
EVALUATING HIGH-LEVEL MODELS FOR REAL-
TIME EMBEDDED SYSTEMS DESIGN

Lisane Brisolara1, Leandro B. Becker1, 3, Luigi Carro1, 2, Flávio R. Wagner1,
and Carlos Eduardo Pereira1, 2

1 Computer Science Institute, Federal University of Rio Grande do Sul (UFRGS), Brazil
Electrical Engineering Depart., Federal University of Rio Grande do Sul (UFRGS), Brazil
Faculty of Informatics, Pontiflc Catholic University of Rio Grande do Sul (PUCRS), Brazil

2

3

Abstract: This paper compares different high-level modeling approaches for real-time
embedded systems design: an object-oriented approach using UML diagrams
against the block diagram approach provided by Simulink. This investigates
the facilities provided by both approaches for expressing system requirements
and functional specification. A Crane Control System is used as a case study
for conducting the proposed comparison.

Key words: High-Level Modeling, Real-Time Embedded System Design, UML, Simulink.

1. INTRODUCTION

Traditionally, the function block (FB) modeling approach has been used
by the signal processing and control engineering communities for the
development of real-time embedded systems. These models are widely
accepted in industrial design, driven by an extensive set of design tools, as
for instance Matlab/Simulink from MathWorks. On the other hand, as a
result from a standardization process among different object-oriented (OO)
design methodologies, the OMG promoted the creation of the Unified
Modeling Language (UML) [1], which is considered the de facto modeling
notation for any OO system. UML has gained in popularity also for real-time
embedded systems specification and design [2, 3]. Efforts that describe the
use of UML in different phases of an embedded system design process are
shown in [4]. A relevant question is whether the use of UML presents real



278 L. Brisolara, L.B. Becker, L. Carro, F.R. Wagner, and C.E. Pereira

advantages over traditional approaches for real-time embedded systems
design. Therefore, an analysis is necessary in order to argue about the
facilities provided by the approaches. Such analysis should reflect aspects
like model readability, model validation, and model implementability.

This paper presents a study comparing the use of the UML and FB
modeling approaches. In order to reach a fair comparison, a collection of
criteria based on the work conducted by Ardis et al [5] is established. A case
study is developed using the proposed evaluation methodology, consisting in
the modeling of a Crane Control System, as proposed in [6]. The remaining
of the paper is organized as follows. Section 2 gives an overview of high-
level modeling applied to real-time embedded systems. In Section 3, the
comparison criteria are defined. Section 4 presents the case study and shows
the description of the UML and Simulink models. Section 5 discusses and
summarizes the obtained results. Section 6 gives an overview of related
work. In the last section, conclusions are drawn.

2. EMBEDDED SYSTEMS DESIGN OVERVIEW

The design of an embedded system consists of several steps, as follows.
The first step is the development of a high-level system model, containing
both requirements and a functional specification. The requirements
specification relies on defining three main elements: desired behavior or
functionality; quality-of-service (QoS) requirements (performance, timing,
power); and problem domain structure. Once these elements are specified,
designers can proceed with the development of the formal solution, that
results in the system functional specification. The high-level model should
reflect the nature of the application domain. It is important to use the most
appropriate Model of Computation (MoC) [7], so that the model
applicability is enhanced. Up to this point, no platform information has been
added to the model. The concerned aspects relate only to user needs and
their detailed description, which is expressed by means of specific diagrams.

The following step consists of translating the high-level model into an
executable description. This process should be automatic, but depending on
the modeling notation it may need different degrees of designer interaction.
Such executable description is generally obtained by means of a program
code, written in the programming language that best fits the adopted
modeling approach and MoC. Further steps must take the executable
description as input for the architectural exploration, where alternative
hardware and software solutions that fulfill system requirements should be
taken into account, and for the final system generation.



Evaluating High-level Models for RT Embedded Systems Design 279

The high-level modeling language should be able to express both the
application requirements and the functional specification. Also, it should
provide facilities to allow model validation, as well as features that can be
used to guide implementation.

3. EVALUATION CRITERIA

To develop a comparison between the modeling approaches, several
evaluation criteria have been established. These criteria are based on the
work conducted by Ardis et al [5], which performs a qualitative comparison
among several design languages for reactive systems. This work is extended
here in the direction of searching for aspects that could be used to perform a
quantitative evaluation of the designed models. For those criteria where a
quantitative evaluation is not possible, a qualitative one is established.
Moreover, additional evaluation criteria are added together with a new
organization for the set of criteria. They are organized in groups that reflect
the design steps introduced in the previous section as listed bellow.

a) Requirements Specification: evaluates the capacity to express and
document user needs and system requirements;

b) Functional Specification: evaluates the model abstraction level and
expressiveness, i.e. if it describes the problem domain and the system
behavior/functionalities in a natural and straightforward manner;

c) Validation/simulation: evaluates if the specification can be validated
before its implementation;

d) Implementability: evaluates if the specification can be easily refined or
translated into an implementation compatible with the rest of the system;

e) Design Space Exploration Facilities: criteria evaluate whether the
model incorporates facilities that can be used for design space exploration.

