
A PETRI NET APPROACH FOR THE DESIGN
OF DYNAMICALLY MODIFIABLE
EMBEDDED SYSTEMS*

Carsten Rust, Franz Josef Rammig
University of Paderborn, Germany

car@c-lab.de, franz@upb.de

Abstract: A Petri net based approach for modeling dynamically modifiable embedded real-
time systems is presented. The presented work contributes to the extension of a
Petri net based design methodology for distributed embedded systems towards
the handling of dynamically modifiable systems. Extensions to the underlying
high-level Petri net model are introduced that allow for dynamic modifications
of a net at run time.

1. INTRODUCTION AND RELATED WORK
To an increasing extent, embedded real-time systems these days are dynam-

ically modifiable. As an example, consider an adaptive robot control, where
components of the control software are changed at run time due to results of
online learning algorithms. Another application scenario is a group of mobile
robots that cooperatively solve a problem. Since robots may enter or leave
the scenario or just change their location, the entire system is highly dynamic.
Such systems gain increasing interest, e. g. when studying autonomic comput-
ing. Even in traditional application domains like automotive systems, dynam-
ically modifying control systems are considered, for instance for the handling
of so called fail-over situations, that is in error situations, where functionality
has to be relocated. For the design of these systems, dynamically evolving
subsystems – which imply a powerful basic model for specification – have
to be considered together with basic controllers running under hard reliability
constraints.

For the design of these systems, we propose to use a methodology based on
high-level Petri nets as the underlying formal model [11]. We have chosen a

*This work was supported by the German Science Foundation (DFG) project SFB-376

258 Carsten Rust, Franz Josef Rammig

high-level Petri net model for several reasons, for instance in order to bene-
fit from the multitude of existing verification and analysis methods based on
Petri nets. While Petri nets are well-established for the design of static sys-
tems, they lack support for dynamically modifiable systems. We propose an
extension in such a way that an engineer is enabled to annotate transitions with
transformation rules. A transformation rule specifies a modification of the sys-
tem that is performed when the annotated transition fires. The basic concepts
of our approach were first introduced in [10]. In [8] and [6], the extended
design methodology and a tool for the simulation of dynamically modifiable
systems were presented. In this paper, we concentrate on the formal Petri net
model. We will define a self-modifying Petri net model as the extension of a
hierarchical high-level Petri net model.

In the literature, dynamically modifiable Petri nets were often considered
in the context of object-oriented Petri nets. An example are Object Petri nets
introduced by Valk [13]. They support a two-stage modeling method: a main
net called system net contains several object nets, which are instanciated via
tokens of the system net. Transition firings in the system net, which lead to
changes of its net marking, obviously can change the overall net. However, the
dynamics is reflected in the marking of the net. No changes to the net structure
are made. An early approach to self-modifying Petri nets was presented by
Valk in the late seventies [12]. More recently, Badouel and Darondeau intro-
duced Stratified Petri nets, a subset of Valks self-modifying nets. Both models
are based on standard Petri nets without annotations. Modifications of a net
are due to a simple mechanism switching edges on and off dependant on the
current net marking. An approach for high-level nets which is based on similar
ideas is presented in [1].

We propose a more generic approach, where modifications of the net struc-
ture at run time result from coupling a net model with graph transformation
rules (productions), as they are known from graph grammars and high-level
replacement systems respectively. Several other approaches for coupling Petri
nets and graph transformation techniques can be found in literature (see for in-
stance [2] for an overview). One example is the concept of net transformation
systems [7]. Roughly speaking, a net transformation system is a graph gram-
mar, where the generated graphs are Petri nets and the definition of productions
is based on Petri net morphisms. Basically, we use very similar concepts. The
characteristic feature of our approach is that the transformation system is inte-
grated into the Petri net formalism by annotating transitions with productions.
In the aforementioned approaches, graph transformations are applied to Petri
nets at design time only. Our approach integrates them into the firing-rule.

In the following section, we will first give an informal brief overview of
the hierarchical high-level Petri net model, that forms the basis for introduc-
ing dynamic modification. The specification of Petri net transformation rules

A Petri Net Approach for the Design of Dynamically Modifiable … 259

and their integration into the high-level Petri net model will then be defined
formally in Sections 3 and 4. Finally, a small application example will be
considered in Section 5.

