
Boolean Satisfiability with Transitivity Constraints?

Randal E. Bryant1 and Miroslav N. Velev2

1 Computer Science, Carnegie Mellon University, Pittsburgh, PA
Randy.Bryant@cs.cmu.edu

2 Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA
mvelev@ece.cmu.edu

Abstract. We consider a variant of the Boolean satisfiability problem where a sub-
set E of the propositional variables appearing in formula Fsat encode a symmetric,
transitive, binary relation over N elements. Each of these relational variables, ei,j ,
for 1 ≤ i < j ≤ N , expresses whether or not the relation holds between elements
i and j. The task is to either find a satisfying assignment to Fsat that also satisfies
all transitivity constraints over the relational variables (e.g., e1,2 ∧ e2,3 ⇒ e1,3),
or to prove that no such assignment exists. Solving this satisfiability problem is the
final and most difficult step in our decision procedure for a logic of equality with
uninterpreted functions. This procedure forms the core of our tool for verifying
pipelined microprocessors.
To use a conventional Boolean satisfiability checker, we augment the set of clauses
expressing Fsat with clauses expressing the transitivity constraints. We consider
methods to reduce the number of such clauses based on the sparse structure of the
relational variables.
To use Ordered Binary Decision Diagrams (OBDDs), we show that for some sets
E , the OBDD representation of the transitivity constraints has exponential size
for all possible variable orderings. By considering only those relational variables
that occur in the OBDD representation of Fsat, our experiments show that we can
readily construct an OBDD representation of the relevant transitivity constraints
and thus solve the constrained satisfiability problem.

1 Introduction

Consider the following variant of the Boolean satisfiability problem. We are given a
Boolean formula Fsat over a set of variables V . A subset E ⊆ V symbolically encodes a
binary, symmetric, transitive relation over N elements. Each of these relational variables,
ei,j , where 1 ≤ i < j ≤ N , expresses whether or not the relation holds between elements
i and j. Typically, E will be “sparse,” containing much fewer than the N(N − 1)/2
possible variables. Note that when ei,j 6∈ E for some value of i and of j, this does not
imply that the relation does not hold between elements i and j. It simply indicates that
Fsat does not directly depend on the relation between elements i and j.

A transitivity constraint is a formula of the form

e[i1,i2] ∧ e[i2,i3] ∧ · · · ∧ e[ik−1,ik] ⇒ e[i1,ik] (1)
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where e[i,j] equals ei,j when i < j and equals ej,i when i > j. Let Trans(E) denote the
set of all transitivity constraints that can be formed from the relational variables. Our task
is to find an assignment χ:V → {0, 1} that satisfies Fsat, as well as every constraint in
Trans(E). Goel, et al. [GSZAS98] have shown this problem is NP-hard, even when Fsat
is given as an Ordered Binary Decision Diagram (OBDD) [Bry86]. Normally, Boolean
satisfiability is trivial given an OBDD representation of a formula.

We are motivated to solve this problem as part of a tool for verifying pipelined
microprocessors [VB99]. Our tool abstracts the operation of the datapath as a set of un-
interpreted functions and uninterpreted predicates operating on symbolic data. We prove
that a pipelined processor has behavior matching that of an unpipelined reference model
using the symbolic flushing technique developed by Burch and Dill [BD94]. The major
computational task is to decide the validity of a formula Fver in a logic of equality with
uninterpreted functions [BGV99a,BGV99b]. Our decision procedure transforms Fver
first by replacing all function application terms with terms over a set of domain variables
{vi|1 ≤ i ≤ N}. Similarly, all predicate applications are replaced by formulas over a
set of newly-generated propositional variables. The result is a formula F ∗

ver containing
equations of the form vi = vj , where 1 ≤ i < j ≤ N . Each of these equations is then
encoded by introducing a relational variable ei,j , similar to the method proposed by Goel
et al. [GSZAS98]. The result of the translation is a propositional formula encf (F ∗

ver)
expressing the verification condition over both the relational variables and the proposi-
tional variables appearing in F ∗

ver. Let Fsat denote ¬encf (F ∗
ver), the complement of

the formula expressing the translated verification condition. To capture the transitivity
of equality, e.g., that vi = vj ∧ vj = vk ⇒ vi = vk, we have transitivity constraints of
the form e[i,j] ∧ e[j,k] ⇒ e[i,k]. Finding a satisfying assignment to Fsat that also satis-
fies the transitivity constraints will give us a counterexample to the original verification
condition Fver. On the other hand, if we can prove that there are no such assignments,
then we have proved that Fver is universally valid.