The comparison is based on criteria subgroups, as detailed below:
a.1) Functional requirements: capability of expressing and documenting

the problem domain elements that provide interaction with the system to be
designed and its desired functionalities; expressed by the number of
modeling diagrams that can be used to implement the desired feature.

a.2) QoS requirements: capability of expressing the application QoS
requirements and/or restrictions. This is expressed by the number of QoS
requirements that can be specified.

b.l) Applicability: capability of representing system behavior or
functionality by using different MoCs, according to systems nature; This
criteria is expressed by the number of supported MoCs.

b.2) Modularity/Hierarchy: capability of dividing a large specification
into independent modules, which could be decomposed into smaller parts;



280 L. Brisolara, L.B. Becker, L. Carro, F.R. Wagner, and C.E. Pereira

b.3) Expressiveness: capability of the modeling language primitives to
describe the specification; This is expressed by three main aspects: (1)
Number of modeling primitives, (2) Number of different modeling
primitives in use, (3) Number of lines of code programmed by the designer;

c.1) Simulation (qualitative): capability of verifying if the specification
can be used to validate the implementation.

c.2) Verifiability (qualitative): capability of demonstrating formally that
the specification or generated program fulfils the requirements.

d.1) Code generation (qualitative): capability of generating an executable
application from the model.

e.1) Synthesis (qualitative): capability of synthesizing the model (into
hardware) or generating a program.

e.2) System tuning (qualitative): capability of adjusting the generated
model by correct tuning of parameters like performance and power.

4. CASE STUDY

The crane system, proposed as a benchmark for system-level modeling
[6], was developed for the comparison using UML and block diagrams.

4.1 UML Model Description

The UML model development has followed the design steps proposed by
Gomaa [3]. According to this approach, the first development concerns the
Use Case model to represent the system functionality that must be fulfilled
and its interaction with the real-world. Each proposed Use Case has been
further detailed as UML Collaboration Diagrams. After detailing all Use
Cases, the Class Diagram has been derived, containing the whole static
structure of the system (see Fig. 1).

Fig. 1: UML Class Diagram of the Crane System

An important consideration regards the fact that UML models have been
decorated with the stereotypes and tags suggested by RT-UML [8].



Evaluating High-level Models for RT Embedded Systems Design 281

Therefore, it has been possible to state the timing information about the
system. As an example, in Fig. 2 one can see the collaboration diagram for
the control algorithm, which represents a periodic activity that is triggered
every 10 ms, starting after the user selects a new position for the crane.

Fig. 2: UML Collaboration Diagram of the Control Algorithm

4.2 FB Model Description

The crane model developed using FBs starts with the definition of the
elements that interact during the system execution. The model is composed
by four modules: PlantActuators, Sensors, ControlAlgorithm, and
JobControl, as presented in Fig. 3. Each module is further detailed to
represent its intrinsic behavior, by creating different hierarchical levels.

Fig. 3: Crane Model using Simulink

The crane system is composed by both data-driven and event-driven
parts, as can be observed in Fig. 3. The JobControl module is represented by
a finite state machine (event-based), while the other modules are data-driven.



282 L. Brisolara, L.B. Becker, L. Carro, F.R. Wagner, and C.E. Pereira

Fig. 4 illustrates details of the ControlAlgorithm module, which is
responsible for computing the control of the crane-motor. As it can be
observed in the figure, this functional block contains two implicit MoCs,
which are characterized as continuous-time and discrete-time. For example,
it contains a discrete-space state component used for differential equations
resolution (top-left), which is combined with those components that work in
the time-continuous domain.

Fig. 4: Control Algorithm Model in Simulink

5. COMPARISON OF THE MODELS

This section presents an analysis and comparison of the developed
models according to the criteria discussed in Section 3. The obtained results
are summarized in Table 1. For evaluating the qualitative aspects, we have
used the symbol + to indicate a particular strength of the approach, - to
indicate a clear weakness of the model, and * to indicate that the model
meets the criterion in a way that is adequate, but less than ideal.

This evaluation begins with analyzing the facilities for expressing the
system functional requirements. UML offers the facilities provided by the
use case diagram (1 point), while the FB approach does not support this kind
of facility (0 points).

