
A DATAFLOW LANGUAGE (AVON) AS
AN ARCHITECTURE DESCRIPTION
LANGUAGE (ADL)

Ashoke Deb
Department of Computer Science, Memorial University, Canada
ashoke@cs.mun.ca

Abstract: Avon is a dataflow graph language which insists single-assignment side-
effect free paradigm. While it is an asynchronous system, the syn-
chronicity is achieved by explicit events, thus allowing a sub-system to
have local sychronization, while being globally asynchronous. A pow-
erful facility in Avon is line filters where a predicate can be associated
with input as well as output ports. These filters can screen values from
the streams either at the source or at the sink.

We demonstrate that a small subset of Avon allows us to describe a
computer architecture of substantial complexity in a natural and intu-
itive setting.

Keywords: dataflow, single-assignment, stream, filter, strictness, asynchronous,
nondeterminism, pipelining, speculative execution, flushing.

1. DATAFLOW LANGUAGES [1, 2]

Tools shape our thoughts. The concept of dataflow is fundamentally
different from that of control flow [3]. The discipline of thinking in terms
of values about a solution of a problem may be a new experiences for a
newcomer to this area.

As in other areas of computer science, designers of dataflow languages
have different viewpoints – in terms of syntax, semantics and pragmatics
of the language. These differences mostly originate from the philosophies
or other considerations. For example, LUCID [4, 5] was originally de-
signed as a declarative language which makes proving programs easy; Id
[6] was designed to run on a fine-grain dataflow machine, called Tagged-
token machine; Sisal [7] was designed as an applicative language to run
on different multiprocessors systems; and Avon [8] was designed as a
minimalist dataflow graph language.

288 Ashoke Deb

1.1 Introduction to Avon [8]

Avon is a dataflow language with a small number of powerful con-
structs. Dataflow programs written using Avon are actually dataflow
graphs [9]. We will introduce some of its main language constructs via
simple examples.

In Avon, a line (or, a variable) associates with a stream of arbitrary
length. Each output is singularly defined, and hence no side-effect is
allowed.

Filters in Avon:
In Avon, a filter is a predicate which can be associated with a line

– either an input line or an output line. The purpose of a filter is to
’remove’ the current value from the line if the associated filter is not
satisfied for the current values. A filter on an input line is a conditional
expression which can involve the names of input lines, but not the names
of output lines. A filter can also be attached to an output line, in which
case the output line filter can involve the input line names and also the
output line names. Absence of a filter with a line is the same as having
a filter TRUE, which will allow values unfiltered.

Example 1: To find the largest numbers so far from a stream of
integers.

An Avon program graph which computes the sequence of largest num-
bers found so far is shown at the top of Figure 1(a). An example of
execution of the program is shown in four stages. The initial value in
the line L is 0; and, say, the values appearing in line A are 5, 4, 3, 9, 7,
2 ... and so on. There is a filter, (A > L), attached to the line A. The
purpose of this filter is to ‘remove’ the values in line A which do not
‘pass through the filter’ ie. do not satisfy the condition. In other words,
if the ‘current’ value in A is less than or equal to the current value in L,
then that value is removed from the line A, and the subsequent values in
A will ‘move forward’. For instance, the value 4 in line A gets removed,
because

In textual form the Avon dataflow graph in Figure 1(a) will be written
as:

Elements of Avon:
In Avon, semicolon (;) is used to imply relaxed ordering or unorder-

ing. This means that any two syntactic entities separated by a semicolon

A Dataflow Language as an Architecture Description Language 289

(;) can be permuted without any effect on the program correctness. The
input and output lines have distinct names. For example, A and L are
used for two inputlines; and C is the output line. IN,OUT,INIT and
INCOND are keywords. Input line names are given after the keyword
IN. Output line names appear after OUT. An input line may have
an initial stream of values, and these values are given between square
brackets ([and]) following the keyword INIT. An input predicate, or
filter, for an input line, appearsafter the keyword INCOND. Absence
of a predicate (or, empty predicate) implies constant TRUE.

The body of the node contains one or more definitions, defining out-
put(s) in terms of input(s). The symbol for definition is right arrow

An output name cannot have more than one definition.
A program may have a set of line connectors as well – where, a line

connector connects an output line to an input line. The symbol used for
connection is left arrow

Types as filters and polymorphism:
In Example 1(a), the input line A may carry any type of values, which

is of course not what is specified. In Avon, types are treated as filters.
There is a generalised predicative function IS, which can be used to
define type of a line as a filter. In Figure 1(b) , the input line A has an
additional filter IS(A, INTEGER) – the keyword INTEGER represents
the set of all the integer values. This filter will accept only the integer
values appearing on the line A.

