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Abstract. We present a method for retinal blood vessel segmentation
based upon the scale-space analysis of the first and second derivative
of the intensity image which gives information about its topology and
overcomes the problem of variations in contrast inherent in these images.
We use the local maxima over scales of the magnitude of the gradient and
the maximum principal curvature as the two features used in a region
growing procedure. In the first stage, the growth is constrained to regions
of low gradient magnitude. In the final stage this constraint is relaxed to
allow borders between regions to be defined. The algorithm is tested in
both red-free and fluorescein retinal images.

1 Introduction

The eye is a window to the retinal vascular system which is uniquely accessible
for the non-invasive, in vivo study of a complete vascular bed in humans. The
detection and measurement of blood vessels can be used to quantify the severity
of disease or as part of the process of automated diagnosis of disease. Retinal
blood vessels can have measurable geometrical changes, in diameter, branching
angles, lengths or tortuosity, as a result of a disease [4]. Thus a reliable method
of vessel segmentation is needed for the early detection and characterisation of
changes due to such diseases.
Different techniques are used to acquire images of retinal blood vessels. A

relatively non-invasive technique, widely used clinically, is the retinal fundal
photograph taken using a green filter. A more invasive technique is fluorescein
angiography which involves an intravenous injection of dye which increases the
contrast of the blood vessels against the background (Figure 3).
Previous studies have been carried out on the detection or enhancement of

blood vessels in general and retinal blood vessels in particular [7]. Most of the
work on segmentation of retinal images have been based in edge detectors or
matched filters [1]. We have applied these two methods but because of the large
regional variations in intensity inherent in these images and the very low contrast
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between vessels and the background, particularly in the red-free photographs, the
results were disappointing. Techniques based on edge detectors lacked robustness
in defining blood vessels without fragmentation and techniques based on matched
filters were difficult to adapt to the variations of widths and orientation of blood
vessels.
Multiscale analysis of the second derivative information was used to develop

a vessel enhancement filter on X-ray images [3]. We present a method based on
scale-space analysis from which we obtain retinal blood vessel width, size and
orientation using two main geometrical features based upon the first and the
second derivative of the intensity (edges and the maximum principal curvature)
along the scale-space, that give information about the topology of the image. We
then use a multiple pass region growing procedure which progressively segments
the blood vessels using the feature information together with spatial information
about the 8-neighbouring pixels.

2 Method

2.1 Scale-Space Representation

The idea behind scale-space representation is to separate out information at
different scales. Any image can be embedded in one-parameter family of de-
rived images I(x, y; s) obtained by convolving the original image I(x, y) with a
Gaussian kernel G(x, y; s) of variance s2:

I(x, y; s) = I(x, y)⊗ G(x, y; s)

where s is a length scale factor. Figure 1(a) shows different scale-space repre-
sentations of a portion of a red-free retinal image. Each scale slice is a version
of the original after some amount of blurring, hence fine scale details disappear
and images become more diffuse when scale parameter increases [5]. The use of
Gaussian kernels to generate the scale-space information ensures that the ob-
jects in the images are invariant with respect to translation, rotation and size
(scaling).
Under this framework, the derivative of an image I(x, y) is defined as the

linear convolution of the image with scale-normalised derivative of Gaussian
kernels.

Ix = I(x, y)⊗ sGx; Ixx = I(x, y)⊗ s2Gxx

Iy = I(x, y)⊗ sGy ; Ixy = I(x, y)⊗ s2Gxy

Iyy = I(x, y)⊗ s2Gyy

where subscripts indicate partial derivatives and

G(x, y; s) =
1
2πs2

e−
x2+y2

2s2
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(a)

(b)

(c)

(d)

(e)

Maxima over scaless = 14s = 8s = 2

Fig. 1. Scale-space analysis for s = 2, 8 and 14 of a portion (360 × 290) of a
red-free retinal image (1400 × 1200). (a) Original image, I(s), (b) magnitude
of the gradient, |∇I(s)|, (c) maximum principal curvature, |λ2(s)|, (d) intensity
scaled magnitude of the gradient, |∇I(s)| /s and (e), intensity scaled maximum
principal curvature, |λ2(s)| /s. The last column in the first row is the original
image and in the other rows is the maxima over scales.
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2.2 Feature Extraction

The measurements of feature strength that we used to characterise blood vessels
are edges and maximum principal curvatures (ridges).