We consider three methods to generate a Boolean formula Ftrans that encodes the
transitivity constraints. The direct method enumerates the set of chord-free cycles in
the undirected graph having an edge (i, j) for each relational variable ei,j ∈ E . This
method avoids introducing additional relational variables but can lead to a formula of
exponential size. The dense method uses relational variables ei,j for all possible values
of i and j such that 1 ≤ i < j ≤ N . We can then axiomatize transitivity by forming
constraints of the form e[i,j] ∧ e[j,k] ⇒ e[i,k] for all distinct values of i, j, and k. This
will yield a formula that is cubic in N . The sparse method augments E with additional
relational variables to form a set of variables E+, such that the resulting graph is chordal
[Rose70]. We then only require transitivity constraints of the form e[i,j] ∧ e[j,k] ⇒ e[i,k]
such that e[i,j], e[j,k], e[i,k] ∈ E+. The sparse method is guaranteed to generate a smaller
formula than the dense method.

To use a conventional Boolean Satisfiability (SAT) procedure to solve our constrained
satisfiability problem, we run the checker over a set of clauses encoding both Fsat and
Ftrans. The latest version of the fgrasp SAT checker [M99] was able to complete
all of our benchmarks, although the run times increase significantly when transitivity
constraints are enforced.
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When using Ordered Binary Decision Diagrams to evaluate satisfiability, we could
generate OBDD representations of Fsat and Ftrans and use the apply algorithm to
compute an OBDD representation of their conjunction. From this OBDD, finding sa-
tisfying solutions would be trivial. We show that this approach will not be feasible in
general, because the OBDD representation of Ftrans can be intractable. That is, for
some sets of relational variables, the OBDD representation of the transitivity constraint
formula Ftrans will be of exponential size regardless of the variable ordering. The NP-
completeness result of Goel, et al. shows that the OBDD representation of Ftrans may
be of exponential size using the ordering previously selected for representing Fsat as
an OBDD. This leaves open the possibility that there could be some other variable or-
dering that would yield efficient OBDD representations of both Fsat and Ftrans. Our
result shows that transitivity constraints can be intrinsically intractable to represent with
OBDDs, independent of the structure of Fsat.

We present experimental results on the complexity of constructing OBDDs for the
transitivity constraints that arise in actual microprocessor verification. Our results show
that the OBDDs can indeed be quite large. We consider two techniques to avoid construc-
ting the OBDD representation of all transitivity constraints. The first of these, proposed
by Goel et al. [GSZAS98], generates implicants (cubes) of Fsat and rejects those that
violate the transitivity constraints. Although this method suffices for small benchmarks,
we find that the number of implicants generated for our larger benchmarks grows unac-
ceptably large. The second method determines which relational variables actually occur
in the OBDD representation of Fsat. We can then apply one of our three encoding tech-
niques to generate a Boolean formula for the transitivity constraints over this reduced set
of relational variables. The OBDD representation of this formula is generally tractable,
even for the larger benchmarks.

Due to space limitations, this paper omits many technical details. More information,
including formal proofs, is included in [BV00].

2 Benchmarks

Our benchmarks [VB99] are based on applying our verifier to a set of high-level micro-
processor designs. Each is based on the DLX RISC processor described by Hennessy
and Patterson [HP96]:

1×DLX-C: is a single-issue, five-stage pipeline capable of fetching up to one new
instruction every clock cycle. It implements six instruction types and contains an
interlock to stall the instruction following a load by one cycle if it requires the loaded
result. This example is comparable to the DLX example first verified by Burch and
Dill [BD94].

2×DLX-CA: has a complete first pipeline, capable of executing the six instruction
types, and a second pipeline capable of executing arithmetic instructions. This
example is comparable to one verified by Burch [Bur96].

2×DLX-CC: has two complete pipelines, i.e., each can execute any of the 6 instruction
types.