One advantage of using types as line filters in dataflow is that we can
associate types of a fairly complex nature, including negative type, to a
name. For example, a filter IS (A, COMPLEX OR REAL AND NOT
INTEGER) will allow all the reals and complex, but not the integers.

Using types as filters in this manner gives us a means of allowing
values of different types to appear for an input or output line name
(called restricted polymorphism). Of course, not having any type filter
allows all types of values –ie. unrestricted polymorphism.

In Example 1 the output from the line C will be a stream of values.
One may wish to see only the ultimate largest number, but not largest
numbers so far. In Figure 1(b), we do just that. EOD stands for end-of-
data value. The output filter (A = EOD) will then absorb all the results
appearing on the line G until the input line gets to the end-of-data value.

A note on the difference between Input Filters and Output Filters:
Although, at first glance, it may seem that with the availability of

input filters the output filters are redundant; but they are not. The
presence of a filter on an input line removes values from that line only
if the associated filter is not satisfied, and before the node fires, thus
keeping the values on the other input lines. Whereas, an output filter is

290 Ashoke Deb

Figure 1. An example of Avon Program

”active” only after the node fires by which time the current values from
all the input lines have been ”consumed” (and essentially are removed
from the input lines).

2. DESCRIBING MACHINE
ARCHITECTURE

2.1 von Neumann machine and IPC

Since the introduction of APL (Iverson, 1962), there were about
200 different languages proposed, although only some of them are best
known. For example, ISP (Bell and Newell, 1970), ISPL (Barbacci,
1976), ISPS (1977, Barbacci), SA* (Dasgupta, 1981), AADL (Damn,
1984), MIMOLA (Marwedei, 1984), VHDL (DOD, Intermetrics, IBM,
TI, 1985) [10].

Most of these languages, with the exception of APL which is a func-
tional and side-effect free language, are very much control flow oriented
and imperative in their behaviour. Some of them succeed in classifying
computers in terms of their processors, memory and switches. But most
are specification languages to be used to automatically convert the spec-
ification into hardware, or to study performance. Some attempt to ex-
press the ”dataflow” nature of a computer using control flow paradigm;
some would express ”parallelism” using cumbersome syntax, or intro-
duce the concept of ”stream” as an artifact. There are other systems
proposed which deviate from traditional control flow style. For exam-
ple, Johnson [11] suggested using recursive equations to describe digital
design; Cardelli [12] suggested an algebraic approach to hardware de-
scription; and more recently Arvind and Shen [13] suggested using term
rewriting system for description of processors.

A Dataflow Language as an Architecture Description Language 291

Dataflow concepts have been applied in some languages, such as Kahn
Network of Processes (KNP) [14], Synchronous Data Flow (SDF) [15]
and SIGNAL [16]. These languages are useful in modelling signal pro-
cessors. SDF do not allow asynchronicity, although KNP does. Also,
unlike KNP, SDF insists on finite size streams. But, they do not restrict
themselves to ”pure” dataflow paradigm – eg. side-effects are allowed,
and single-assignment is not necessary. SIGNAL differs from KNP in the
sense that it allows ”no value” in the trace so that handling process
deadlock (or, non-firing) can be accommodated in an unified manner.
In SIGNAL, an elementary process produces an output value (at time
t) by acting on all input values (at time t).

Avon, on the other hand, insists on single-assignment, absence of side-
effect; it is asynchronous, and its streams are of arbitrary lengths. It does
not insist on the output port to be empty in order for a node to fire. It
allows independent ”filters’ on any of the input or output ports, which
provides a powerful tool for modelling – eg, streams can be screened both
by the destination (receiver) node as well as the source (sender) node.
Synchronicity is achieved by explicit events, and thus different subsys-
tems can synchronize locally, still maintaining global asynchronicity.

In this paper, we exploit only a subset of facilities available in Avon,
and demonstrate that dataflow graph language provides a natural and
transparent way of describing machines.

Traditionally, a von Neumann machine, executing one instruction per
cycle, is described by a control-flow algorithm, known as Instruction
Processing Cycle (IPC). For example, consider a machine with three
instructions – ADD, LW and BRZ. Instructions are single address, with
Accumulator (ACC) as the implied operand.

292 Ashoke Deb

In the example above, PC stands for the traditional program counter,
M stands for Memory where both instructions as well as data reside,
and for the time being can be viewed as an one-dimensional array; IR
stands for the instruction register; DC and IA stand, respectively, for
a functional unit which extracts the opcode (OP) and operand (OPR)
from IR;

The IPC given above can be hierarchically expanded to introduce, for
example, multilevel memory, complex instruction formats, addressing
schemes and larger instruction repertoir.

