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1.

In majority of computer systems, the most time-critical tasks are performed by
interrupt service routines. In some cases pooling methods are utilized, espe-
cially when I/O hardware is not capable of stand-alone operation. When these
two approaches are mixed together conflicts are likely. Pooling procedure may
not tolerate delays caused by interrupts and interrupt-driven procedures may
not be able to wait until pooling driver finishes its job. In various systems
some of the time-critical operations can be repeated or skipped, if CPU fails to
service them in time. Statistical methods can be used to verify if system per-
formance satisfies requirements. To apply them the distribution function of
time interval between two consecutive interrupt requests is calculated on the
basis of a simple theoretical model. The model is then verified by empirical
measurements.

interrupt, distribution function, streams merging, performance modeling.

INTRODUCTION

Observations of program execution performance have been taken using
the most widespread hardware and operating systems (Windows 98/me/XP,
Linux) and embedded processor MBO1F362. In all cases a significant influ-
ence of operating system jobs and interrupt-driven activity has been de-
tected. Asynchronous tasks particularly affect “smoothness” of execution
making application response time random and unpredictable. These effects
can be easily observed in low-end systems during multimedia playback.
Methods of compensating IRQ introduced slowdowns may be applied to re-
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store acceptable quality of real-time performance [1]. Since interrupts have
the highest priority a vast majority of internal kernel functions must be able
to tolerate unexpected delays during execution [2].

Execution of application while interrupts are enabled can be compared to
queuing model where streams of requests are merged into one queue. When
the queue is empty an application code is executed [3]. Queuing models with
mixed type streams are not popular. Coexistence of periodical and random
events results in very complex equations or problematic assumptions [4].

Many publications focus on scheduling algorithms that should give best
overall quality of service of a real-time system [5]. The statistic nature of
interrupts and other factors causing execution time uncertainty is rarely
taken into account. Sometimes the simplest algorithms like Earliest Deadline
First are suggested to be the most efficient solution [6].

In contrast to hard real-time systems where well-timed response must be
assured soft real-time approach relays on statistical assurance of required
performance [7]. Since average number of missed deadlines is not a good
metrics n-out-of-m is proposed [8].

2. MODEL OF INTERRUPT REQUESTS

To investigate a nature of interrupt request process a spectral density of
the empirically measured time between interrupts was plotted. Two compo-
nents were observed: single periodical and the white noise. Such spectrum
proves that interrupts can be categorized as:
® gystem timer interrupt
o random interrupts from other sources

It is known, that interrupts from peripheral devices are not 100% random.
The observation of spectral plot shows that collection of all interrupts makes
good approximation of the white noise in the majority of the cases.

Let’s assume computer system where two types of interrupts are present.
There is only one periodical timer interrupt and unlimited number of random
interrupts. The nature of interrupts is as follows:
® Timer interrupt with frequency f, =1/t,, is requested periodically in fully

deterministic manner.

* Peripheral interrupts are requested randomly according to Poisson proc-
ess with parameter A. If many sources of random interrupts are present,
with intensities Aq, Ag, ... Ay that they can be described as one process
with intensity A=A+ Agt+...+A,.

All interrupts are treated identically. The cumulative distribution function
of time between two consecutive interrupt requests is to be calculated.
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Figure 1. Interrupt requests and time intervals between them

Example interrupt requests and time intervals are presented on figure 1.
Timer interrupts are marked with circle while random ones are marked with
arrow-tail. The time interval can be measured between:
® two timer interrupts &

& timer interrupt and random interrupt
¢ random interrupt and timer interrupt ¢y,
e two random interrupts #y;

Non-zero correlation between fy; and £ is not taken into account since

only distribution of time interval between (any) two interrupts is calculated.

2.1 Weighted sum of alternative distributions

To calculate the CDF of time between two consecutive requests two al-
ternative cases should be considered:
e time interval begins after timer interrupt ( £ or #,)) with probability p;
® time interval begins after random interrupt ( x or #,) with probability p;
Cumulative distribution function is then calculated as a weighted sum of
distribution functions of two alternative cases.
In sufficiently long time period T—w0 it is expected to appear T*f; timer
interrupts and T*A random interrupts so the probabilities are:

A
pl=7x{:7 and  p = (1)

If the last interrupt was timer interrupt:

CDF of the interval ¢,y from a timer interrupt to the next timer interrupt:
F,(0)=1¢-1,) (2)
CDF of the time interval tyy from a timer interrupt to the nearest random:

F,()=10)1-e"*) (3)
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Distribution of the time interval from a timer interrupt to the next timer
or random interrupt (whichever comes first):

F () =1-(1-F,(0)l-E,®) (4)
0 for <0

E@)={1-e™" for 0<r<t, (5)
1 for t>t,

If the last interrupt was a random interrupt then the cumulative distribu-
tion functions of time interval to next interrupt are given as follows:

CDF of the interval t,; from a random interrupt to the next timer interrupt

0 for t<0
E,(t) =1t f. for 0<t<1, (6)
1 for t>t,

There is no synchronization between timer and random interrupts so it’s
not known when the last timer interrupt was generated and when to expect
the next. Due to periodic nature of timer interrupts, the next timer interrupt
must appear within 1/f, time. The probability is equally spread in (0, 1/f).

