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Abstract: Reasoning Systems (Inference Mechanisms) and Neural Networks are two
major areas of Artificial Intelligence (AI). The use of case-based reasoning in
Artificial Intelligence systems is well known. Similarly, the AI literature is
replete with papers on neural networks. However, there is relatively little
research in which the theories of case-based reasoning and neural networks are
combined. In this paper we integrate the two theories and show how the
resulting model is used in a medical diagnosis application. An implementation
of our model provides a valuable prototype for medical experts and medical
students alike.
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1. INTRODUCTION

Research in Artificial Intelligence (AI) in medicine has relied on progress
in research in knowledge bases and reasoning systems (inference
mechanisms). Over the years many medical diagnosis systems – MYCIN,
Iliad, DXplain, CADIAG-II, INTERNIST, QMR, and MDDB, to name a
few – of which MYCIN [1, 2] is arguably the most popular, have been
developed. The predominant form of knowledge in MYCIN is represented as
a set of rules, and the reasoning system used is backward chaining. Iliad and
DXplain [3] both use Bayesian reasoning to calculate probabilities of various
diagnoses. CADIAG-II [4] – Computer-Assisted DIAGnosis – is a
computer-assisted consultation system to support the differential diagnostic
process in internal medicine. CADIAG-II uses fuzzy-based reasoning,
however, the underlying knowledge base used is not explicitly described in



12 Hadrian Peter, Wayne Goodridge

the literature. The knowledge base of INTERNIST, and the strategy used by
INTERNIST to address the diagnosis of patients, are described in [5, 6,7, 8].
QMR (Quick Medical Reference) [9, 10, 11], a reengineering of
INTERNIST, is an in-depth information resource that helps physicians to
diagnose adult disease. However, again, the underlying reasoning and
knowledge systems employed in this diagnosis system are not readily
available in the literature. Although MDDB [12] uses case-based reasoning,
it uses simple lists as its knowledge base. A disadvantage of most of these
methods is that, although they exhibit the capability of making differential
diagnoses1, they do not offer definitive medical consultation2. A few earlier
attempts at combining the theories of neural networks and case-based
reasoning are found in [13,14,15].

In this paper we attempt to correct the shortcomings of the above
methods by presenting a new approach to medical diagnosis in which we
combine a knowledge base, whose underlying structure is the neural network
[16, 17,18], with a Case-Based Reasoning system [19,20,21, 22]. We begin
by reviewing case-based reasoning (CBR), we identify problems with such
reasoning when used in the medical domain, and provide the motivation for
our approach. We then examine neural networks, in particular the
mathematical underpinnings of heteroassociative memory neural networks
[23], and how they are incorporated in our model. The architecture of our
model – the Case-based Memory Network (CBMN) – is introduced in the
next section. We then present the medical diagnosis process in our model,
followed by the operational model, a short simulation, and a consultation
session. The paper ends with a brief evaluation of the model.

2. MATERIALS AND METHODS

2.1 Case-Based Reasoning

Case-based Reasoning (CBR) [19] is an inference mechanism that has
found increasing use in expert systems. It consists of the following four
stages: retrieve the most similar case or cases; reuse the retrieved case or
cases to solve the problem by analogical reasoning; revise the proposed

1

2

A differential diagnosis results when 2 or more diagnoses are possible. These diagnoses are
prioritized.

Definitive medical consultation between the user and the system leads to a concrete
diagnosis.
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solution; retain the parts of this experience which are likely to be useful for
future problem solving.

When CBR is applied to medical diagnosis systems, the following
problems are usually identified:

There is a concentration on reference rather than on diagnosis.
There is a lack of intelligent dialog. This may result in “missing
information” and therefore a decrease of the accuracy of the
diagnosis.
Inability of most similarity algorithms to handle attributes whose
values are unknown.
If the case base contains cases with attributes that take on
multiple (rather than just binary) values, then the case base will
be quite complex – requiring large numbers of predicates,
relations, constraints, and operators [24].
Updating (revision) of the case base requires complex algorithms
and/or highly skilled users.