In all of these examples, the domain variables vi, with 1 ≤ i ≤ N , in F ∗
ver encode

register identifiers. As described in [BGV99a,BGV99b], we can encode the symbolic
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Circuit Domain Propositional Equations
Variables Variables

1×DLX-C 13 42 27
1×DLX-Ct 13 42 37
2×DLX-CA 25 58 118
2×DLX-CAt 25 58 137
2×DLX-CC 25 70 124
2×DLX-CCt 25 70 143
Buggy min. 22 56 89
2×DLX-CC avg. 25 69 124

max. 25 77 132

Table 1. Microprocessor Verification Benchmarks. Benchmarks with suffix “t” were modified
to require enforcing transitivity.

terms representing program data and addresses as distinct values, avoiding the need to
have equations among these variables. Equations arise in modeling the read and write
operations of the register file, the bypass logic implementing data forwarding, the load
interlocks, and the pipeline issue logic.

Our original processor benchmarks do not require enforcing transitivity in order to
verify them. In particular, the formula Fsat is unsatisfiable in all cases. This implies
that the constrained satisfiability problems are unsatisfiable as well. We are nonetheless
motivated to study the problem of constrained satisfiability for two reasons. First, other
processor designs might rely on transitivity, e.g., due to more sophisticated issue logic.
Second, to aid designers in debugging their pipelines, it is essential that we generate
counterexamples that satisfy all transitivity constraints. Otherwise the designer will be
unable to determine whether the counterexample represents a true bug or a weakness of
our verifier.

To create more challenging benchmarks, we generated variants of the circuits that
require enforcing transitivity in the verification. For example, the normal forwarding
logic in the Execute stage of 1×DLX-C compares the two source registers ESrc1 and
ESrc2 of the instruction in the Execute stage to the destination register MDest of the
instruction in the memory stage. In the modified circuit, we changed the bypass condition
ESrc1 = MDest to be ESrc1 = MDest ∨ (ESrc1 = ESrc2 ∧ ESrc2 = MDest). Given
transitivity, these two expressions are equivalent. For each pipeline, we introduced four
such modifications to the forwarding logic, with different combinations of source and
destination registers. These modified circuits are named 1×DLX-Ct, 2×DLX-CAt, and
2×DLX-CCt.

To study the problem of counterexample generation for buggy circuits, we generated
105 variants of 2×DLX-CC, each containing a small modification to the control logic.
Of these, 5 were found to be functionally correct, e.g., because the modification cau-
sed the processor to stall unnecessarily, yielding a total of 100 benchmark circuits for
counterexample generation.

Table 1 gives some statistics for the benchmarks. The number of domain variables N
ranges between 13 and 25, while the number of equations ranges between 27 and 143.
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The verification condition formulas F ∗
ver also contain between 42 and 77 propositional

variables expressing the operation of the control logic. These variables plus the relational
variables comprise the set of variables V in the propositional formula Fsat. The circuits
with modifications that require enforcing transitivity yield formulas containing up to 19
additional equations. The final three lines summarize the complexity of the 100 buggy
variants of 2×DLX-CC. We apply a number of simplifications during the generation of
formula Fsat, and hence small changes in the circuit can yield significant variations in
the formula complexity.

3 Graph Formulation

Our definition of Trans(E) (Equation 1) places no restrictions on the length or form of
the transitivity constraints, and hence there can be an infinite number. We show that we
can construct a graph representation of the relational variables and identify a reduced
set of transitivity constraints that, when satisfied, guarantees that all possible transitivity
constraints are satisfied. By introducing more relational variables, we can alter this graph
structure, further reducing the number of transitivity constraints that must be considered.

For variable set E , define the undirected graph G(E) as containing a vertex i for
1 ≤ i ≤ N , and an edge (i, j) for each variable ei,j ∈ E . For an assignment χ of
Boolean values to the relational variables, we will classify edge (i, j) as a 1-edge when
χ(ei,j) = 1, and as a 0-edge when χ(ei,j) = 0.

A path is a sequence of vertices [i1, i2, . . . , ik] having edges between successive
elements, i.e., 1 ≤ ip ≤ N for all p such that 1 ≤ p ≤ k, and (ip, ip+1) is in G(E) for
all p such that 1 ≤ p < k. We consider each edge (ip, ip+1) for 1 ≤ p < k to also be
part of the path. A cycle is a path of the form [i1, i2, . . . , ik, i1].

