RMI communication mechanism,
any client which wants to use a service offered by the platform must have a JVM
running on it. Thin terminals like mobile phones or other devices which do not have a
JVM cannot use such a service directly. To support such clients, we have extended
the infrastructure mentioned in the previous section.

In this enhanced system, we use a mediator which converts messages between a
platform server and the thin client. For the platform server side communication, this
mediator acts as a regular Java enabled client similar to other mobile clients, which
requests objects and services. To communicate with the thin terminal, the mediator
uses a common access protocol such as HTTP or WAP. The data received from the
platform server are translated into HTML or WML and are sent to the thin client. In
this case, the thin client needs only to be able to access the web. It can request HTML
pages that meet its service requirements. The mediator is responsible for the correct
translation of the messages.

A Scalable Location Aware Service Platform for Mobile Applications 301

5. Summary and Outlook

In this paper we have introduced a service platform based on JavaRMI/Jini for
supporting location and context aware applications for mobile users. Scalability is
achieved by replication of server units and a hand-over mechanism for object’s
references and object related data. The platform can be used for indoor applications as
well as for outdoor applications. It is independent of both the operating system as well
as the positioning system that provides the location information. An aura concept is
used to define regions of interests for the objects used. This enables innovative
applications features such as triggering events based on the relative distance of two
objects. The platform also provides a lookup service where terminals can offer their
services to other people and also can use services offered by other users. Furthermore,
the enhancement of the platform for not Java enabled thin clients has been pointed
out.

By the end of this year the platform kernel will be implemented. Later, we will
develop new location aware applications based on this platform to test its
performance and efficiency. These applications will be tested considering a large
number of clients. The performance regarding the hand-over of remote references and
efficient database searching will be studied with help of field trials and previously
performed simulations.

Reference

1. Black A., Artsy, Y.: Implementing Location Independent Invocation. IEEE Trans. On Par.
Distr. Syst. Vol. 1 (1), (Jan. 1990) 107-119

2. Brown, P.J., Bovey, J.D., Chen, X.: Context-Aware Applications: From the Laboratory to the
Marketplace, IEEE Personal Communications, (October 1997), 58-64

3. Hohl. F., Kubach, U., Leonhardi, A., Schwehm, M., Rothermel, K.: Nexus: An open global
infrastructure for spatial-aware applications. Proceedings of the fifth International
conference on Mobile Computing and Networking (MobiCom 99), ACM Press (1999)

4.http://developer.java.sun.com/developer/technical Articles/ConsumerProducts/jinicomm/unity

5. http://jini.org/

6. http://fwww.cs.vu.nl/~steen/globe/|

7 Leonhardi, A., Kubach, U.: An architecture for a distributed universal location service.
Proceedings of the European Wireless *99 Conference, Munich, Germany, ITG Fachbericht,
VDE Verlag, (1999) 351-355

8. Keller, B., Park, A.S., Meggers, J., Forsgern, G., Kovacs, E., Rosinus, M.: UMTS: A
Middleware Architecture and Mobile API Approach. IEEE Personal Communications,
(April 1998), 32-38

9. van Steen, M., Hauck, F.J., Homburg, P., Tanenbaum, A.S.: Locating Objects in Wide-Area
Systems. IEEE Communication Magazine, (January 1998), 104-109

10. van Steen, M., Tanenbaum, A.S., Kuz, I., Sips, H.J.: A Scalable Middleware Solution for
Advanced Wide-Area Web Services. In: Sips. Distributed Systems Engineering, Vol. 6 (1),
(March 1999) 34-42

http://www.cs.vu.nl/~steen/globe/

	1. Introduction
	2. Service Platform Architecture
	3. Objects and Auras
	4. Enhancement for Thin Clients
	5. Summary and Outlook
	Reference