It can also be used for simulation purposes, and datapath and control
section designs.

But, the control-flow oriented description of IPC, and the related im-
perative semantics, make it very difficult to augment the IPC in a natu-
ral way to describe advanced concepts of overlapped instruction execu-
tion (instruction pipelining), data pipelining, multifunctional machines
with multiple instruction issuing, pipeline bubbles, branch hazards and
”flushing” pipeline stages, conditional issuing of instructions etc.

2.2 Using Avon as Architecture Description
Language

In this paper, we demonstrate, as an example, how Avon can be used
to describe a pipelined machine with speculative execution. We will
start with a machine which is not pipelined, has only ADD and LW type
instructions, and does not have branch instructions. Then we will show
that this description can easily be augmented to turn that machine into
a pipelined machine. Following that we will include a branch type in-
struction, BRZ, to the pipelined machine, and show how branch hazards
are represented.

Non-pipelined Sequential machine, with no branch type in-
structions. Figure 2(a) describes a strictly sequential von Neumann
machine.

Note that this description is very similar to the imperative style IPC
given earlier, although with several significant differences.

Avon, being single assignment language, cannot have more than one
function assigning values to the same output line, nor can it have the
same line name both as input as well as output. Therefore, the impera-
tive construct like PC = PC + 1 will be illegal. Similarly, both of ACC
= M[OPR] + ACC and ACC = M[OPR] are not allowed.

Two lines are shown joined, explicitely, by a non-deterministic OR,
or, sometimes implicitely, by simple fan-in.

A Dataflow Language as an Architecture Description Language 293

Figure 2. Non-pipelined and Pipelined Machine - no branch instructions

To further save us from redundant drawings, when two lines are la-
beled with the same name, it means that they represent the same phys-
ical line.

The input condition attached to all the input lines, OP, OPR and
ACC of the node which computes ADD, is (OP = ADD), meaning that
if the current value of OP is ADD, then this node will ”fire” and thus
will produce a value via ACC1; if the condition is false, then the current
values from these lines of this node will be ”absorbed” or discarded.
Similarly, for the node which computes LW.

In order to ”sync” the address generation station so that it generates
a new value only when the previous instruction is complete, we have an
”extra” input line ACC to the node which although
has no effect on the value generated, has the effect on the node’s firing
intervals. Note that the ”sync” line did not have to be fed from ACC, it
was just convenient in this example.– it simply mimics the behaviour of
”repeat forever” construction of the imperative style IPC shown earlier.

Pipelined machine with no branch type instructions. A sim-
ple modification of the first diagram (describing a sequential machine)
gives the description of a pipelined machine – we had to remove the
”sync” input line ACC from the address generation stage!! (See Figure
2b).

With this modification, the address generation stage produces a
stream of addresses which get buffered in the input line to next stage

294 Ashoke Deb

- the instruction generation stage. So, the input line PC’ refers to the
address cache. Using these addresses from the line PC’, the instruction
generation stage produces a stream of instructions which get buffered in
the input line IR of the instruction preparation stage, which is usually
referred to as instruction cache. And so on.

Note that now it is not difficult to see how the instructions are ”moving
along” the stages of the pipeline, which was a difficult proposition in
imperative style description.

These interstage buffers can be either multilevel storage structures
(to reflect its infiniteness), or its finite implementation can be done by
proper annotation and demand/acknowledge signals.

Note that the presence of two distinct nodes in the execution stage
(one for computing ADD instructions and the other for computing LW
instructions) clearly reveals the possibilities of issuing multiple instruc-
tions to a multifunctional machine, Of course, in that case the data
dependencies among instructions will have to be taken into considera-
tion.

If we are to restrict ourselves to pipelined but single issue machines,
then that can be easily described by introducing a ”sync” line ACC to
the instruction issue stage.

Pipelined machine with branch type instructions . In addition
to the system described in the last section, let us introduce a branch type
instruction BRZ (defined earlier). To keep the matter simple, we will
make a fair and realistic assumption that each stage takes equal amount
of time, and hence each stage may have at most one value.

In a pipelined machine, if a branch instruction is successfully executed,
a number of things will have to considered – the target address will be
the address of the next instruction to be executed; and as a result of
which, all previously generated addresses and the instructions which are
already in the pipeline have to be discarded. (Please refer to Figure 3.)