Edge strength. An edge point is weighted by the magnitude of the gradient
of the image. The gradient is a vector function which represents the changes in
intensity in the coordinate directions, and its magnitude is equal to the value of
the slope, which is high at the edges and low at uniform regions:

|∇I| =
√

I2
x + I2

y

Ridge strength. A ridge point is a point for which the intensity image has
a local maximum in the direction for which the gradient of the image undergoes
the largest change (largest concavity) [2]. The second derivative information can
be derived from the Hessian of the intensity image I(x, y):

H =
(

Ixx Ixy

Iyx Iyy

)

Since Ixy = Iyx the Hessian matrix is symmetrical with real eigenvalues and
orthogonal eigenvectors which are rotation invariant. The eigenvalues of the
Hessian, λ1 and λ2, where we take |λ1| ≤ |λ2|, measure convexity and con-
cavity in the corresponding eigendirections. The maximum eigenvalue (|λ2|) will
correspond to the maximum principal curvature. Thus, a pixel belonging to a
vessel region will be weighted as a ridge pixel if |λ2| � 1, for both red-free and
fluorescein images (Figures 1(b) and (c)).

Intensity scaling. From last column of Figures 1(b) and (c), it is noticeable
that the local maxima response is much higher for large blood vessels than for
small ones. This might be expected since the vessels are approximately cylindri-
cal so that the total amount of blood in the light path corresponding to each
pixel is larger in large vessels. Thus, there will be more absorption of non-red
light in the red-free images and increased fluorescence in fluorescein images in
the larger vessels.
To account for this effect, we introduce an intensity scale factor which is

related to the size of the blood vessels. Because the parameter s is related to
the width of the vessels, we normalise each feature with this factor over the
scale-space and then keep the local maxima:

γ = max
s

[ |∇I(s)|
s

]
; κ = max

s

[ |λ2(s)|
s

]

Figures 1(d) and (e) show these two new scale-space representations with the
local maxima over scales in the last column.

2.3 Using the Scale-Space Information

We calculate the scale-space information in intervals smin ≤ s ≤ smax where smin

and smax are fixed according to the sizes of the smallest and largest vessels to
be detected in the image. In this case we use 2 ≤ s ≤ 20 with steps of 1.
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The approach we use to extract information across the scales is to keep
the local maxima over scales for both measurements of feature strength. These
values, the local maxima of the intensity scaled gradient magnitude, γ, and the
local maxima of the intensity scaled maximum principal curvature, κ, are then
used as the two features to classify pixels in the image into two region classes,
background and vessel, using a multiple pass region growing procedure.

2.4 Region Growing

The labelling algorithm is designed using information from the histograms of
both features h(γ) and h(κ) and spatial information from the 8-neighbouring
pixels. In the first stage the growing for both classes is restricted to regions with
low gradients, allowing rapid growth of regions outside of the boundaries, and
allowing vessels to grow where the values of κ lie within a wide interval.

h(κ)

h(γ) (a)

(b)

µg ± σg

µb ± σb µv ± σv

t

(γ/γmax)

(κ/κmax)

Fig. 2. Parameters used in the region
growing algorithm. (a) Histogram of the
local maxima of the edge strength, γ. One
class: low gradient, γ < µg + σg. (b) His-
togram of the local maxima of the ridge
strength, κ, where t is the threshold. Two
classes: background, κ/κmax ∈ [0, t] and
vessel, κ/κmax ∈ (t, 1].