Proposition 1. An assignment to the variables in E violates transitivity if and only if
some cycle in G(E) contains exactly one 0-edge.

A path [i1, i2, . . . , ik] is said to be acyclic when ip 6= iq for all 1 ≤ p < q ≤ k. A
cycle [i1, i2, . . . , ik, i1] is said to be simple when its prefix [i1, i2, . . . , ik] is acyclic.

Proposition 2. An assignment to the variables in E violates transitivity if and only if
some simple cycle in G(E) contains exactly one 0-edge.

Define a chord of a simple cycle to be an edge that connects two vertices that are
not adjacent in the cycle. More precisely, for a simple cycle [i1, i2, . . . , ik, i1], a chord
is an edge (ip, iq) in G(E) such that 1 ≤ p < q ≤ k, that p + 1 < q, and either p 6= 1
or q 6= k. A cycle is said to be chord-free if it is simple and has no chords.

Proposition 3. An assignment to the variables in E violates transitivity if and only if
some chord-free cycle in G(E) contains exactly one 0-edge.

For a set of relational variables E , we define Ftrans(E) to be the conjunction of
all transitivity constraints generated by enumerating the set of all chord-free cycles in
the graph G(E). Each length k cycle [i1, i2, . . . , ik, i1] yields k constraints. It is easily
proved that an assignment to the relational variables will satisfy all of the transitivity
constraints if and only if it satisfies Ftrans(E).
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Fig. 1. Class of Graphs with Many Chord-Free Cycles. For a graph with n diamond-shaped
faces, there are 2n + n chord-free cycles.

3.1 Enumerating Chord-Free Cycles

To enumerate the chord-free cycles of a graph, we exploit the following properties. An
acyclic path [i1, i2, . . . , ik] is said to have a chord when there is an edge (ip, iq) in G(E)
such that 1 ≤ p < q ≤ k, that p + 1 < q, and either p 6= 1 or q 6= k. We classify a
chord-free path as terminal when (ik, i1) is in G(E), and as extensible otherwise.

Proposition 4. A path [i1, i2, . . . , ik] is chord-free and terminal if and only if the cycle
[i1, i2, . . . , ik, i1] is chord-free.

A proper prefix of path [i1, i2, . . . , ik] is a path [i1, i2, . . . , ij ] such that 1 ≤ j < k.

Proposition 5. Every proper prefix of a chord-free path is chord-free and extensible.

Given these properties, we can enumerate the set of all chord-free paths by breadth
first expansion. As we enumerate these paths, we also generate C the set of all chord-free
cycles. Define Pk to be the set of all extensible, chord-free paths having k vertices, for
1 ≤ k ≤ N . As an initial case, we have P1 = {[i]|1 ≤ i ≤ n}, and we have C = ∅. At
each step we consider all possible extensions to the paths in Pk to generate the set Pk+1
and to add some cycles of length k + 1 to C.

As Figure 1 indicates, there can be an exponential number of chord-free cycles in
a graph. In particular, this figure illustrates a family of graphs with 3n + 1 vertices.
Consider the cycles passing through the n diamond-shaped faces as well as the edge
along the bottom. For each diamond-shaped face Fi, a cycle can pass through either the
upper vertex or the lower vertex. Thus there are 2n such cycles.

The columns labeled “Direct” in Table 2 show results for enumerating the chord-free
cycles for our benchmarks. For each correct microprocessor, we have two graphs: one
for which transitivity constraints played no role in the verification, and one (indicated
with a “t” at the end of the name) modified to require enforcing transitivity constraints.
We summarize the results for the transitivity constraints in our 100 buggy variants of
2×DLX-CC, in terms of the minimum, the average, and the maximum of each measu-
rement. We also show results for five synthetic benchmarks consisting of n × n planar
meshes Mn, with n ranging from 4 to 8, where the mesh for n = 6 is illustrated in Figure
2. For all of the circuit benchmarks, the number of cycles, although large, appears to be
manageable. Moreover, the cycles have at most 4 edges. The synthetic benchmarks, on
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Circuit Direct Dense Sparse
Edges Cycles Clauses Edges Cycles Clauses Edges Cycles Clauses

