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Abstract
This paper presents an artificial neural networks approach to the

estimation of effective stellar temperatures by means of optical spec-
troscopy.
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The present work is included in a global project, whose final objec-
tive is the development of an automatic system for the determination
of the physical and chemical parameters of stars. In previous works, we
designed a hybrid system that integrated neural networks, fuzzy logic
and expert systems to obtain the stellar spectral type and luminosity
in the MK standard system. Considering those results, we now pro-
pose the design of several neural networks for the calculation of stellar

temperatures.

The proposed networks have been trained with synthetic spectra that
were previously contrasted with statistical clustering techniques. The
final networks obtained a success rate of 88% for public catalogue spec-

tra.
Our final objective is to calibrate the MK classification system, ob-
taining thus a new relation between the temperature and the spectral

type.

Keywords: Neural Networks, Clustering Techniques, Stellar Physical Parameters,
Optical Spectroscopy

1. Introduction

This work is part of a global project that studies the last phases
of stellar evolution. Our main objective is to provide an automatic
system, based on artificial intelligence techniques, that contributes to
the determination of chemical and physical stellar parameters by means
of optical spectroscopy.

Spectroscopy is among the most powerful currently available tech-
niques for the study of stars and, in particular, their physical conditions
(temperature, pressure, density, etc.) and chemical components (H, He,
Ca, K, etc.). In general terms, a stellar spectrum consists of a black
body continuum light distribution, distorted by the interstellar absorp-
tion and reemission of light, and by the presence of absorption lines,
emission lines and molecular bands [Zombeck, 1990].

The stellar spectra are collected from telescopes with appropriate
spectrographs and detectors. Observers collect the flux distribution of
each object and reduce these data to obtain a one-dimensional spectrum
calibrated in energy flux (erg_lcm"2s’1A"1) and wavelength (A).

As part of the above-mentioned global project, we have collected a
sample of approximately 400 low-resolution stellar spectra from astro-
nomical observations that were carried out at several telescopes. In order
to extract useful information from the individual spectra and to study
the evolution in the whole sample, we must determine the main stel-
lar parameters, such as spectral type, luminosity, temperature, surface
gravity, metallicity, etc.



ANNS s for the Estimation of Stellar Parameters 47

The estimation of the stellar parameters is often carried out by human
experts, who analyse the spectra by hand, with no more help than their
own experience. These manual analyses usually lead to a MK classifica-
tion of the spectra. The MK classification system was firstly proposed
in 1943 by Morgan, Keenan & Kellman [Morgan et al., 1943] and has
experienced many revisions ever since [Kurtz, 1984]. This bidimensional
system is the only one that is widely used for stellar classification. One
of its main advantages is that MK classifications are often static, be-
cause they are based on the visual study of the spectra and on a set of
standard criteria. However, the same spectra can be classified differently
by different experts and even differently by the same person at different
times.

Any classification system should hold a compromise between main-
taining the full information of the spectra and the need for a compact
summary of this information. An optimal summary is obviously ob-
tained by a study of the physical parameters.

The manual techniques that are currently used to estimate stellar pa-
rameters are very time-consuming and involve a great amount of human
resources. It would be highly advisable to dispose of automatic, fast
and efficient computational techniques that allow the experts to classify
a large number of spectra according to their physical parameters.

In previous works, we developed an expert system for the classification
of the stellar spectra of Post-AGB stars in the visible electromagnetic
spectral range. The obtained results led us to extend this system to
stars of different luminosities and to add new computational techniques,
such as fuzzy logic, in order to refine the automatic processing of spec-
tra. We have also tested feed-forward, radial-basis functions (RBF) and
self-organising neural networks in order to obtain the spectral type and
luminosity of stars through the analysis of their optical spectra. Com-
bining both techniques, we formalised a hybrid system that obtains MK
classifications and is able to determine the most appropriate method for
each spectrum type. A complete description of these works can be found
in [Rodriguez et al., 2003].