To overcome these problems, therefore, we developed a variation to the
CBR technique called the Case-Based Memory Network (CBMN) model
[25]. It was primarily developed to solve medical diagnostic problems and
not “pure” classification problems [22]. To simulate the CBMN model we
have also designed and implemented an expert system prototype called
CaseB-Pro - an interactive system that accepts observed findings, generates
appropriate questions, and makes conclusions based on the observed
findings.

2.2 The role of Neural Networks

The attraction of neural networks in our model is that they have the
ability to tolerate noisy inputs and to learn – features which are very
desirable in a medical diagnosis system. The CBMN uses a special type of
neural network called a heteroassociative neural network [23]. This neural
network provides a mechanism for learning, recording what has been learnt,
and identifying stored knowledge. The network stores disease patterns
associated with cases, and also recalls cases from memory based on the
similarity of those cases to the symptoms of the current case. This technique
is different from the similarity measure and retrieval techniques such as kd-
trees and Case Retrieval Nets (CRNs) [22] employed in CBR. Related
classical works in the field of associative memories are found in [26, 27].
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Let the findings associated with a case be represented by a vector s(p),
where p = 1,2, ...,P. Each vector s(p) is an n-tuple. Let the case associated
with findings, s(p), be represented by a vector t(p). Each t(p) is an m-tuple.

In our model we store (findings, case) pairs – that is, p =
1,....,P. Here, a “case” is an actual patient, and a “finding” is a symptom,
sign, or an investigation. “P” is the maximum number of cases in the
database, where

We also define a weight matrix where

The heteroassociative neural network can be described as a discrete
network where the input and output nodes take values from the set {-1, 0,1}.
We interpret the values as follows: -1 represents the findings that are absent,
0 represents the unknown findings, and 1 represents the findings that are
present. Now (observed findings) can be represented as an n-tuple
input vector, say k. Vector k will then be mapped to the domain by the
matrix – findings will be mapped onto cases. That is,

or

where

Example

If the output layer of the network contains 3 nodes, then some of the
following mappings are possible:

map 1
map 2
map 3

Whenever new findings are presented to the current case, k is changed
and, when multiplied with the weight matrix the vector t(p) is
determined. This value of t(p) is then used to determine a set of actual cases
from the case base that matches the observed findings.

3 The term training set is sometimes used to describe the vector t(p).

and
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If a node in vector t has a positive value, then this node represents a case
in which the disorder associated with that case matches the current observed
findings. For example, in map 1 the disorder associated with case 1 is a
possible candidate.

If a mapped vector t contains nodes with varying positive values, then the
node with the largest positive value is most likely to be the case that has the
most likely associated disorder for the observed findings. For example, if t =
(3,1,-1) then the disorders associated with cases 1 and 2 are likely. However,
the disorder associated with case 1 is the more likely candidate.

A disorder, say k, is a part of a definitive diagnosis only if the available
findings that will lead to a diagnosis of k exceed the findings that are known.
This serves as the point at which we stop posing questions to the system.

Let unknown input nodes not included
and only unknown nodes included
If then k can be a part of the definitive diagnosis.

2.3 Architecture of the CBMN

In its simplest form the CBMN structure consists of input information entity
(IE) nodes and output (case) nodes. The design goal of the CBMN model is
to ensure that a knowledge base, and learning and reasoning mechanisms can
be incorporated in the same data structure and be used for diagnostic
problem solving. In diagnosing a patient the physician utilizes information
from past typical or known exceptional cases that are usually described by a
list of symptoms.

To design a medical case base used for diagnostic purposes it is
necessary to have two types of cases in the case base [28]:

1.

2.

Case Generalizations called prototypes (pure cases) - these are
the “classical” (textbook) cases as viewed by the medical expert.
General domain cases – these are actual cases.

The features of disorders – in the input layer of the network - are
mapped onto case prototypes (in the hidden layer) which represent the “text
book” view of disorders in terms of its identifying features. A case –
representing the output layer of the network - is an instance of a prototype,
in the same way that an object is an instance of a class in the object oriented
programming paradigm [29, 30]. The arrows in the diagram denote weighted
links from the input nodes to the case nodes, and the calculation, and
adjustment, of these weights is known as training the network.