1×DLX-C 27 90 360 78 286 858 33 40 120
1×DLX-Ct 37 95 348 78 286 858 42 68 204
2×DLX-CA 118 2,393 9,572 300 2,300 6,900 172 697 2,091
2×DLX-CAt 137 1,974 7,944 300 2,300 6,900 178 695 2,085
2×DLX-CC 124 2,567 10,268 300 2,300 6,900 182 746 2,238
2×DLX-CCt 143 2,136 8,364 300 2,300 6,900 193 858 2,574
Full min. 89 1,446 6,360 231 1,540 4,620 132 430 1,290
Buggy avg. 124 2,562 10,270 300 2,300 6,900 182 750 2,244
2×DLX-CC max. 132 3,216 12,864 299 2,292 6,877 196 885 2,655
M4 24 24 192 120 560 1,680 42 44 132
M5 40 229 3,056 300 2,300 6,900 77 98 294
M6 60 3,436 61,528 630 7,140 21,420 131 208 624
M7 84 65,772 1,472,184 1,176 18,424 55,272 206 408 1,224
M8 112 1,743,247 48,559,844 2,016 41,664 124,992 294 662 1,986

Table 2. Cycles in Original and Augmented Benchmark Graphs. Results are given for the three
different methods of encoding transitivity constraints.

the other hand, demonstrate the exponential growth predicted as worst case behavior.
The number of cycles grows quickly as the meshes grow larger. Furthermore, the cycles
can be much longer, causing the number of clauses to grow even more rapidly.

3.2 Adding More Relational Variables

Enumerating the transitivity constraints based on only the variables in E runs the risk of
generating a Boolean formula of exponential size. We can guarantee polynomial growth
by considering a larger set of relational variables. In general, let E ′ be some set of
relational variables such that E ⊆ E ′, and let Ftrans(E ′) be the transitivity constraint
formula generated by enumerating the chord-free cycles in the graph G(E ′).

Proposition 6. If E is the set of relational variables in Fsat and E ⊆ E ′, then:

Fsat ∧ Ftrans(E) ⇔ Fsat ∧ Ftrans(E ′).

Our goal then is to add as few relational variables as possible in order to reduce the size
of the transitivity formula. We will continue to use our path enumeration algorithm to
generate the transitivity formula.

3.3 Dense Enumeration

For the dense enumeration method, let EN denote the set of variables ei,j for all values
of i and j such that 1 ≤ i < j ≤ N . Graph G(EN ) is a complete, undirected graph. In
this graph, any cycle of length greater than three must have a chord. Hence our algorithm
will enumerate transitivity constraints of the form e[i,j] ∧ e[j,k] ⇒ e[i,k], for all distinct
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values of i, j, and k. The graph has N(N −1) edges and N(N −1)(N −2)/6 chord-free
cycles, yielding a total of N(N − 1)(N − 2)/2 = O(N3) transitivity constraints.

The columns labeled “Dense” in Table 2 show the complexity of this method for
the benchmark circuits. For the smaller graphs 1×DLX-C, 1×DLX-Ct, M4 and M5,
this method yields more clauses than direct enumeration of the cycles in the original
graph. For the larger graphs, however, it yields fewer clauses. The advantage of the dense
method is most evident for the mesh graphs, where the cubic complexity is far superior
to exponential.

3.4 Sparse Enumeration

We can improve on both of these methods by exploiting the sparse structure of G(E).
Like the dense method, we want to introduce additional relational variables to give a set
of variables E+ such that the resulting graph G(E+) becomes chordal [Rose70]. That
is, the graph has the property that every cycle of length greater than three has a chord.

Chordal graphs have been studied extensively in the context of sparse Gaussian
elimination. In fact, the problem of finding a minimum set of additional variables to add
to our set is identical to the problem of finding an elimination ordering for Gaussian
elimination that minimizes the amount of fill-in. Although this problem is NP-complete
[Yan81], there are good heuristic solutions. In particular, our implementation proceeds
as a series of elimination steps. On each step, we remove some vertex i from the graph.
For every pair of distinct, uneliminated vertices j and k such that the graph contains
edges (i, j) and (i, k), we add an edge (j, k) if it does not already exist. The original
graph plus all of the added edges then forms a chordal graph. To choose which vertex to
eliminate on a given step, our implementation uses the simple heuristic of choosing the
vertex with minimum degree. If more than one vertex has minimum degree, we choose
one that minimizes the number of new edges added.