2. BASIC PETRI NET MODEL

The basis for definining dynamically modifiable Petri nets in the following
section is a high-level form of Petri nets. Petri nets are bipartite directed graphs
augmented by a marking and firing rules. The Petri net graph consists of a
finite set of places P, a finite set of transitions T, directed edges from places
to transitions and from transitions to places. Places model conditions. For
this purpose they may be marked by tokens. Driven by specific firing rules,
a transition can fire based on the local marking of those places it is directly
connected with. By firing, the marking of these places is modified.

With regard to the definition of Petri net morphisms, we adopt the so-called
algebraic notation for the formal description of Petri nets. Hence, a Petri net
graph is a tuple F = (P,T,pre,post) where pre : assigns a
multiset of places (the preset) to each transition, while post :
specifies the postset of each transition. Figure 1 a) shows an example net. Its
formal definition is

Figure 1. Petri net examples

In the case of high-level nets the tokens are typed individuals. The other
net components are annotated accordingly: places with data types, transition
in-edges with variable expressions, transitions with a guard and transition out-
edges with term expressions, i. e. sums of functional expressions. Now a tran-
sition can fire only if the formal edge expressions can be unified with actually
available tokens and this unification passes the guard expression of the transi-
tion. By firing, the input tokens are consumed and calculations associated with
the transition out-edges are executed. That way new tokens are produced that
are routed to output places of the transition. A simple high-level net is depicted
in Figure 1 b). Different from this example, we usually annotate transition out-
edges with variable expressions and transitions with corresponding variable
assignments, since to our experience this representation has some advantages

260 Carsten Rust, Franz Josef Rammig

Figure 2. Hierarchical high-level Petri net

in practical applications. Obviously, both alternatives for annotating the out-
going edges of transitions are equivalent. The depicted notation was chosen,
because the resulting formal definitions are more readable. In order to handle
complex systems we added a hierarchy concept. As an example for a hierar-
chical specification, a small robot control is depicted in Figure 2 a). It contains
three hierarchical transitions, each instantiating a distinct robot behavior which
maps sensor values to according actuator settings. The components providing
the sensor values and processing actuator values respectively are omitted from
the figure. Furthermore, the net contains a hierarchical place instantiating a
discrete control which is responsible for properly switching between the possi-
ble modes. The instantiation of the Explore-module is depicted in Figure 2 b).

Besides support for easy modeling, another reason for presuming a hierar-
chical Petri net model as the basis of our dynamically reconfigurable model
is that the structure induced by hierarchy may be used for defining scopes, to
which transformation rules can be applied. In order to define a hierarchical
structure, we assume a function which assigns a parent node to each node
of the net. A node acting as a parent node is called hierarchical node. The
inverse function of assigns to each hierarchical node the set of nodes which
constitute the module instanciated by this node. In order to keep the definitions
reasonably simple, we assume that each hierarchical Petri net can be realized
by a flat net constituted by the basic, i. e. non-hierarchical, nodes of the net.
This holds for many hierarchy concepts. In some cases however, extensions to
the net model are necessary in order to facilitate this mapping. Since hierarchy
is not in the focus of the presented work, we neglect these cases. Thus, in the
following we consider flat Petri nets, which have a structure imposed by an
original hierarchical definition.

A Petri Net Approach for the Design of Dynamically Modifiable … 261

3. RULES FOR DYNAMIC MODIFICATION

In the case of a static system, the entire system can be modeled in advance.
To specify these systems, we propose to use the hierarchical high-level Petri net
model outlined in the previous section. For dynamically modifiable systems
however, only the generating system of a set of potentially resulting systems
can be provided. A straightforward approach for describing the generating
system is given by graph grammars, since a Petri net specification is strongly
based on a graph, and graph grammars are a standard formalism for specifying
graph manipulations. From the various existing approaches for defining graph
grammars, we have chosen an algebraic approach, which was first introduced
by Ehrig et. al. in the early seventies [4], Algebraic approaches typically make
use of constructs from category theory in order to describe graph transforma-
tion rules (productions) and their semantics, i. e. the precondition for applying
a production to a given graph as well as the effect to the graph. In order to ap-
ply category theory, categories of graphs are considered, where relationships
between graphs are modeled by graph morphisms.