Cases are actual examples of patients and, in the CBMN model, cannot
exist without prototypes, which are the physician’s representation of
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disorders. That is, every case in the case-base must be associated with one
and only one known classical medical case (prototype).

Figure 1. The CBMN Architecture with Prototypes

2.4 The Medical Diagnostic Process in the CBMN

A medical consultation consists of the following stages:

Recording of symptoms and patient history.
Elicitation / Identification of signs.
Formulation of notion of diagnosis [31] leading to a hypothesis and
differential diagnosis.
Investigations to narrow down or confirm the diagnosis.

Medical diagnosis depends heavily on known facts about the case in
question. The facts are used to form a notion of diagnosis [31], which results
in a hypothesis. This hypothesis is strengthened or weakened by discovering
more facts about the current case, which in turn invokes a different notion of
diagnosis. This process is continued until a definitive diagnosis is found. So,
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again, making a definitive diagnosis is one of the essential differences
between CBMN and many extant medical diagnosis systems.

The new approach to the CBMN model includes a certainty factor4 [18]
and a prevalence factor for each prototype in the case base. A certainty
factor is a number ranging from 0 to 10 that represents the physician’s
impression of the significance of the presence of a feature with respect to the
prototype. A prevalence factor is a number ranging from 0 to 10 that
expresses the physician’s impression that a patient will have the disorder
associated with a given prototype. The certainty factor and prevalence factor
may or may not be a scientific measurement since it represents only the
physician's notion of the disorder.

The presence or absence of features will affect the physician’s belief or
disbelief in his hypothesis. Hence the concept of the belief factor is used in
the CBMN to “balance” a physician’s belief and disbelief in a hypothesis.

We now present the algorithm to find the next best question to be asked at
a given stage of the medical consultation process. The system cannot reach
any definitive conclusions until it has exhausted each stage.

1.
2.
3.

4.

5.

6.

Find the set, say S, of prototypes that match the observed findings.
Find the prototype, say k, with the highest belief factor in the set S.
Use the unknown feature, say f, of prototype k with the highest
certainty factor to generate the next question.
If the certainty factor of f is greater than a question threshold value
set by the experimenter), then the system moves to the next
consultation stage until the investigation stage is reached.
When a diagnostic stage is finished the system lists all the prototypes
with a confidence measure greater that a threshold value as candidates
for the diagnosis of the presented features.
Repeat steps 1-5 above until the investigation stage is completed.

The main objective of this algorithm is to find the optimum diagnostic path
that will: (a) Get the correct diagnosis by asking the minimum number of
questions and (b) exhaust each diagnostic stage before moving on to the
next.

2.4.1 Simulation

The simulation of the diagnostic process is implemented in Delphi using a
prototype called CaseB-Pro. Its functional specifications can be divided into

4 This model is an example of a truth-functional system for uncertain reasoning.
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the following two steps: training the system to identify new cases and using
the case base to gain a computer-generated diagnosis.

The two main design goals of the CaseB-Pro prototype - an expert
system that combines the theories of neural networks and case-based
reasoning – are to implement and test the CBMN model and to develop a
computer system that can assist medical students and physicians with the
diagnosing of patients. In section 4 we provide an evaluation of the model
and an assessment of its “success”.

Figure 2. Creating Prototype for CML

The CBMN model uses three types of data structure to represent
knowledge. These include: feature information entity data structures,
prototype information entity data structures and case information entity data
structures.

The training of the model involves adding prototypes to the case base and
then, if desired, adding sub-prototypes and actual cases associated with those
prototypes. Training also involves the assignment of symptoms, signs,
investigations, and exclusions. Training is conducted by using data from
classical and actual cases of the disorder in question. The network is trained
each time a new case is added to the database, or an existing case is
modified. The neural network is used to store and recall cases. Each
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prototype, sub-prototype, and case, of the case base, has in common a node
identification number that uniquely identifies the network node in question.