The columns in Table 2 labeled “Sparse” show the effect of making the benchmark
graphs chordal by this method. Observe that this method gives superior results to either
of the other two methods. In our implementation we have therefore used the sparse
method to generate all of the transitivity constraint formulas.

4 SAT-Based Decision Procedures

We can solve the constrained satisfiability problem using a conventional SAT checker
by generating a set of clauses Ctrans representing Ftrans(E+) and a set of clauses Csat
representing the formula Fsat. We then run the checker on the combined clause set
Ctrans ∪ Csat to find satisfying solutions to Ftrans(E+) ∧ Fsat.

In experimenting with a number of Boolean satisfiability checkers, we have found that
fgrasp [MS99] gives the most consistent results. The most recent version can be directed
to periodically restart the search using a randomly-generated variable assignment [M99].
This is the first SAT checker we have tested that can complete all of our benchmarks.
All of our experiments were conducted on a 336 MHz Sun UltraSPARC II with 1.2GB
of primary memory.

As indicated byTable 3, we ran fgrasp on clause setsCsat andCtrans∪Csat, i.e., both
without and with transitivity constraints. For benchmarks 1×DLX-C, 2×DLX-CA, and
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Circuit Csat Ctrans ∪ Csat Ratio
Satisfiable? Secs. Satisfiable? Secs.

1×DLX-C N 3 N 4 1.4
1×DLX-Ct Y 1 N 9 N.A.
2×DLX-CA N 176 N 1,275 7.2
2×DLX-CAt Y 3 N 896 N.A.
2×DLX-CC N 5,035 N 9,932 2.0
2×DLX-CCt Y 4 N 15,003 N.A.
Full min. Y 1 Y 1 0.2
Buggy avg. Y 125 Y 1,517 2.3
2×DLX-CC max. Y 2,186 Y 43,817 69.4

Table 3. Performance of fgrasp on Benchmark Circuits. Results are given both without and
with transitivity constraints.

2×DLX-CC, the formula Fsat is unsatisfiable.As can be seen, including transitivity con-
straints increases the run time significantly. For benchmarks 1×DLX-Ct, 2×DLX-CAt,
and 2×DLX-CCt, the formula Fsat is satisfiable, but only because transitivity is not
enforced. When we add the clauses for Ftrans, the formula becomes unsatisfiable. For
the buggy circuits, the run times for Csat range from under 1 second to over 36 minutes.
The run times for Ctrans ∪ Csat range from less than one second to over 12 hours. In
some cases, adding transitivity constraints actually decreased the CPU time (by as much
as a factor of 5), but in most cases the CPU time increased (by as much as a factor of
69). On average (using the geometric mean) adding transitivity constraints increased
the CPU time by a factor of 2.3. We therefore conclude that satisfiability checking with
transitivity constraints is more difficult than conventional satisfiability checking, but the
added complexity is not overwhelming.

5 OBDD-Based Decision Procedures

A simple-minded approach to solving satisfiability with transitivity constraints using
OBDDs would be to generate separate OBDD representations of Ftrans and Fsat. We
could then use the Apply operation to generate an OBDD for Ftrans ∧ Fsat, and then
either find a satisfying assignment or determine that the function is unsatisfiable. We
show that for some sets of relational variables E , the OBDD representation of Ftrans(E)
can be too large to represent and manipulate. In our experiments, we use the CUDD
OBDD package with variable reordering by sifting.

5.1 Lower Bound on the OBDD Representation of Ftrans(E)

We prove that for some sets E , the OBDD representation of Ftrans(E) may be of
exponential size for all possible variable orderings. As mentioned earlier, the NP-
completeness result proved by Goel et al. [GSZAS98] has implications for the com-
plexity of representing Ftrans(E) as an OBDD. They showed that given an OBDD Gsat
representing formula Fsat, the task of finding a satisfying assignment of Fsat that also
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Fig. 2. Mesh Graph M6

satisfies the transitivity constraints in Trans(E) is NP-complete in the size of Gsat. By
this, assuming P 6= NP , we can infer that the OBDD representation of Ftrans(E) may
be of exponential size when using the same variable ordering as is used in Gsat. Our
result extends this lower bound to arbitrary variable orderings and is independent of the
P vs. NP problem.