Hence, in order to define productions for Petri nets, we first have to define
Petri net morphisms. At this point, a - merely technical - problem arises: Pro-
ductions and likewise Petri net morphisms shall be formulated over high-level
Petri nets as well as be part of the annotation of high-level Petri nets. In or-
der to solve this cyclic dependency, we define morphisms for a generic model
of annotated nets complying with standard high-level nets, but also with the
dynamically modifiable nets we are aiming at. An annotated net combines a
Petri net graph F = (P,T,pre,post), as it was introduced in the previous
section, with a tuple of functions

where and
are languages. Each function assigns annotations to Petri net elements.

Given two annotated Petri nets, a Petri net morphism is a tuple of functions
which

maps the places, transitions, and annotations of one net N to those of another
net M. For being a morphism, it is required that for all net components
(i. e. places, transitions, and edges), the corresponding morphism component
commutes with the annotation function. For the complete formal definition we
refer to [9].

Having introduced Petri net morphisms, we are able to define productions
for Petri net transformations in the usual way. Thereby we follow the double
pushout approach which was introduced in [4]. A comprehensive tutorial can
for instance be found in [3]. In the double pushout approach applied to Petri
nets, each production consists of two Petri net morphisms and

Basically, correlates an annotated Petri net L (the left side of
the production) with an annotated Petri net R (the right side). Furthermore,

262 Carsten Rust, Franz Josef Rammig

Figure 3. Rule for Dynamic Transformation of Petri nets

the production explicitly specifies the interface object K, typically a common
subnet of L and R. An example for a production is depicted in Figure 3. The
rule can be applied to a net N, if N contains the net on the left hand side of
the rule (Left). When the rule is applied, the left hand side is replaced with the
net on the right hand side (Right). The common interface object (Interface)
must be part of the net N for application of a rule, but it remains unchanged
during replacement. Hence, it specifies the interface of the modified net to the
surrounding net.

In general, the application of a production to a graph leading to another
graph (in our case the application to a Petri net leading to another Petri net)
is called a direct derivation. In algebraic approaches to graph grammars, di-
rect derivations are defined by gluing constructions of graphs, that are formally
characterized as pushouts, a standard construct from category theory. As the
name suggests, a direct derivation step in the double pushout approach is mod-
eled by two pushout diagrams. They are depicted in Figure 4. The first diagram
(1) describes the deletion of all elements of N which have a pre-image in L, but
none in K. The diagram contains the graphs K, L, N, and C, the latter being
the graph resulting from the first step. In addition to the morphisms and
the diagram contains which embeds K into C, and
In terms of category theory, N is called the pushout object of and while
C is the pushout complement object of and The second pushout diagram
(2) describes the second step, where all elements of R are inserted that do not

Figure 4. Diagram of a direct derivation

A Petri Net Approach for the Design of Dynamically Modifiable … 263

have a pre-image in K. In this diagram, the resulting graph M is the pushout
object of and Summarized in terms of category theory, given a production

a Petri net N and a match p is
applied to N by first building the pushout complement object C of l and m and
then building the pushout object of and We pass on a formal
definition of pushouts and direct derivations and conclude this section by char-
acterizing three objects from Figure 4 that are substantial for the application
of a production to a given annotated Petri net
N. These are the Petri net morphisms (which embeds the left side of the
rule into N), (which removes the left side from N), and (which adds the
right side). In the following we denote these objects by the tuple

4. INTEGRATION OF DYNAMIC MODIFICATION

With a formalism for describing net transformations, we now are able to
define dynamically modifiable high-level Petri nets. They consist of a Petri net
graph F = (P,T,pre,post) as described in section 2 and a tuple of annotation
functions

annotates
places with sorts, i. e. with datatypes, annotates transition in-edges with
variable expressions. Transitions are annotated with a guard (by and with
a transformation rule (by annotates transition out-edges with sums
of terms. Finally, the initial marking is specified by The definition of a
signature including a set of sorts as well as of the languages

and is straightforward. is the set of rules. Each element of is
a tuple where is a production as described in the previous section,
and is a (hierarchical) Petri net node, the scope of

