A MEMBERSHIP AGREEMENT ALGORITHM
DETECTING AND TOLERATING
ASYMMETRIC TIMING FAULTS

Hakan Sivencrona', Mattias Persson® and Jan Torin®

ISP Swedish National Testing and Research Institute, Software Electronics, Brinellgatan 4,
SE-501 15 Bords, Sweden; *Chalmers University of Technology, Department of Computer
Engineering, Rannvagan 6, SE 412 96 Géteborg, Sweden

Abstract: Our paper presents a new membership agreement algorithm that address
asymmetric timing faults and includes a new tool simulating TTP/C clusters.
The proposed algorithm flags deviating or slightly untimely messages to
assure that single marginal transmitting faults are detected and that only the
faulty node will be expelled. The tool can demonstrate the behavior of
membership agreement algorithms such as the original TTP-C1 algorithm or
our modified flagging algorithm. The performed simulations use experimental
results from heavy-ion fault injection logged timing faults. The gathered
results show the rare faults, which made a network using the original
algorithm either collapse or become degraded, are detected and handled with
the new algorithm without loss of more than the faulty node.

Key words: Membership agreement; Asymmetric timing faults; Fault detection.

1. INTRODUCTION

A severe type of communication faults is the infamous Byzantine fault
class, which includes so-called slightly-out-of-specification faults', SOS,
which may cause inconsistencies at the communication level in distributed
systems when a number of nodes receive a message while other nodes fail to
correctly receive the same message. This may affect the application with
problems such as reaching application consensus.

In the FIT project (IST-1999-10748)%, a time-triggered architecture® was
evaluated by use of several fault injection techniques. One major finding was
that the fault detection and error processing with respect to SOS faults was

64 Hdkan Sivencrona, Mattias Persson and Jan Torin

insufficient', which had major effects on the application due to
communication black out and the degraded operation of the cluster.

There are basically two approaches to design a system for a specific fault
tolerance: a) to have sufficient redundancy to mask the Byzantine fault®, b)
to implement methods to identify (diagnose) and reconfigure the system
before additional faults arrive®’. We present a diagnosis algorithm where the
basic idea is that messages are “quality stamped” with respect to the
timelines they demonstrate at each receiving node. The designed algorithm
differs significantly compared to the original implementation of TTP/C
where no effort has been put to detect a specific node, rather the caused
inconsistency, solved through minority partition reintegration.

The paper is organized as follows. First we briefly present TTP/C,
especially mechanisms®'' vital for the development and understanding of
our algorithm such as membership agreement and clique avoidance.
Secondly Byzantine faults and slightly-out-of-specification faults are
described. Then the membership agreement is presented with respect to
asymmetric faults while the simulation tool is presented in section five.
Section six contains the simulation results while section seven concludes the

paper.

2. TIME-TRIGGERED PROTOCOL CLASS C

TTP/C? basically provides three services; clock synchronization’,
deterministic message sending, and a membership service®. The clock
synchronization information uses the FTA clock synchronization algorithm
where the time data is extracted from the arrival of the latest four messages.
The two most extreme clock values are removed and the sum of the
remaining clocks’ values is averaged, a correction term. The nodes will
adjust their clocks with the correction term and thus remain synchronized
with the cluster.

The membership agreement®'® in TTP/C is represented by a unique
identification vector, which is stored in all nodes as a local membership
vector. All nodes update the membership information continuously. The
membership service is closely coupled to features such as clique
avoidance'’, which further improve the error handling capabilities in a
distributed system.

If the membership vectors differ between sending and receiving nodes,
the CRC calculation should not produce a readable message. When a CRC
error is found, the receiving node raises a membership error for the sending
node locally (after some internal checks such as implicit acknowledgement
algorithm, see below) and the corresponding membership vector value is set

A Membership Agreement Algorithm Detecting and Tolerating ... 65

to false. If the frame is not semantically correct it is considered as an invalid
frame, which could be due to a transmission error, and the membership bit is
in this case set to false. If a node discovers that it is not in agreement with
the majority of the active nodes in the cluster, it is not allowed to send and
has to reintegrate this is guaranteed by the clique avoidance algorithm.