Let Mn denote a planar mesh consisting of a square array of n × n vertices. For
example, Figure 2 shows the graph for n = 6. Define En×n to be a set of relational
variables corresponding to the edges in Mn. Ftrans(En×n) is then an encoding of the
transitivity constraints for these variables.

Theorem 1. Any OBDD representation of Ftrans(En×n) must have Ω(2n/4) vertices.

A complete proof of this theorem is given in [BV00]. We give only a brief sketch here.
Being a planar graph, the edges partition the plane into faces. The proof first involves a
combinatorial argument showing that for any partitioning of the edges into sets A and
B, we can identify a set of at least (n − 3)/4 edge-independent, “split faces,” where a
split face has some of its edge variables in set A and others in set B. The proof of this
property is similar to a proof by Leighton [Lei92, Theorem 1.21] that Mn has a bisection
bandwidth of at least n, i.e., one must remove at least n vertices to split the graph into
two parts of equal size.

Given this property, for any ordering of the OBDD variables, we can construct a
family of 2(n−3)/4 assignments to the variables in the first half of the ordering that must
lead to distinct vertices in the OBDD. That is, the OBDD must encode information about
each split face for the variables in the first half of the ordering so that it can correctly
deduce the function value given the variables in the last half of the ordering.

Corollary 1. For any set of relational variables E such that En×n ⊆ E , any OBDD
representation of Ftrans(E) must contain Ω(2n/8) vertices.

The extra edges in E introduce complications, because they create cycles containing
edges from different faces. As a result, the lower bound is weaker, because our proof
requires that we find a set of vertex-independent, split faces.

Our lower bounds are fairly weak, but this is more a reflection of the difficulty of
proving lower bounds. We have found in practice that the OBDD representations of
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the transitivity constraint functions arising from benchmarks tend to be large relative
to those encountered during the evaluation of Fsat. For example, although the OBDD
representation of Ftrans(E+) for benchmark 1×DLX-Ct is just 2,692 nodes (a function
over 42 variables), we have been unable to construct the OBDD representations of this
function for either 2×DLX-CAt (178 variables) or 2×DLX-CCt (193 variables) despite
running for over 24 hours.

5.2 Enumerating and Eliminating Violations

Goel et al. [GSZAS98] proposed a method that generates implicants (cubes) of the
functionFsat from its OBDD representation. Each implicant is examined and discarded if
it violates a transitivity constraint. In our experiments, we have found this approach works
well for the normal, correctly-designed pipelines (i.e., circuits 1×DLX-C, 2×DLX-CA,
and 2×DLX-CC) since the formula Fsat is unsatisfiable and hence has no implicants.
For all 100 of our buggy circuits, the first implicant generated contained no transitivity
violation, and hence we did not require additional effort to find a counterexample.

For circuits that do require enforcing transitivity constraints, we have found this
approach impractical. For example, in verifying 1×DLX-Ct by this means, we generated
253,216 implicants, requiring a total of 35 seconds of CPU time (vs. 0.1 seconds for
1×DLX-C). For benchmarks 2×DLX-CAt and 2×DLX-CCt, our program ran for over
24 hours without having generated all of the implicants. By contrast, circuits 2×DLX-CA
and 2×DLX-CC can be verified in 11 and 29 seconds, respectively. Our implementation
could be improved by making sure that we generate only primes that are irredundant and
prime. In general, however, we believe that a verifier that generates individual implicants
will not be very robust. The complex control logic for a pipeline can lead to formulas
Fsat containing very large numbers of implicants, even when transitivity plays only a
minor role in the correctness of the design.