Annotating a transition of a Petri net N with a rule specifies
that, during firing of the production is applied to the subnet instantiated
by If several matches of the production are feasible, one of them is chosen
non-deterministically. For defining the semantics of a dynamically modifiable
net formally, the definition of net markings as well as the transition firing rule
have to be extended. As usual, markings assign tokens to the places of a net,
whereby the sort of each token must fit to that of the place. For dynamically
modifiable nets, the notion of a Petri net marking is extended towards a Petri
net configuration consisting of a marking and a Petri net. Petri net configu-
rations are modified by firing of transitions. For enabling a transition firing,
a match of the transition’s transformation rule has to be found in the current
net as well as a consistent substitution of the transition’s variables by values of
the current marking. Hence, a transition a tuple charac-
terizing a direct derivation, and a variable binding B are combined to form a

264 Carsten Rust, Franz Josef Rammig

transition step B must be a consistent substitution of the transi-
tion’s variables, for which the transition guard is true. If a transformation rule
is specified for the transition, the transition guard as well as the out-edge anno-
tations may include references to the rule components, for instance in order to
specify additional conditions. Therefor, the set of transition variables includes
the places and transitions of the rule’s left side. Accordingly, a consistent sub-
stitution B being part of a transition step must assign values to
these variables, which comply with D.

The semantics of a transition step S is defined in terms of its incremental
effects describing the effect of the demarking process of a transition and of the
marking process respectively. For dynamically modifiable nets, the incremen-
tal effects of a transition step are twofold. We have to define the effects of S on
the current net and as well as the effects on the current marking

and Given a transition step where
and a configuration C = (N,M), the effects on the current net N

are given directly by the two functions and applied to N. From these
functions, the two nodesets and can be derived. con-
tains all nodes of N that are removed by while contains all nodes
added by As in static nets, the negative effect of a transition step results
from evaluating the in-edge annotations of with the substitution B. Similarly,
the out-edge annotations are evaluated for generating the positive incremental
effect In addition, modifications to the net must be taken into account.
The positive effect has to be restricted to the marking of those places,
that remain in the net after modification, i. e. the elements of are not
marked. Places contained in i. e. places created by the transition step,
are assigned their initial marking.

Based on these definitions, the firing rule of dynamically modifiable high-
level Petri nets can be defined expectedly. Let be a transition with the trans-
formation rule where Let

be a direct derivation, a transition step, and
a configuration. S is enabled, i. e. can fire, in if the fol-

lowing conditions hold. (1) The transition is an element of (2) The scope
of the transformation rule is a hierarchical node of (3) instantiates

(4) The negative incremental effect is included in the current
marking If S is enabled in it may fire leading to a configuration

where results from applying and to and
results from subtracting from and adding

5. APPLICATION

Using the Petri net transformation features introduced in the previous sec-
tions, a more concise specification of the robot control presented in Figure 2 is

A Petri Net Approach for the Design of Dynamically Modifiable … 265

Figure 5. Petri Net with dynamic modification

feasible. An excerpt of the revised specification is depicted in Figure 5. The
hierarchical transitions Explore, Justify, and Fullturn specifying the behaviour
in each possible mode of the robot have been folded into one transition Mod-
ule. The mode switching transitions of the discrete control Ctrl are annotated
with transformation rules changing the refinement of Module as exemplarily
shown for one transition in Figure 5. This specification is more compact than
the original one. Beyond that, it is more flexible, since transformation rules
determining the refinement can depend on run time data.

