
Pet: An Interactive Software Testing Tool

Elsa Gunter, Robert Kurshan, and Doron Peled

Bell Laboratories
600 Mountain Ave.

Murray Hill, NJ 07974

Abstract. We describe here the Pet (standing for path exploration
tool) system, developed in Bell Labs. This new tool allows an interactive
testing of sequential or concurrent programs, using techniques taken from
deductive program verification. It automatically generates and displays
a graphical representation of the flow graph, and links the visual repre-
sentation to the code. Testing is done by selecting execution paths, or,
in the case of concurrent programs, interleaved sequences of code. The
Pet system calculates the exact condition to execute path being selec-
ted, in terms of the program variables. It also calculates (when possible)
whether this condition is vacuous (never satisfied) or universal (always
satisfied). The user can then edit the path and select variants of it by
either extending it, truncating it, or switching the order of appearance
of concurrent events. This testing approach is not limited to finite state
systems, and hence can be used in cases where a completely automatic
verification cannot be applied.

1 Introduction

Software testing is the most commonly used method for enhancing the quality
of computer software. Testing is done usually in a rather informal way, such as
by walking through the code or inspecting the various potential pitfalls of the
program [1]. Methods that are more formal, such as model checking or deductive
theorem proving, which have been used very successfully for hardware verifica-
tion, have not succeeded to gain superiority in the area of software reliability.
Deductive verification of actual software systems is very time consuming, while
model checking suffers from the state space explosion problem, and is, in most
cases, restricted to the handling finite state systems.

Concurrent programs may exhibit complicated interactions that can make
debugging and testing them a difficult task. We describe here a tool that helps
the user to test sequential or concurrent software using a graphical interface.
It allows the user to walk through the code by selecting execution paths from
the flow graph of the program. The most general relation between the program
variables that is necessary in order to execute the selected path is calculated
and reported back to the user. An attempt is made to decide using the path
condition whether the path is at all executable. The user can edit the execution
paths by adding, truncating and exchanging (in case of a concurrent program)
the order of the transitions.

The Pet tool is based on symbolic computation ideas taken from program
verification. It allows more general ways of debugging programs than simulating

E.A. Emerson and A.P. Sistla (Eds.): CAV 2000, LNCS 1855, pp. 552–556, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



Pet: An Interactive Software Testing Tool 553

one execution of the checked code at a time, as each path of the flow graph
corresponds to all the executions that are consistent with it.

The input language to current implementation of Pet is Pascal, extended
with communication and synchronization constructs for concurrent program-
ming. However, Pascal is just one possible choice. The main principles, on which
this tool is based, can be used with other formalisms. In fact, it is quite easy to
change the input language from Pascal to, e.g., C, SDL or VHDL.

Part of the problem in software testing and verification is coping with scala-
bility. The Pet tool also contains an abstraction algorithm, which can be applied
during the compilation of the code. The algorithm attempts to abstract out cer-
tain variables and presents a projection of the program. That is, the obtained
program is a simplified version in which some of the variables are abstracted
away. This produces a simplified version of the program, allowing the user to
better understand certain aspects of the code.

2 Pet: Path Exploration Tool

A flow graph is a visual representation of a program. In the Pet system [2],
a node in a flow graph is one of the following: begin, end, predicate, random,
wait, assign, send or receive. The begin and end nodes appear as ovals, the
predicate, wait and random nodes appear as diamonds, labeled by a condition,
or the word random, in the latter case. All other nodes appear as boxes labeled
by the assignment, send or receive statement.

Each node, together with its output edge constitutes a transition, i.e., an
atomic operation of the program, which can depend on some condition (e.g.,
the current program counter, an if-then-else or a while condition in the node,
the nonemptiness of a communication queue) and make some changes to the
program variables (including message queues and program counters). Notice
that a predicate node corresponds to a pair of transitions: one with the predicate
holding (corresponding to the ‘yes’ outedge), and one with the predicate not
holding (corresponding to the ‘no’ outedge).

Unit testing [1] is based on examining paths. Different coverage techniques
suggest criteria for the appropriate coverage of a program by different paths.
Our tool leaves the choice of the paths to the user (a future version will allow
a semi-automatic choice of the paths which uses various coverage algorithm in
order to suggest the path selection, e.g., based on the coverage techniques in [1,
4]). The user can choose a path by clicking on the appropriate nodes on the flow
graph.

In order to make the connection between the code, the flow chart and the
selected path clearer, sensitive highlighting is used. For example, when the cursor
points at some predicate node in the flow graph window, the corresponding text
is highlighted in the process window. The code corresponding to a predicate
node can be, e.g., an if-then-else or a while condition.