Starting with its own sending slot all nodes in a cluster counts all
incorrect nodes in a fail counter, F'C and correct nodes in an accept counter,
AC during one TDMA round. AC + FC = n, where n is the number of nodes
in the system before failure (or operating). Null frames are not counted by
either F'C or AC and it is assumed that all nodes detect Null frames thus 7 is
decreased by detected Null frames. If FC > [the cluster is considered a
partitioned cluster otherwise the acknowledgement algorithm is enough to
retain a consistent cluster.

A node may transmit if FC < n/2 if n is even and (n+1)/2 if n is odd
which results in that FC must be < n/2. An in depth explanation can be
found in'.

When a node, lets say A, has sent a message it usually (can be a sending
error) increases the AC counter. If it detects a CRC error during the two
succeeding TDMA slots it does not passively await the resolution of the
upcoming situation. TTP/C has an algorithm to address this situation, the
implicit acknowledgement algorithm.

The algorithm introduces the denotation of first and second successor. If
the first succeeding node B does not have the same membership list, A
decides to preliminary remove B from its local membership list and increases
its FC. If it was B that was receive-faulty the situation will be solved by a
second successor node, C. If C sends a syntactically correct message, e.g.
with B removed from the membership, node A is acknowledged. If not, B is
probably acknowledged and A has been removed from Cs membership, A is
thus not acknowledged. A was as a result faulty. A removes itself from the
membership list but adds both B and C to the membership list and updates
AC and FC correspondingly and then reintegrates. The implicit
acknowledgment algorithm is completed.

3. BYZANTINE FAULTS

Since its initial presentation the Byzantine Generals problem'? has been
the subject of intense academic scrutiny, leading to the development of
numerous Byzantine-tolerant algorithms and architectures®”". A sub-class
of Byzantine faults are slightly-out-of-specification faults' which occur in
the transition between the analog and discrete world. In the time domains
these faults occur when entities get different views of the time, a marginal

66 Hdkan Sivencrona, Mattias Persson and Jan Torin

transmission. A message that is timely at a certain node may be considered
as untimely at another node due to different drifts of the local clocks or
internal errors.

In TTP/C all nodes have a start of frame window where an expected
message must be received (with respect to start of frame transmission) to be
processed further by the node and application. This window is usually so
small that a feasibly low jitter can be achieved. When the receive window
has opened up for message reception a counter is incremented every
microtic, from for example -40 microtics before expected arrival time and up
to 40 microtics after expected arrival time, a span of 81 microtics. Within
this span the design specific window is specified, for example -20 <
acceptable reception time < 20 microtics. Settings for this window depend
on the size of the TDMA slots and the time for a TDMA round.

‘ TOMA slot :

Figure 1. TTP/C membership agreement and clique avoidance handling an Asymmetric fault
(node B sending in slot two) + = nodes resetting

In Figure 1, an asymmetric fault scenario is shown. Triangles pointing
upward mean agreement with the sent message while triangles that point
down is in disagreement while squares mean sending node. When B
transmits, second row, node A and C raise an error. D and E on the other
hand accept the message.

In the third TDMA slot (when C sends its opposing opinion to the
system) the inconsistency is known to parts of the system (node B, D and E)
while A still regards the upcoming situation as a normal fault (non-
asymmetric).

D is the next node to transmit and must now decide which opinion it
should have (Assume for a while that the message sent by C can be viewed
by D, in TTP/C this would have caused a CRC error). In TTP/C it does not
accept the message from C. We now have a situation where two nodes out of
five have expressed their opposing view. D uses, in this case, the clique
avoidance algorithm to decide. The upcoming situation is solved as

A Membership Agreement Algorithm Detecting and Tolerating ... 67

described in Figure 1. Node A and C will cease their transmission because
their fail counters will be larger than their accept counters. The faulty node is
on the other hand still synchronized and remains undetected.

4. FLAGGING ALGORITHM

The proposed algorithm uses some assumptions. Only one node is faulty
during one TDMA round. The algorithm is assumed to be a transparent layer
on top of the ordinary TTP/C mechanisms, not voiding any of the original
properties.