Regarding the support for QoS specification, one can see that the profile
for the RT-UML supports both timing and performance requirements
specification (2 points), while in the FB approach there is no support for
such issues (0 points). In the FB model, the timing requirements are implicit
in the functional/behavior specification. Both languages do not give support
to the specification of power consumption and cost requirements.

Analyzing the model applicability by means of the number of supported
MoCs, it is possible to observe the advantages provided by the FB approach,
as it supports three different MoCs (3 points): time-continuous (analog),
time-discrete (digital), and event-based. Regarding UML, it supports only



Evaluating High-level Models for RT Embedded Systems Design 283

the event-based model (1 point). Nevertheless, there are efforts in the
literature that already address the lack of dataflow in UML (see [9,13]).

Considering modularity/hierarchy aspects, it is possible to observe that
the FB model leads to a better decomposition. This can be observed by
comparing the Simulink high-level model against the UML class diagram.
The first contains fewer elements, making the interpretation of the physical
behavior easier. The UML class diagram maintains the whole system
elements within the same abstraction level, which is somewhat not suitable,
considering the desired hierarchical features. Nevertheless, one should
mention that this is not a problem of the OO paradigm itself, but rather stems
from the decomposition nature allowed by UML diagrams.

The next criteria relate to model expressiveness. The first two aspects
relate to the number of used modeling primitives and to the number of
different modeling primitives in use. This reflects an interesting observation
point. As expected, the UML model is depicted by means of classes, objects,
their associations, and states. Therefore, it is natural to observe an equivalent
number of different modeling primitives if compared to the FB model, which
includes blocks, ports, connections, and states. Nevertheless, using a design
tool like Simulink, the designer can make use of different pre-defined
components available in a component library. Such aspect has a direct
influence in the total number of modeling primitives in use, and the
comparison shows a smaller number of elements in the FB model if
compared to the UML one. Another point of interest relates to the number of
lines of code programmed by designer in both models. It can be observed
that in the UML model the designer has to manually code much more lines.
On the other hand, by using the FB model and associated library, the
designer is not required to code the program by hand.

Regarding model validation/simulation, it is possible to observe that in
order to provide such features, suitable modeling/design tools are required.
Regarding the crane case study, only the FB model could be simulated,



284 L. Brisolara, L.B. Becker, L. Carro, F.R. Wagner, and C.E. Pereira

thanks to the Simulink tool. The available version of the Real-time Studio
tool, used for the construction of the UML model, does not support model
simulation. Nevertheless, considering the authors’ experience with other
UML-like simulation tools, these provide support only for the event-based
MoC. Also, one can state that for this task the FB model is more adequate,
because the simulation environment supports all the three intrinsic MoCs.

Considering the model implementability, one can see that from both
models an implementation can be derived. Nevertheless, there are two
directly related aspects that lead to differentiations: amount of code provided
by designer and number of pre-defined components. Regarding UML, most
tools are able to generate code skeletons from the model static structure
(classes, objects, and associations) and from the dynamic one (the state
machines). Nevertheless, the need for designer intervention is higher. In the
FB models, the whole code can be generated almost automatically, since it
relies on the use of pre-defined libraries. Although Simulink provides
facilities for simulation, the generation of the embedded software implies
several modifications/optimizations of the initial code used for simulation,
since it must be adapted/optimized to the target platform.

Regarding the design space exploration facilities, one can observe that
both UML and FB lack features to tackle this issue. An up-to-date topic is
the enhancing of their functionality to provide the desired capabilities.

6. RELATED WORK

As of today, the authors are not aware of other similar work that directly
compares the OO modeling approach from UML against the FB modeling
approach provided by Simulink. Nevertheless, there are several proposals for
combining both modeling paradigms. In [10], a profile for integrating FBs
into UML is proposed. For this, the General Function Block Model is
presented, working as a kind of adapter between classes and FBs. Another
work [9] addresses the lack of a dataflow model in UML, and so presents an
integration proposal for both mechanisms.

Additionally, other works concentrate on observing that UML is not
suitable for representing other MoCs besides the event-based one. Therefore,
other extensions are proposed. Axelsson [11] proposed an UML extension to
represent continuous-time relationships, such as continuous variables,
equations, time and derivatives.

The HASOC methodology [12] extends UML-RT to include annotations
with mapping information. In this work, the authors propose the association
of capsules with additional MoCs, such as Synchronous Dataflow and
Codesign Finite State Machines. Another research group proposed an UML



Evaluating High-level Models for RT Embedded Systems Design 285

profile for embedded system platforms [13], which allows the modeling of
platforms, quantifying QoS performance and budgeting constraints and
revealing platform services. Nevertheless, the adopted modeling strategy is
difficult to understand, once it is hard to see a direct correspondence between
the UML model and its describing equation from the physical domain.
Moreover, the model is overly verbose, since it uses several modules to
describe a simple equation with two multiplications. Additionally, the model
abstraction level is very low, going to the micro-operation level, and is not
adequate for complex embedded system modeling.