Modifying the execution stage: With the introduction of this new
instruction, we modify the execution stage by introducing two nodes (see
parts 1 and 2.)

The first node computes if the branch condition is true. And then,
if the branch is true (indicated by a T token on the branch line, the
following node computes In fact, if the branch is evaluated
to be true, a four value stream (T, F, F, F) will be generated. Reader
can ignore this for the time being without loss of continuity, and it will
be explained shortly.

Updating the next PC value to be the value of PC”: Now,
PC’ and PC” are OR-ed (multiplexed) using the value of the line branch.

A Dataflow Language as an Architecture Description Language 295

Figure 3. Segments of the Avon description of a speculative pipelined machine with
branch instruction

Initially, the value on the line branch would of course be F (false), and
as long as the current instruction executed is a non-branch type, then a
stream of F values will be on branch line, allowing sequential addresses
to be generated. If the value of branch becomes T, then the value on
PC” comes to PC. (See parts 3, 4 and 5.)

Flushing all intermediate stages of the pipeline:
In order to ”flush” all the intermediate stages, ie ”discard” all the val-

ues from the internal lines PC’ (gateway to instruction generator), IR
(gateway to instruction issuing stage) and the lines OP and OPR (gate-
way to the execution stage) we associate a new line condition (branch =
F). Thus, if and when branch value becomes true, the values from PC’,
IR, OP and OPR will be discarded. (See parts 6 and 7.)

As a consequence though, this will create ”bubbles” in the three
stages, and so no further values for branch will be generated. To make
these bubbles progress through the stages, we need extra F values fol-
lowing a T value on the branch line.

Similarly, to initially ”fill” the pipe, the init values of branch are to
be set accordingly for each stage of the pipeline, and are shown on the
diagram.

Finally, putting together the entire description is simply a matter of
connecting the appropriate lines. (Please note that the ADD and the
LW units were left out from the diagram for space.)

3. CONCLUSION

In this paper, we have attempted to show that Avon, a dataflow graph
language, is not only a powerful language for general purpose computa-

296 Ashoke Deb

tion, but it also proved to be useful in describing machine architecture in
a natural and intuitive way that is not possible with control flow based
imperative languages.

Our future research will focus on describing other aspects of machine
architecture and constructs of communicating sequential processes.

REFERENCES
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

W. B. Ackerman, Dataflow Languages, IEEE Computer, Feb, 1982.

A. Deb, Data Flow Languages, In Encyclopedia of Library and Information
Science, Vol. 66, Marcel Dekker, 2000.

M. Broy, Ed., Control Flow and Data Flow - concepts of Distributed Program-
ming, Springer-Verlag, vol. 14, 1985.

E. A. Ashcroft et. al., Lucid - A formal system for writing and proving programs,
SIAM J. Comp., 5, pp. 519 - 526.

E.A. Ashcroft and W. W. Wadge, Lucid, the Dataflow Programming Language,
Academic Press, 1985.
R. S. Nikhil, The Parallel Programming Language Id and its Compilation for
Parallel Machines, In Proc. of the Workshop on Massive Parallelism: Hardware,
Programming and Applications, Academic Press, 1990.

J. R. McGraw, et. al., SISAL: Streams and Iteration in a Single Assignment Lan-
guage, Reference Manual 1.2, M-146, Lawrence Livermore National Laboratory,
Livermore, CA, March 1985.

A. Deb, Avon: A Dataflow Language, In Second International Conference on
Supercomputing, Florida, USA, pp. 9 -19, International Supercomputing Institute,
1987.

A. L. Davis and R. M. Keller, Data Flow Program Graphs, IEEE Computer,
pp. 26 - 41, Feb. 1982.

Lipsch R. et al, VHDL: Hardware Description & Design, Kluwer, 1989.

S. Johnson, Synthesis of Digital Design from Recursive Equations, MIT Press,
1983.

L. Cardelli, An Algebraic Approach to Hardware Description and Verification,
Ph.D dissertation, Univ. of Edinburgh, 1982.

Arvind end Shen, Using Term Rewriting Systems to Design and Verify Proces-
sors, IEEE Micro, pp. 36-46, June 1999.

Kahn, G. The semantics of a simple language for parallel programming, In
Information Processing 74, pp. 471-475, North-Holland, 1974.

Lee, E. A. et all, Synchronous Data Flow, In Proc. of IEEE, pp. 55-64, Sept
1987.

Gautier, T. et al, SIGNAL: A declarative language for synchronous programming
of real-time systems, In Conference on Functional Programming Languages and
Computer Architecture, pp.257-277, LNCS, 274, Springer-Verlag, 1987.