Our previous developments have proven that artificial techniques al-
low researchers to obtain the spectral type and luminosity of stars in a
fast, easy and accurate way. Neural networks in particular have given
excellent results, which is why this paper proposes the design and im-
plementation of several artificial neural networks to estimate the effec-
tive stellar temperature. By carrying out a sensibility analysis of this
technique in the estimation of the physical parameters of stars, we can
determine the best learning algorithm and network structure for this
specific problem.
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2. Methodology

As mentioned in Sect. 1, we have implemented artificial techniques
in order to obtain MK classifications. That first approach combined sig-
nal processing [Kalouptsidis, 1997], knowledge-based systems [Buchanan
and Shortliffe, 1984], fuzzy logic techniques [Bouchon-Meunier et al.,
1991] and artificial neural networks models [Arbib, 1995], integrated by
a relational database that stores and structures all the stellar informa-
tion. Table 1 contrasts the behaviour of the artificial techniques and
that of two human experts who collaborated on this project, applied to
100 unclassified spectra belonging to the standard atlas of spectra from
[Pickles, 1998].

Table 1. Artificial and Manual Techniques for MK Classifications

Approach Global Spectral Type Luminosity
Human Expert A 99.0% 92.0% 81.0%
Human Ezpert B 95.0% 85.0% 70.0%
Ezpert Systems 95.6% 90.3% 78.2%
Puzzy Expert Systems 98.6% 93.5% 79.0%
Backpropagation 97.0% 95.4% 81.0%
RBF 96.2% 94.6% 80.0%
Self-Organizing Maps 73.0% 68.0% 55.0%

These results led us to develop a final hybrid system based on an
expert system that determines the global type of each star and, according
to the type, sends the spectra to different neural networks in order to
obtain their spectral type as well as their luminosity level. The success
rate of that system was very similar to the agreement percentage between
experts in the field (about 80%). This paper does not describe the
development in detail: a more complete description of the models and
stellar parameters used can be found in [Rodriguez et al., 2003]. We
only include a brief explanation of the morphological algorithms so as
to clarify how the spectral parameters, used as the input layer of most
of the proposed neural networks models, are obtained and measured.

2.1 Morphological Analysis

Before presenting the spectra to the neural networks, we carry out a
morphological analysis of all the spectra in order to obtain the values
of the parameters that characterise each spectrum separately. These
spectral parameters include the measurement of 25 spectral features that
can be divided into three types:
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® Absorption and emission lines: including hydrogen, helium and
metallic lines (Ca, K, etc.).

s Molecular bands: hydrogen and carbon absorption bands.

s Rates between lines: CH-K rates, He-H rates.

From a morphological point of view, an absorption line is a descend-
ing (ascending for emission) deep peak that appears in an established
wavelength zone [Zwicky, 1957]. To accurately calculate the intensity of
each line, we carry out an estimation of the local spectral continuum.

That is
I Bk X
C; = (gz:_"_ﬁl_‘.) . (1)

where Cj is the estimation of the continuum for sample j, E; is the flux
in sample %, N is the number of values used to calculate the local spectral
continuum, and X is a binary vector that indicates the representative
fluxes of the spectral continuum in the zone.

A molecular band is a spectral zone in which the flux suddenly de-
creases from the local continuum during a wide lambda interval [Zwicky,
1957]. For the molecular bands, this means that we only have to measure
their energy to decide if they are significant enough. That is

B = [ 100~ [ B0, (2)

where By, is the flux of the band between the samples ! and 7, L is the
projection line, E is the flux function, A the wavelength, ! the left limit
of the band and r the right limit.