Following assumptions have been used with respect to the receive
window, see Figure 2:

Flag and reject Flag and accept Accept

20 uT -10uT 10.uT /

A T A
B FARY

uT 20uT

10
[
T

<«—— Arrival time of Node 4 message

Figure 2. The modified receive window where node 4 is received early, too early by node 1

* A message (node) is declared invalid and removed from membership
list (if it arrives later than 20 microtics or earlier than 20 microtics from
expected arrival time. —20 < expected arrival < 20, a window of 40
microtics. A message received outside this window of 40 microtics is also
flagged.

* A node is not allowed to transmit if the own clock synchronization
calculation results in a clock correction term that is larger than 10 microtics

* A message that arrives within 10 to 20 microtics from expected time is
declared as a message possible SOS-message. The message is flagged in an
internal register by the communication controller.

* A node that has a non-empty flag register will not immediately remove
disagreeing nodes without an extra check with respect to flag position

68 Hdkan Sivencrona, Mattias Persson and Jan Torin

If a received message, M, is declared invalid due to a faulty CRC
calculation (non-readable message) the receiving node R will check its flag
register for flags, since voting message M as invalid at this state could result
in that the majority regards R as a faulty node. R will thus assume that the
flag corresponds to a node F'that the sending node S has removed from its
membership, thus causing the CRC error. R changes the corresponding bit in
the membership vector and recalculates the CRC. Following this assumption
node R tries once more to access message M and if this succeeds it will
accept the message as valid assuming that it was because of a timing fault S
had removed F which R did only flag. All other nodes that have the same
view about this node and flagged the same will update their membership
vectors correspondingly. All nodes will thus have removed node F that was
flagged by everyone but the faulty and removed from membership by at least
one. In cases when not all nodes, except the faulty, have flagged the node
the original algorithm will solve the situation. All nodes will then recount
their accepted messages and update their fail counters and accept counters
accordingly. This way all nodes should, in case of a single fault, have the
same consistent view of operating nodes within one TDMA round. Any
shortage of the algorithm will be solved within a second TDMA round, see
Figure 3 for a corresponding situation.

A B Cc D E A

A A & A A [[A g,,\ /\ ‘,@\ %oﬁz?:n
V-le| V-00£0 :|A & £ V- V-

:;\-v Crﬂ&- 31&- |C|-A-A
AVA-' -A 4!/\"/\"' "/—K
K+ KK KV KK

' TOMA siot TDMA slot

8]

(A]

F-.

Figure 3. Membership behavior under two fault scenarios

One variation of an SOS faults shows up if the third node, C, flags
message B and transmits this knowledge. C has thus not removed B from
membership while the successor D has already done so, see Figure 3 (right).
This means that node D will receive a message that could differ on two
places with respect to the own membership list (D has already removed B
from membership and has a pending membership change on C, meaning it
would have removed C from the membership list using the original
algorithm). But C and D do only disagree about their opinion concerning B.

A Membership Agreement Algorithm Detecting and Tolerating ... 69

Node D will still keep the opinion about B and raise a CRC error on B, but
accept node C. D will be notified about this agreement about B upon
inverting the membership bit in question (flagged position). This will cause a
transient inconsistency in the system, which is a complex state, meaning we
disagree over one message but accepts each other, which is against the
prerequisite of the original membership agreement protocol utilization but a
prerequisite for the accurate operation of the flagging algorithm.

Figure 3 furthermore shows that node D and E did not accept the
message in TDMA slot 2 and that node C must change its already public
membership view. D and E will win while A and C will adapt to this view.

The algorithm is interpreted in Figure 4 which shows the flowchart of the
algorithm which is then implemented and tested using our tool.