The presented application example is comparatively small. An application
of our approach to a larger robot scenario, a small robot contest called ’Cap-
ture the Flag’, is described in [5]. In both cases the extended high-level Petri
net model has proven useful for the specification of dynamically modifiable
systems. For an evaluation of the system behavior, we provide an execution
platform [6], which allows to simulate the execution of a dynamically modifi-
able high-level Petri net on the simplified model of the target hardware. The
execution platform will also serve as a basis for the automated implementation
of dynamically modifiable Petri nets. For the realization of the above described
applications, it was necessary to transform the dynamic Petri net models into
equivalent static nets, since a direct implementation of truly dynamic behav-
ior on the available small microcontrollers was not feasible. However, with
regard to more powerful backends, we made first experiments with a direct
implementation of the dynamic nets in Java, whose results were very promis-
ing. Compared to the implementation of an equivalent static net, the time for
executing a modifiable net increased by a factor of 1,5 only.

6. CONCLUSION

We have presented an extension of our high-level Petri net model in order to
capture dynamically modifiable embedded systems, for instance adaptive robot

266 Carsten Rust, Franz Josef Rammig

controls. In order to achieve a formal definition of dynamically modifiable
Petri nets, the existing high-level Petri net model was coupled with transfor-
mation rules as they are known from graph grammars. In our approach, these
productions annotate transitions. The firing rule for transitions was modified
accordingly.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

E. Badouel and J. Oliver. Reconfigurable Nets, a Class of High Level Petri Nets Supporting
Dynamic Changes. In Proc. of a workshop within the 19th Int’l Conf. on Applications and
Theory of Petri Nets, 1998.

B. Braatz, K. Ehrig, K. Hoffmann, J. Padberg, and M. Urbasek. Application of Graph
Transformation Techniques to the Area of Petri Nets. In Proc. of APPLIGRAPH Workshop
on Applied Graph Transformation (AGT 2002), pages 35–44, Grenoble, France, 2002.

H. Ehrig, M. Korff, and M. Löwe. Tutorial introduction to the algebraic approach of
graph grammars based on double and single pushouts. In H. Ehrig, H.-J. Kreowski, and
G. Rozenberg, editors, Proceedings of 4th International Workshop on Graph-Grammars
and Their Application to Computer Science, volume 532 of Lecture Notes in Computer
Science, Bremen, Germany, Mar. 1990. Springer.

H. Ehrig, M. Pfender, and H. J. Schneider. Graph-grammars: An algebraic approach. In
14th Annual Symposium on Switching and Automata Theory, pages 167–180. IEEE, Oct.
1973.

M. Koch and C. Rust. Design of intelligent mechatronical systems with high-level petri
nets, submitted to: IEEE/ASME Transactions on Mechatronics, Sept. 2004.

W. Y. Liu, C. Rust, and F. Stappert. A simulation platform for petri net models of dynam-
ically modifiable embedded systems. In The European Simulation and Modeling Confer-
ence (ESMC 2003), Naples, Italy, Oct. 2003.

J. Padberg, H. Ehrig, and L. Ribiero. Algebraic high-level net transformation systems.
Mathematical Structures in Computer Science, 5:217–256, 1995.

F. J. Rammig and C. Rust. Modeling of dynamically modifiable embedded real-time sys-
tems. In 9th IEEE International Workshop on Object-oriented Real-time Dependable Sys-
tems (WORDS 2003F), Capri, Italy, Oct. 2003.

C. Rust. A High-Level Petri Net Model for the Design of Dynamically Modifiable Systems.
Internal Report, URL: http://wwwhni.uni-paderborn.de/eps/uni/publications/, May 2004.

C. Rust, F. Stappert, and R. Bernhardi-Grisson. Petri Net Based Design of Reconfigurable
Embedded Real-Time Systems, In Distributed And Parallel Embedded Systems. Kluwer
Academic Publishers, 2002.

C. Rust, J. Tacken, and C. Böke. Pr/T–Net based Seamless Design of Embedded Real-
Time Systems. In Applications and Theory of Petri Nets 2001, LNCS 2075, pages 343–
362. Springer Verlag, 2001.

R. Valk. Self-modifying nets, a natural extension of petri nets. Lecture Notes in Computer
Science: Automata, Languages and Programming, 62:464–476, 1978.

R. Valk. Petri nets as token objects, an introduction to elementary object nets. In J. D.
und M. Silva, editor, Applications and Theory of Petri Nets 1998, LNCS 1420, pages 1–25.
Springer Verlag, 1998.