2.2 Training and Validation Spectra

In order to build the training set of the artificial neural networks that
will be applied to the problem of estimation of stellar effective tempera-
tures, we have chosen a complete and consistent set of synthetic optical
spectra. The selected spectra were generated using the SPECTRUM v.
2.56. software written by Richard O. Gray. This software is a stellar
spectral synthesis program that allows us to obtain prototype spectra
of a chosen effective temperature and surface gravity. SPECTRUM is
distributed with an atomic and molecular line list for the optical spectral
region 3500 A to 6800 A, called luke.lst, suitable for computing synthetic
spectra with temperatures between 4000K and 20000K. The details on
the physics included in this sofware can be found in [Gray, 2003].
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For the generation of synthetic spectra we also used the models cal-
culated by Robert Kurucz [Kurucz, 1979]. The atmospheric model is
a tabulation of temperature and pressure at range of mass depths in
the stellar photosphere, calculated on the basis of a variety of opacity
sources. Each model is characterised by four parameters: effective tem-
perature (Tefy), metallicity (/M/H]), microturbulence velocity (Vmicro)
and surface gravity (log g) .

We generated a total of 350 solar metallicity spectra with effective
temperatures between 4000K and 20000K and surface gravity from 0.5
to 5.0. This set of synthetic spectra covers the spectral range K-B with
luminosity levels I to V (in the MK system). The spectra were generated
in the 3500-6800 A range, which is the wavelength interval where the
software is capable of correctly obtaining synthetic spectra.

Before training the neural networks, the synthetic spectra were con-
trasted with statistical clustering techniques in order to verify their suit-
ability and to avoid dispersions in the whole sample.

Grouping techniques are often used as a tool to verify and test the
quality of an established clustering of data: the grouping algorithms
make their own division into classes of the input data. Our purpose was
to try to discard those spectra that were not similar to any others. We
implemented the max-min and K-clustering algorithms [Kaufman and
Rousseuw, 1990]. The data groups obtained by these two techniques
prevent us from using some of the initial spectra that could not be in-
cluded in any of the clusters. We also observed that the algorithms were
able to accurately group the spectra of low and medium temperatures
(4000K-8000K), although both techniques stored all the spectra with
temperatures above 8000K in the same category. Obviously, they are
not capable of separating spectra with temperatures higher than 8000K.
Finally, we built the training set with 348 synthetic spectra, excluding
those that were discarded by the clustering techniques.

As for the test set of spectra, we used the public catalogue of Pickles
[Pickles, 1998], choosing only the 79 spectra that match our temperature
range.

2.3 Artificial Neural Networks Implementation

The neural networks used in this experimentation are based on su-
pervised learning models and backpropagation networks [Rojas, 1996]
in particular. In our experiments, we have made use of three different
learning algorithms:

®  Standard backpropagation: as the most common learning algo-
rithm, it updates the weights after each training pattern.
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® Enhanced backpropagation: it uses a momentum term that intro-
duces the old weight change as a parameter for the computation
of the new weight change.

s Batch Backpropagation: in standard backpropagation, an update
step is performed after each single pattern; in batch backpropaga-
tion, all the weight changes are summed over a full presentation of
all the training patterns (one epoch). Only then, an update with
the accumulated weight changes is performed.

As for the topology, the different networks that were implemented
are shown in Table 2. These topologies have been tested for the three
backpropagation learning algorithms.

We built the input patterns for the nets with 659 flux values (from
3510 A to 6800 A), as well as with the 25 spectral features obtained
by means of the morphological algorithms described in Sect. 2.1. The
output of all networks is a continuous function that obtains the effective
temperature in the form T, = ((log Tesy -3)/2).

Table 2. Topologies tested for Backpropagation Networks

Input Patterns Hidden Layer
659 flux values 100:50:10:3
659 flux values 10:5:3*

659 flux values 10:10

659 flux values 5:5

25 Spectral Parameters 10:5:3

25 Spectral Parameters 10:10

25 Spectral Parameters 5:5

* Best performance topology.

We used the Stuttgart Neural Network Simulator (SNNS v.4.1) [Zell,
2002] to implement the above described networks and to transform them
into C code, so they can be integrated into the previously developed tool.
In the training phase, the weights were updated in a topological order
and initiated randomly with values in the [-1, 1] interval.