Flag register is updated at the same time
as the membership vector

CONT - the original program flow is
followed

inv membfﬂwn id); CONT Yes

-
| inv_membiflag_ pos]

CONT

@c = trug; >—— ———No
Yes
emb(flag:
@Yes
Yes

save_hist,
adopt memb r!set J
{ CONT CONT (CONT) CONT) (CONT)

Figure 4. A flowchart of the algorithm

rlag msg

inv_memb(flag_pos) flag_myself

No

adopl_memb

70 Hdkan Sivencrona, Mattias Persson and Jan Torin
5. SIMULATION SETUP

The purpose of the TTP/C algorithm simulator is to provide a simple
simulation environment for a TTP/C network. It simulates a network of n+/
nodes, where n is the number of nodes for which experimental log files
exists, where one node is assumed to be the fault-injected without any
logged data available, see Figure 5.

Heavy-ion fault |
b i | sos
injections " guperiment
s | fles

- |

Slmulallun

|| data files "W
— +—--’ Parser

T |
| | TIFIC Nodes
| Simulation GUI : = T

|

il

—_— . Modified Algorithm|

L e

r"----—" | Manual
Inspection of
output files

Figure 5. The basic work flow of the simulation tool environment

The application mainly consists of three parts; the Simulator GUI which
controls the flow of the application, the Parser which parses the experiment
files and the TTP/C Node, simulating the behavior of a real TTP/C node.
Using the object orientation principle, all significant data structures such as
the TTP/C Message and the Membership Vector are represented by objects.

Through the Simulator GUI the user controls the simulation. After
invoking the Parser, the Simulator sets up the simulation and calls the TTP/C
nodes. Because not all experiment logs are identical, the Parser is actually a
Java interface. This allows the user to tailor-make one Parser per log file
type, as long as it contains a specified method to parse a set of log files.
When running, the parser creates a scenario from n-1 files, where n is the
size of the cluster.

Finally, the TTP/C Nodes consists of TTP/C protocol implementations.
Utilizing the same versatility as the Parser, the protocol is also an interface.
Simplifying the program flow, each simulated node actually processes all
messages received from one TDMA round at the same time. The TTP/C
message is distributed to all “nodes” in the network, using the Membership
vector calculated by the protocol implementation and the time drift obtained
from the same slot in the logged scenario.

A Membership Agreement Algorithm Detecting and Tolerating ... 71
6. SIMULATION RESULTS

The SOS scenarios were first executed with the original algorithm.
Figure 6 shows the last part of the printout of one experiment. When the
same object file was executed using the flagging algorithm the cluster
remained synchronized but the faulty node was detected and expelled from
the membership at all nodes.

One type of scenario was not solved perfectly. The flagging algorithm
did not resolve situations when more than one node was badly synchronized,
meaning this node did not flag the SOS-node. But the cluster remained
synchronized in throughout al test cases but in some cases with two nodes
expelled.

Node 3: Message from node 0,

Sender 0, Drift = 0, Membership = 0x7
Node 3 thinks node 0 is OK!

Node 3: Message from node 1;

Sender 1, Drift = 0, Membership = 0x7
Node 3 thinks node 1 is OK!

Node 3: Message from node 2;

Sender 2, Drift = 0, Membership = 0x7
Node 3 thinks node 2 is OK!

Node 3 Membership: 0x7

Mode 3: Message from node 0;
Sender 0, NULLFRAME
Node 3 thinks node 0 is NOK
Node 3: Message from node 1;
Sender |, NULLFRAME
Node 3 thinks node 1 is NOK
Node 3: Message from node 2;
Sender 2, NULLFRAME
Node 3 thinks node 2 is NOK
Node 3 Membership: 0x0

Performing acknowledgement algorithm,

my memb is 0x0 and the 1st succ's
message is Sender 0, NULLFRAME
Performing check 2A because |st Succ
sent a null frame

Node 3 NOT acknowledged

Round 4, Slot 19, Got message Sender 3,

NULLFRAME

ALL NODES KICKED OUT

Simulation Aborted
Simulation complete!

Node Ogets drift 5

Node 1gets drift 9

Node 2gets drift 2

Exiting...

Performing acknowledgement algorithm,
my memb is 0x7 and the Ist succ's
message is Sender 0, Drift = 0, Membership = 0x7
Performing check 2A because st Succ thinks I'm out
Node 3: Check 2B passed!
Node 3 NOT acknowledged
Round 9, Slot 39, Got message Sender 3,
NULLFRAME
Node Ogets drift 5
Node 1gets drift 9
Node 2gets drift 2
Simulation complete!