CDF of the time #y; from a random interrupt to the next random interrupt:

F,(0)=10)1-¢™*) (7)

Distribution function of time interval from a random interrupt to any in-
terrupt (whichever comes first) is given the equation:

F,(t)=1-(1-F,0)1-E,,®) (8)
0 for t<0
E(t) =4l +tf e for 0<t<t, (9)

1 for t>1t,
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2.2 Cumulative distribution function
The Bayes equation for total probability is used to get the cumulative dis-

tribution function as a weighted sum of distribution functions of previously
shown alternative cases.

I
F@©)=p F)+p,F @)= 7 +1F'(t)+ 7 +/11320) (10)
After simplification and grouping of variables:
0 for t<0
Fiy={1-e* + L2 _teu for0<t<t, (11)
A
1 for t>1¢,

0,8 1

06 1

0,4 1

0,2 i R

0

10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
Figure 2. Example distribution function for f, = 0.01 and A=0.01

The cumulative distribution function has following properties:

Equals zero for negative time values

Equals one for £>1/f;

Is continuous excluding r=1/f;

Difference of left and right side limits at #=1/f, equals fi/(f+A)exp(-Af,)
Is differentiable in all range excluding t=0 and t=1/f;

Is integrable in all its range - it consist of sum const + €' +te'
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2.3

Density and intensity
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The first derivative of the distribution function (density function)

f(t) = 7

exp(—) 5(

for t<0

forO<r<t,
(12)

for t=t,

for t>1t,
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Figure 3. Example density function for f, = 0.01 and A=0.01

Density function of distribution of time interval between interrupts:

Produces positive values in range (0, 1/f,)
Has Dirac’s delta at t=1/f,

Is descending in range (0, 1/f,), slower than exponential distribution
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Figure 4. Example intensity function for f, = 0.01 and A=0.01

The intensity function of interrupt requests has following properties:
Produces positive values in range (0, 1/f;)

Has Dirac’s delta at t=1/f;

Is ascending in range (0, 1/f,)

If A>>f, is similar to intensity of exponential distribution

If A<<f, produces small values for t=(0, 1/f,), Dirac’s delta is dominating

3. EMPIRICAL RESULTS

Observations of moments when interrupts are requested have been taken
to construct empirical distribution of time between two consecutive requests.
Fast spin-lock procedure was used as a measuring routine and good ap-
proximation of CPU utilization by pooling driver or user multimedia appli-
cation. To get reliable results 10'® measurements have been taken during
each experiment. In most experiments 10° - 10° request were detected. Den-
sity function of time interval between two consecutive interrupts has been
plotted because it graphically shows better the nature of distribution than the
cumulative distribution function. Having so big collection of empirical data,
very high level of confidence was expected during statistical tests. Unfortu-
nately majority of statistical analysis applications are not capable of proper
handling of such large sets of data.

The histogram (density function) for Pentium III — 450MHz system
working under Windows 98 is presented on figure 5. Nearly 700 thousands
intervals has been measured and shown giving good approximation of distri-
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bution shape. Horizontal axis represents length of time interval expressed in
processor clock periods (450MHz). Vertical axis represents the number of
samples that fit in range (¢, t+dt). Density function has not been scaled to
have integral equal one. Empirical results are plotted as black line. Addition-
ally light-gray line of theoretical histogram has been plotted. In the left part
of the figure they fit almost perfectly, while the Dirac’s delta is left hand dif-
fused. Due to f, > A relation, the descending nature of density function is
weak, although can be observed.
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Figure 5. Empirical density function for f; = 200Hz and A=81

Time interval between two consecutive interrupts seen by user-level ap-
plication may significantly differ from the real one. The histogram (density
function) of time interval between interrupts for Pentium 4 system 2,5GHz
working under Win-XP system is presented on figure 6. Three interrupt re-
quests of periodic nature can be observed in this system. Additionally
a small peak at 78 million cycles occurs. The reason for odd shape of histo-
gram is that a measuring procedure runs as a normal user-level process in
highly over-loaded single-processor system. When CPU is switched to an-
other process the spin-lock loop used for measurement can not detect inter-
rupts since it is not running. In fact there is only one periodic interrupt in
presented system - the first peak in histogram at T=1.33ms. The second peak
occurring at 47 the third at 127 and the fourth at 247 are caused by scheduler
that stopped measuring procedure giving other programs 4, 12, or 24
“chunks” of CPU time. Since processor’s clock count register (used for
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measurement) was incremented while spin-lock procedure was sleeping the
application after wake-up observed it as a single, very long interrupt.
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Figure 6. Empirical density function from application point of view

4. CONCLUSION

Statistical analysis of interrupt request behavior can be a helpful tool in
design and validation of systems with coexisting interrupt driven and pool-
ing I/O service routines. Additionally the influence of interrupt requests on
application execution is significant in soft time critical programs such as au-
dio or video recording and playback. Presented simple model of delays
caused by operation system can be effective means of describing execution
platform from the applications point of view without going into details of
hardware and system software. Statistical description of machine and system
influence on application is far less exact than behavioral model of operating
system, but also far more simple and easy to apply. Model of interrupts
slowing down application execution can be regarded as formal method of
defining ‘“‘smoothness” of application execution. Presented model is espe-
cially suited to low-end audio and video systems rapidly growing in popular-

1ty.
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