Once a path is fixed, the condition to execute it is calculated, based on
repeated symbolic calculation of preconditions, as in program verification [3].
The condition is calculated backwards, starting with true. Thus, we proceed from
a postcondition of a transition, in order to calculate its precondition. In order to



554 E. Gunter, R. Kurshan, and D. Peled

calculate the precondition given the transition and the postcondition, we apply
various transformations to the current condition, until we arrive to the beginning
of the paths. For a transition that consists of a predicate p with the ‘yes’ outedge,
we transform the current condition from c to c∧ p. The same predicate with the
‘no’ outedge, results in c ∧ ¬p. For an assignment of the form x := e, we replace
in p every (free) occurrence of the variable x in the postcondition c by the
expression e. We start the calculation with the postcondition true at the end of
the selected path. Other kinds of transitions will be discussed later.

Pet then allows altering the path by removing nodes from the end, in rever-
sed order to their prior selection, or by appending new nodes. This allows, for
example, the selection of an alternative choice for a condition (after the nodes
that were chosen past that predicate nodes are removed). Another way to alter
a path is to use the same transitions but allow a different interleaving of them.
When dealing with concurrent programs, the way the execution of transitions
from different nodes are interleaved is perhaps the foremost source of errors. The
Pet tool allows the user to flip the order of adjacent transitions on the path,
when they belong to different processes.

The most important information that is provided by Pet is the condition to
execute a selected path. The meaning of the calculated path condition is diffe-
rent for sequential and concurrent or nondeterministic programs. In a sequential
deterministic program, the condition expresses exactly the possible assignments
that would ensure executing the selected path, starting from the first selected
node. When concurrency or nondeterminism are allowed, because of possible al-
ternative interleavings of the transitions or alternative nondeterministic choices,
the condition expresses the assignments that would make the execution of the
selected path possible. The path condition obtained in this process is simpli-
fied using rewriting rules, based on arithmetic. Subexpressions that contain only
integer arithmetic without multiplication (Pressburger arithmetic) are further
simplified using decision procedures (see [2]). In this case, we can also check
algorithmically whether the path condition is equivalent to false (meaning that
this path can never be executed), or to true.

In order to allow testing of communication protocols, one needs to add send
and receive communication operations. Our choice is that of asynchronous com-
munication, as its use seems to be more frequently used. The syntax of Pascal
is then extended with two types of transitions:

ch!exp The calculated value of the expression exp is added to the end of the
communication queue ch. (we will henceforce assume the queues are not
limited to any particular capacity).

ch?var The first item of the communication queue ch is removed and assigned
to the variable var. This transition cannot be executed if the queue ch is
empty.

Typical communication protocols would allow a concurrent process to wait
for the first communication arriving from one out of multiple available commu-
nications. The random construct represents nondeterministic choice and can be



Pet: An Interactive Software Testing Tool 555

used for that. An example for a choice of one out of three communications is as
follows:

if random then
if random then ch7?x

else ch2?z
else ch3?t

For the communication constraints, the translation algorithm scans the path
in the forward direction. Whenever a send transition of the form ch!exp occurs,
it introduces a new temporary variable, say temp, and replaces the transition
by the assignment temp:=exp. It also adds temp to a queue, named as the com-
munication channel ch. When a receive transition ch?var occurs, the oldest
element temp in the queue ch is removed, and the receive transition is replaced
by var:=temp. This translation produces a path that is equivalent to the original
one in the case that all the queues were empty prior to the execution of the path.
We can easily generalize this to allow the case where there are values already in
the queues when the execution of the path begins.

Transition queue transformed condition
P1:x:=3 ch=〈〉 false
P1:ch1!x+y ch=〈temp1〉 temp1:=x+y x > 3
P1:ch1!x ch=〈temp1, temp2〉 temp2:=x x > 3
P1:x:=4 ch=〈temp1, temp2〉 temp2 > 3
P2: ch1?t ch=〈temp2〉 t:=temp1 temp2 > 3
P2: ch1?z ch=〈〉 z:=temp2 temp2 > 3
P2: z>3 ch=〈〉 z > 3
P2: z:=z+1 ch=〈〉 true

Fig. 1. A path with its calculated condition

In Figure 1, the replacement is applied to a path with communication tran-
sitions. The first column describes the path. The second column denotes the
(single in this example) queue used to facilitate the translation. The third co-
lumn denotes the translated transitions (it is left empty in the cases where the
translation maintain the original transition). The last column gives the calcula-
ted path condition (calculated backwards).

The user can select to project out a set of program variables. Pet checks if
there are assignments to other variables that use any of the projected variables.
If there are, it reports to the user which additional variables need to be projected
out. The projection algorithm removes the assignments to the projected variables
and replaces predicates that use them by a nondeterministic choice.



556 E. Gunter, R. Kurshan, and D. Peled

References

[1] G.J. Myers, The Art of Software Testing, John Wiley and Sons, 1979.
[2] E.L. Gunter, D. Peled, Path Exploration Tool, to appear in Tools and Algo-

rithms for the Construction and Analysis of Systems (TACAS), Amsterdam,
1999.

[3] C.A.R. Hoare, An axiomatic basis for computer programming, Communication
of the ACM 12, 1969, 576-580.

[4] S. Rapps, E.J. Weyuker, Selecting Software Test Data Using Data Flow Infor-
mation, Transactions on Software Engineering 11(4): 367-375 (1985).


	Introduction
	PET: Path Exploration Tool