For h(γ) only one class is used:
low gradient, which is defined as γ <
µg + σg for the complete histogram
(Figure 2(a)). h(κ) is divided into
two classes using the Otsu threshold
algorithm [6], and their means and
standard deviations are calculated:
background, for κ/κmax ∈ [0, t] with
mean µb and variance σ2

b ; and ves-
sel, for κ/κmax ∈ (t, 1] with mean
µv and variance σ2

v , where t is the
threshold (Figure 2(b)).
The algorithm begins by plant-

ing seeds for each region: back-
ground seeds are pixels for which
κ ≤ µb, whereas vessel seeds are
defined as κ ≥ µv. Region growing
is by an iterative process: An unla-
belled pixel is classified as belonging
to class i if it fulfils a specific con-
dition with initial parameters ai=1.
Growing is repeated until no more
pixels are classified. The constraints
are relaxed by incrementing the pa-
rameters ai by 0.5 and the growing
is repeated.
For the first stage, the condition for class vessel is:

(µv − avσv) ≤ κ AND γ ≤ (µg + agσg) AND Nv ≥ 1
whereas the condition for class background is:

κ ≤ (µb + abσb) AND γ ≤ µg AND Nb ≥ 1
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where Ni is the number of neighbours already labelled as class i.
After alternating these two procedures until no further classifications are

found, the final stage of the algorithm grows vessel and background classes si-
multaneously without the gradient restriction. Now the condition for class i is:

(µi − aσi) ≤ κ ≤ (µi + aσi) AND Ni ≥ 1

and again the condition is relaxed by increasing the value of a until all pixels are
classified. With this final stage, borders between classes are defined. The com-
plete procedure was applied to both red-free and a fluorescein images. Results
are shown in Figure 3.

3 Results and Conclusion

From these results it can be seen that despite the much poorer contrast, the
red-free image segmentation is nearly as good as that of the fluorescein image.
We also find that the segmentation is relatively insensitive to the wide variations
in intensity that are inherent in these images. Note in the fluorescein image, for
example, the similar detail in the segmented image in the much brighter region
just below the darker optic disk in the upper centre of the image.
It should be pointed out that although the idea of the intensity scale factor

applied to the scale-space information is empirical, it can be justified by a simple
model in which the intensity of the image is proportional to the amount of blood
in the light path corresponding to that pixel. In any case, the method seems to
work well in detecting retinal blood vessels over a large range of widths.
We have presented an algorithm which combines: 1) the scale-space repre-

sentation that gives information about width, length and orientation of blood
vessels, 2) two important geometrical properties of tube-like structures based on
the first and second derivative information which give weights to pixels with a
high probability of belonging to vessels, and 3) a multiple pass region growing
procedure. The region growing algorithm is relatively fast because in the initial
stage growth is restricted to regions with low gradients, allowing vessels to grow
where the values of the maximum principal curvature lie within a wide interval.
This allows rapid growth of regions outside the boundaries. In the final stage
when the borders between classes are defined, the algorithm grows vessel and
background classes simultaneously without the gradient restriction.
The appearance of the retinal blood vessels can be an important diagnostic

indicator of various disorders of the eye and the body. From the segmented im-
ages, the morphology of retinal blood vessels can be measured in order to study
changes resulting from disease: geometrical factors such as diameters, branch-
ing angles, lengths, tortuosity, etc. and network properties such as connectivity,
branch ordering and, if appropriate, fractal properties. We are currently apply-
ing this segmentation algorithm to analyse these properties using clinical fundus
photographs from normal subjects and hypertensive patients.
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(a)

(b)

Fig. 3. Application of scale-space analysis and region growing segmentation to
(a) red-free and (b) fluorescein fundal retinal images. The first column shows the
original images. The second column shows the segmented vessels. Both images
were photographed with the same resolution (size 1400×1200 pixels), the images
correspond to the scanned negatives.
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