Figure 2 illustrates how the prototype for the Chronic Myeloid
Leukaemia (CML) disorder can be added to the system. Other prototypes
can be added in a similar manner.

2.4.2 Interacting with the System

Figure 3 provides the interface through which users – namely, medical
students, physicians, or other medical experts - interact with the CaseB-Pro
system. A typical session (consultation) is invoked when a user types the
“consult” command. A list of symptoms is then shown where the user can
select major presenting symptoms in the case under consideration. The
system then allows the user to enter examination results of the case in
question. When the examination stage is exhausted the consultation enters
into the investigation stage. An example consultation is provided for
illustration.

Figure 3. Example of part of consultation session
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3. RESULTS

For purposes of testing the system ten cases of Haematological
conditions and related disorders were added to the case base. In order to
make a preliminary evaluation of CaseB-Pro’s diagnostic capabilities, two
medical experts who specialize in Haemoncological disorders independently
simulated 18 classical Haematological cases within the scope of the system.

Key of symbols/abbreviations used in the table:

DD = Differential Diagnosis
+++ = DD Relevant (Related Disorders)
++ = DD Relevant (Unrelated Disorders)
+ = DD Possibly Relevant
- = DD Irrelevant
ALL = Acute Lymphoblastic Leukaemia
AML = Acute Myeloid Leukamia
AA = Aplastic Anemia

MM = Multiple Myeloma
NHL = Non Hodgkins Lymphoma

CML = Chronic Myeloid Leukaemia
MF = Myelofibrosis
PRV = Polycythaemia Rubra Vera
TB = Tuberculosis

Table 1 shows the results of five out of 18 randomly selected simulated
interactions. It is, however, important to note that although only 5 of the 18
cases are included in the table, in none of the 18 cases did the medical expert
and CaseB-Pro arrive at totally different diagnoses. More specifically, in 9
of the 18 (50%) of the cases the diagnoses were the same at the end of stage
2 (see section 2.4) of the medical consultation. Of the 9 cases in which the
diagnoses did not match exactly at the end of stage 2, 7 (77.8%) of them
resulted in a match after the differential diagnosis (third) stage. The
remaining 2 cases, for which concrete results were not possible at the end of
stage 3, produced results in concurrence with the medical expert’s diagnoses
after further investigations were conducted (in stage 4).

As indicated in section 2.4.1 CaseB-Pro was also used as a teaching tool.
To test this feature of CaseB-Pro, two students in the advanced stage of their
medical studies were encouraged to interact with the system. Initially the
students complained that they felt intimidated by the system and feared that
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the system would expose their lack of knowledge. However, after being
persuaded by their medical instructor to use the system as a classroom
exercise, the students were noticeably more relaxed. Under the guidance of
their medical professor, the students were allowed to conduct an extensive
interaction with the system in an effort to diagnose MM, MF, PRV, ALL,
and AA (please see the table below). In 80% of the cases the students were
able to arrive at the correct diagnoses largely due, they reported, to the ease
with which they were able to follow the “trend of thought” used by CaseB-
Pro.

4. EVALUATION AND CONCLUSION

Many medical diagnosis systems have been designed and are currently in
use. The originality of our approach, however, is that we have designed and
implemented a system that combines case-based reasoning and artificial
neural networks. Because of the restriction placed on the length of our paper,
we were unable to provide a more detailed comparison with other
approaches. Consistent with our goals we were able to (a) implement and
test our model, and (b) to develop a computer system that can assist medical
students and physicians with the diagnosing of patients. We have been able
to develop a prototype, the CaseB-Pro, based on our new approach, whose
authenticity medical experts and medical students were able to test.

It may be too early to make strong pronouncements about the success of
our model because it was tested on a small domain. Therefore more research
using our approach should be conducted using larger domains and different
evaluation strategies. Thus far the feedback from persons who have
interacted with our prototype has been encouraging, and therefore we are
confident that with further development and testing our prototype can evolve
into a useful, full-fledged system.
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