During our experiments, we found that the best topology corresponds
to an enhanced backpropagation network 659:10:5:3:1; that is, a network
with 659 flux values in the input layer, three hidden layers with 10, 5
and 3 neurons respectively, and 1 neuron for the effective temperature
in the output layer.
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2.4 Enhanced Techniques

While analysing the success rates of the implemented neural networks
for each different temperature, we observed that all the networks have
a higher performance for temperatures between 4000K-8000K (less than
200K mean error). Considering this fact, we separated the input spectra
into two sets (4000K-8000K and 8000K-20000K) and trained the best
performance network once again, but only with the patterns that corre-
spond to spectra with temperatures in the interval 8000K-20000K. This
“overtrained” network resulted in a better performance for all the test
spectra.

An additional research consisted in analysing the weights of the output
layer units of the best network so as to determine, for each temperature
interval, which input parameters have more influence on the output. We
were able to reduce the inputs of the network because we considered only
the sufficiently significant flux values. This enhanced strategy allowed us
to obtain networks that converge sooner, and has resulted in a significant
improvement of the performance of the original artificial neural networks
(around 2%).

3. Discussion and Results

The best implemented neural networks are able to determine the tem-
perature of the 79 selected spectra from the test catalogue with an error
rate below 15% and a mean deviation of 300 K, according to the esti-
mation made by Pickles [Pickles, 1998].

The experts in this field usually work with a mean error of 10% of
the correct temperature. Taking this error rate into account, our neural
networks approach is able to correctly estimate 88% of the effective tem-
peratures with a minimal mean deviation of 3% (for the coolest stars)
and a maximum mean deviation of 7% (for the hottest stars). The final
performance is shown in Table 3.

As shown in the results, the best temperature estimations are reached
for cooler stars (4000K-8000K), whereas the stars with higher temper-
atures present a higher error rate; one explanation of this particularity
could be that the training set includes few stars of this temperature
range, because the models on which we based the generation of the
synthetic spectra (Kurucz) can generate only 1 “hot spectrum” for ev-
ery 4 “cool spectra”. Including more spectra for higher temperatures
is not meaningful, because the error bar for this interval is established
in 1000K. So, for higher temperatures, we can only include one sample
spectrum for every 1000K, whereas for cool stars, where the error bar
is 250K, we can include four samples. In future extensions, we hope
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to increase the success rate for hot stars by designing a net of neural
networks that includes different trained networks for hot and cool stars.

Table 3. ANN Performance for Effective Temperature

Teff Spectra number Success rate Mean temperature error
4000-6000 36 97.22% +230 K
6000-8000 19 89.47% +180 K
8000-10000 10 60.00% +360 K
10000-20000 14 85.71% +580 K
Total 79 88.60% + 300 K
4. Conclusions

This paper has presented a computational approach to the estimation
of the physical parameters of stars and, in particular, the calculation of
effective temperature by means of artificial neural networks.

We have described several models of neural networks and analysed
their performance and results to discover the best approach to the es-
timation of each temperature range. Backpropagation networks were
trained with approximately 350 synthetic spectra that were previously
contrasted with statistical clustering techniques. In order to obtain the
input patterns of the neural networks and extract and measure spectral
features, we used the morphological analysis algorithms that were de-
veloped in the expert systems approach. Several networks were trained
with this parameterisation, and other networks with full flux values; the
second strategy yielded the best performance.

The best networks have reached a success rate of approximately 88%
for a sample of 79 testing spectra from public catalogues. For the de-
velopment and evaluation of the system, we can count on the essential
collaboration of experts from the area of Astronomy and Astrophysics
of the University of A Coruiia.

As an additional study, the best implemented networks were analysed
to determine the flux values that are more influential in the output for
each temperature interval; by training the networks with these small
input patterns, we increased the performance of the original networks.

At present, we are analysing other types of neural structures and
learning algorithms in order to improve the classification properties. We
are also studying the influence of differences in signal to noise ratio
in the resulting classification, since our final objective is to obtain a
calibration that can determine our own relation between temperature
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and MK classifications. We are also completing the development of our
stellar database, STARMIND (http://starmind.tic.udc.es), to make it
accessible through the Internet.
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