Figure 6. Scenarios using old algorithm (left) and the flagging algorithm (right) where node 3
is the faulty node

7. CONCLUSION

We have presented an algorithm for increasing the tolerance against
asymmetric timing faults in a time-triggered protocol (TTP-C1). The major
conclusion is that any single untimely node will be disclosed and that a
global agreement can be reached about the system state, including time
within two TDMA rounds.

The algorithm does not guarantee that all SOS faults are detected, at least
not with respect to the chosen parameters. The success depends on the ratio

72 Hdkan Sivencrona, Mattias Persson and Jan Torin

between the different windows, e.g. the width of the flag window compared

to accept window.

We have furthermore provided and presented an uncomplicated simulator
GUI for a TTP/C network. The TTP/C Simulator can mimic a TTP/C
network of n+/ nodes, where n is the number of nodes for which log files
exists, where one node is assumed to be a fault-injected node without any
logged data available, as was the case when a single TTP/C communication
controller was injected with heavy-ions.

REFERENCES

1. H. Sivencrona, P. Johannessen, M. Persson and J. Torin, Heavy-ion Fault Injection in the
Time-triggered Communication Protocol. Proc. First Latin American Symposium on
Dependable Computing (LADCO03), Sdo Paulo, Brazil, October (2003).

2. FIT-project at http://www.cordis.lu/ist/projects/99-10748.htm, (2002).

H. Kopetz, TTP/C Protocol, Available at http://www.ttpforum.org. (1999).

4. K. Driscoll, B. Hall, H. Sivencrona and P. Zumsteg, Byzantine Fault Tolerance, from
Theory to Reality. Proc. 22nd International Conference on Computer Safety, Reliability
and Security (SAFECOMPO03), pp. 235-248, Edinburgh, Scotland, UK, October 2003.

5. J. Rushby, Systematic Formal Verification for Fault-Tolerant Time-Triggered
Algorithms, IEEE Transactions on Software Engineering, Volume 25, Number 5,
September, pp: 651-660, (1999).

6. A. Ademaj, H. Sivencrona, G. Bauer and J. Torin, Evaluation of Fault Handling of the
Time-Triggered Architecture with Bus and Star Topology. Proc. International Conference
on Dependable Systems and Networks (DSN 2003), pp. 123-132, San Francisco, USA,
(2003).

7. K. Hoyme and K. Driscoll, SAFEbus. Proc. Digital Avionics Systems Conference
(ATAA-11), pp. 68 -73, Seattle, WA, USA, (1992).

8. H. Kopetz, G. Griinsteidl and J. Reisinger, Fault-Tolerant Membership Service in a
Synchronous Distributed Real-Time System, in Dependable Computing for Critical
Applications, pp. 411- 429, Springer-Verlag, Vienna, Austria, (1991).

9. H. Kopetz and W. Ochsenreiter, Clock Synchronization in Distributed Real-Time
Systems, IEEE Transactions on Computers. Vol. 36, Nr. 8, pp. 933-940, (1987).

10. G. Bauer and M. Paulitsch, An Investigation of Membership and Clique Avoidance in
TTP/C, Proc. of the 19th IEEE Symposium on Reliable Distributed Systems, pp. 118-
124, Nuremberg, Germany, (2000).

11. A. Merceron, Proving “no Cliques” in a Protocol, Computer Science Conference, (ACSC
2001), Proc. 24th Australasian, pp: 134 —-139, (2001).

12. L. Lamport, R. Shostak and M. Pease, The Byzantine generals problem, ACM
Transactions on Programming Languages and Systems, vol. 4 issue 3, pp. 382-401,
(1982).

13. L. Gong, P. Lincoln and J. Rushby, Byzantine Agreement with Authentication:
Observations and Applications in Tolerating Hybrid and Link Faults. Proc. Dependable
Computing for Critical Applications (DCCA-5), volume 10 of Dependable Computing
and Fault Tolerant Systems, pp. 139-157. IEEE Computer Society, (1995).

R