7. CONCLUSIONS

While several authors already proposed the unification between UML
and the FB modeling approaches, this work focused on comparing both
approaches. Our goal was to define the largest amount of quantitative
evaluation criteria as possible, thus allowing a more consistent comparison.

Considering the obtained results, it seems that UML looks better for
requirements specification. Nevertheless, none of the models properly deals
with the specification of embedded systems requirements, since power, for
example, is not included. An advantage of UML is that it can be extended to
incorporate such feature. Comparing the developed functional specifications,
a similar score is observed in Table 1 for both approaches. This leads to the
conclusion that models are somehow equivalent, although each has pros and
cons in this aspect. An observed weak aspect from UML is the lack of a
suitable decomposition mechanism, which could be easily overcome by the
modeling tools by adopting a hierarchical aggregation as in the SIMOO-RT
framework [14]. Also, this aspect should be tackled in UML 2.0.

Moving to the facilities for validation/simulation, the FB model is
advantageous especially because of the used modeling tool, coupled with its
intrinsic simulation engine. Regarding the model implementability, one can
see that from both approaches an implementation can be derived, although
each approach has its own peculiarities. Considering the last comparison
dimension, namely design space exploration facilities, one can observe that
both UML and FB lack features to tackle such issue. Nevertheless, there are
already proposed approaches focusing on providing the desired capabilities.

As a final remark, it must be observed that both models show clear
advantages and disadvantages. One interesting research target is to combine
both approaches with the care to keep the application of each one within the
most adequate design phase and abstraction level, according to their original
capabilities. This contrasts with other existing proposals, which extend the
current models to allow their use at design levels for which the language



286 L. Brisolara, L.B. Becker, L. Carro, F.R. Wagner, and C.E. Pereira

abstraction does not provide real advantages. Future investigations should
focus on enhancing the existing proposals for extending UML to support a
higher degree of integration with the FB paradigm and to allow the design of
models using different MoCs in a natural manner.

ACKNOWLEDGMENTS

This work has been supported by CNPq and CAPES grants for some of
the authors. Thanks are also due to Artisan Sw for allowing the use of the
Real-Time Studio modeling tool.

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling Language User Guide.
Addison-Wesley, 1999.
B. Douglass. Real-Time UML: Developing Efficient Objects for Embedded Systems.
Addison-Wesley, 1998,
H. Gomaa. Designing Concurrent, Distributed, and Real-Time Applications with UML.
Addison-Wesley, 2000.
L. Lavagno, G. Martin, and B. Selic. UML for Real: Design of Embedded Real-Time
Systems. Kluwer Academic Publishers, 2003.
M. Ardis et al. A Framework for Evaluating Specification Methods for Reactive
Systems: Experience Report. IEEE Trans, on Sw Eng. v.22, n.6, 1996. pp. 378-389.
E. Moser and W. Nebel. Case Study: System Model of Crane and Embedded Control. In:
Proc. of DATE’1999, Munich, Germany, March 1999.
S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli, Design of
Embedded Systems: Formal Models, Validation, and Synthesis. Proc. of IEEE, Mar.
1997, pp. 366-390.
Object Management Group (OMG). UML Profile for Schedulability, Performance, and
Time, 2002. OMG document n. ptc/02-03-02.
L. Bichler, A. Radermacher, and A. Schürr. Integrating Data Flow Equations with
UML/Realtime. Real-Time Systems, n. 26, 2004, pp. 107-125.
Th. Heverhagen, R. Tracht, and R. Hirschfeld. A Profile for Integrating Function Blocks
into the Unified Modeling Language. In Proc. of Works. on Specification and Validation
of UML models for RT and Embedded Systems, San Francisco, USA, Oct. 2003.
J. Axelsson. Real-World Modeling in UML. In Proc. 13th International Conference on
Software and Systems Engineering and their Applications, Paris, December 2000.
P. N. Green and M. D Edwards. The Modeling of Embedded Systems Using HASoC. In
Proc. of DATE’2002, Paris, France, Mar. 2002.
R. Chen, M. Sgroi, G. Martin, L. Lavagno, A. Sangiovanni-Vicentelli, and J. Rabaey.
Embedded System Design Using UML and Platforms. In Proc. of FDL’2000 – Forum on
Specification and Design Languages, Sep., 2002.
L. B. Becker and C. Pereira. SIMOO-RT - An Object-oriented Framework for the
Development of Real-time Industrial Automation Systems. IEEE Transactions on Robots
and Automation, v.18, no.4, 2002, pp. 421-430.