5.3 Enforcing a Reduced Set of Transitivity Constraints

Circuit Verts. Direct Dense Sparse
Edges Cycles Clauses Edges Cycles Clauses Edges Cycles Clauses

1×DLX-Ct 9 18 14 45 36 84 252 20 19 57
2×DLX-CAt 17 44 101 395 136 680 2,040 49 57 171
2×DLX-CCt 17 46 108 417 136 680 2,040 52 66 198
Reduced min. 3 2 0 0 3 1 3 2 0 0
Buggy avg. 12 17 19 75 73 303 910 21 14 42
2×DLX-CC max. 19 52 378 1,512 171 969 2,907 68 140 420

Table 4. Graphs for Reduced Transitivity Constraints. Results are given for the three different
methods of encoding transitivity constraints based on the variables in the true support of Fsat.

One advantage of OBDDs over other representations of Boolean functions is that
we can readily determine the true support of the function, i.e., the set of variables on
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which the function depends. This leads to a strategy of computing an OBDD represen-
tation of Fsat and intersecting its support with E to give a set Ê of relational variables
that could potentially lead to transitivity violations. We then augment these variables to
make the graph chordal, yielding a set of variables Ê+ and generate an OBDD represen-
tation of Ftrans(Ê+). We compute Fsat ∧ Ftrans(Ê+) and, if it is satisfiable, generate a
counterexample.

Table 4 shows the complexity of the graphs generated by this method for our bench-
mark circuits. Comparing these with the full graphs shown in Table 2, we see that we
typically reduce the number of relational vertices (i.e., edges) by a factor of 3 for the
benchmarks modified to require transitivity and by an even greater factor for the buggy
circuit benchmarks. The resulting graphs are also very sparse. For example, we can
see that both the direct and sparse methods of encoding transitivity constraints greatly
outperform the dense method.

Circuit OBDD Nodes CPU
Fsat Ftrans(Ê+) Fsat ∧ Ftrans(Ê+) Secs.

1×DLX-C 1 1 1 0.2
1×DLX-Ct 530 344 1 2
2×DLX-CA 1 1 1 11
2×DLX-CAt 22,491 10,656 1 109
2×DLX-CC 1 1 1 29
2×DLX-CCt 17,079 7,168 1 441
Reduced min. 20 1 20 7
Buggy avg. 3,173 1,483 25,057 107
2×DLX-CC max. 15,784 93,937 438,870 2,466

Table 5. OBDD-based Verification. Transitivity constraints were generated for a reduced set of
variables Ê .

Table 5 shows the complexity of applying the OBDD-based method to all of our
benchmarks. The original circuits 1×DLX-C, 2×DLX-CA, and 2×DLX-CC yielded
formulas Fsat that were unsatisfiable, and hence no transitivity constraints were re-
quired. The 3 modified circuits 1×DLX-Ct, 2×DLX-CAt, and 2×DLX-CCt are more
interesting. The reduction in the number of relational variables makes it feasible to ge-
nerate an OBDD representation of the transitivity constraints. Compared to benchmarks
1×DLX-C, 2×DLX-CA, and 2×DLX-CC, we see there is a significant, although to-
lerable, increase in the computational requirement to verify the modified circuits. This
can be attributed to both the more complex control logic and to the need to apply the
transitivity constraints.

For the 100 buggy variants of 2×DLX-CC, Fsat depends on up to 52 relational
variables, with an average of 17. This yielded OBDDs for Ftrans(Ê+) ranging up to
93,937 nodes, with an average of 1,483. The OBDDs for Ftrans(Ê+) ∧ Fsat ranged
up to 438,870 nodes (average 25,057), showing that adding transitivity constraints does
significantly increase the complexity of the OBDD representation. However, this is just
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one OBDD at the end of a sequence of OBDD operations. In the worst case, imposing
transitivity constraints increased the total CPU time by a factor of 2, but on average it
only increased by 2%. The memory required to generate Fsat ranged from 9.8 to 50.9
MB (average 15.5), but even in the worst case the total memory requirement increased
by only 2%.

6 Conclusion

By formulating a graphical interpretation of the relational variables, we have shown that
we can generate a set of clauses expressing the transitivity constraints that exploits the
sparse structure of the relation. Adding relational variables to make the graph chordal
eliminates the theoretical possibility of there being an exponential number of clauses
and also works well in practice. A conventional SAT checker can then solve constrained
satisfiability problems, although the run times increase significantly compared to uncon-
strained satisfiability. Our best results were obtained using OBDDs. By considering only
the relational variables in the true support of Fsat, we can enforce transitivity constraints
with only a small increase in CPU time.
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