
A SELF-CONTROLLED AND DYNAMICALLY
RECONFIGURABLE ARCHITECTURE*

Florian Dittmann, Achim Rettberg
University of Paderborn, Germany
roichen@upb.de, achim@c-lab.de

Reconfigurable systems have the potential to combine the performance of ASICs
with the flexibility of software. The architecture presented in this paper offers
a new concept for reconfiguration by operating self-timed and self-controlling.
Data is routed together with its control information in a so-called packet through
the operator network to make local decisions concerning the behavior of the
network. Therefore, we can realize different paths without a central control unit.
In this paper, we describe the architecture from the aspect of reconfiguration. An
example shows the architecture in practical operation.

High-Level Synthesis, Reconfigurable Architectures, Embedded Systems.

1. INTRODUCTION
Nowadays processors work with clocks running in gigahertz and are pro-

grammable to execute all imaginable software programs. The flexibility is
bought dearly by high power consumption and goes along with barely influ-
enceable possibilities to use the available parallelism of algorithms. In con-
trast, ASICs provide high parallelism at low power consumption, yet only for
fixed algorithms. Both concepts only partly fit in the requirements of data
processing today. E. g. mobile devices demand for low power consumption
and real-time data processing. Furthermore, all existing and in future arising
standards should be supported. Such devices need the combination of the per-
formance of ASICs with the flexibility of General Purpose Processors (GPP),
more precisely their software.

Reconfigurable systems and their concepts address this problem area [2].
In such systems, existing modules are reused for other tasks and dynamically
adjusted for current requirements. This procedure is supported by FPGAs. FP-
GAs are no longer only programmable at the beginning of appropriate applica-

*This work was partly funded by the Deutsche Forschungsgemeinschaft (SPP 1148)

Abstract:

Keywords:

208 Florian Dittmann and Achim Rettberg

tions; they can be partial reconfigured during operation. At the same time alter-
native architectures, like the PACT XPP (eXtreme Processing Platform) [7] or
Quicksilver’s ACM (Adaptive Computing Machine) [9] come on the market.

Thus, technical opportunities for dynamic reconfiguration are given, being
constantly improved, and optimized. Besides the basic technical aspects, we
need additional methods to realize simplified and flexible automated and con-
crete design cycles. By considering all the given arguments, it is not desirable
to use centralized control processes, which represent a complex energy and
area consuming control unit.

The MACT (Mauro, Achim, Christophe and Tom) architecture [11–13] de-
veloped at the University of Paderborn describes a concept to flexibly decen-
tralize considerable tasks of reconfiguration by self-controlling. Necessary in-
formation for reconfiguration exists locally due to the combination of control
information and data word. It is possible to adapt the processing of each data
packet according to individual requirements. Required operators are requested
and released. The clear identification of data allows direct and serial process-
ing of different data.

In this paper, we firstly describe related work including the development
of the MACT architecture and all necessary operators. Secondly, we give an
overview of the requirement analysis for the data packet of the MACT architec-
ture w. r. t. reconfiguration. Finally we present an example with an application
that shows how MACT realizes the adaptation to exogenous effects.

2. RELATED WORK

The PACT XPP, which addresses coarse grain reconfiguration, resembles
the MACT architecture. A typical realization of the PACT XPP is similar to an
array with processing nodes. The nodes are always alive, yet the functionality
is dynamically changeable. The configuration respectively the reconfiguration
is implemented by an appropriated flow. Therefore, it is essential to transform
the instruction flow of a GPP into a configuration flow. This flow is mapped
into a control flow graph representing the alternating configuration of the pro-
cessing nodes over time. The control flow graph is executed sequentially.

The ACM approach by Quicksilver is based on run-time reconfigurable
PLDs (Programmable Logic Device). Technical details concerning the im-
plementation are hardly available. The main goal is to include algorithmic
concepts in the architecture. Several ACMs are switched together according to
requirements of the algorithms.

The MACT architecture is close to the concept of dataflow computation
[14], as it is based on dataflow graphs. Further, concepts of dataflow compu-
tation often base on the inter-digitations of control- and dataflow. There, the
processed data is combined with tokens to symbolize the status of affiliation.

A Self-Controlled and Dynamically Reconfigurable Architecture 209

The operators are triggered by the tokens evaluated from compare elements
leading to demand-oriented execution similar to the MACT architecture. Syn-
chronization at not unary operators does not have to be planned by a compiler
in advanced, rather it is implicitly contained in the architecture.

A self reconfigurable platform based on FPGAs is described in [1]. In this
example, the reconfiguration is executed by a microprocessor. The overhead
of reconfiguration w. r. t. to power consumption is characterized in [10]. In this
approach, the time of reconfiguration is reduced by pre-fetching. This leads to
a more compact schedule.

3. MACT ARCHITECTURE

We describe the MACT architecture from two points of view. On one hand,
the architecture is similar to the concept of the Internet on hardware level. On
the other hand, it can be interpreted as a systematic approach for bit-serial
calculation.

Within the Internet, data is transported without a central control element.
All necessary information is transmitted in packets, with decisions done lo-
cally by routers or switches. Arriving packets activate nodes. These nodes
decide how to proceed according to temporal circumstances. MACT uses a
similar concept to transmit on dataflow level. This concept is especially suit-
able for processing of streaming-data. The architecture consists of an operator
network derived from a dataflow graph. Data-words are assembled with suit-
able meta information and sent into the operator network. Each data-word acti-
vates self-controlled the next operator and ensures a minimal distance between
the following packets. Valid data-words are alternated with minimal idle times.
Thus, the processing of data within the MACT architecture is free of deadlocks
and similar to operating in waves. Meta information of the packets is evaluated
at specific points in the operator network to select the path.

Bit-serial processing is characterized by small operators, less area usage,
low number of I/O pins, but higher latency in opposite to parallel calculation
[3]. MACT is a systematic approach to process data bit-serial. Data of the ad-
dressed application classes, like control algorithms or signal processing, often
is bit-serial. Therefore, conversion is not necessary. Further, we use advanced
operators (e. g. [4]) and pipelining to considerably reduce the latency.

Data packets are transmitted synchronously into the operator network. The
network can be interpreted as a clocked shift register. Due to the fixed length
of data packets, scanners allow a precise evaluation and modification of the
information at any time. Typical operators are addition, multiplication, etc.
that are cascaded and assembled directly. Therefore, there exists no buffer
storage. The local self-control cares for necessary synchronization of not unary
operators, provoked by different path length.

210 Florian Dittmann and Achim Rettberg

Figure 2. Bypass

3.1 Realization
The functionality of the architecture is exemplary described by means of a

data packet (see Fig. 1). Valid data packets consist of a leading flag (‘1’) in
front of the data. The flag is needed to identify arriving packets at operators.
Furthermore, we use the flag for local control. Additional information for rout-
ing in the operator network is stored between the leading bit and the data word.
The bit length of the header information (flag and routing information) and the
data word length are fixed at implementation. As mentioned before, such data
packets are transported bit-serial on one wire.

When packets arrive at arithmetic operations, header information and data
word have to be split, as the arithmetic operation should not process the head
information. This is realized by so-called Bypass signals. The Bypass is im-
plemented parallel to the operator (see Fig. 2). Initially the Bypass is active.
When the flag of the header information reaches a specific point in the net-
work the Bypass is deactivated and the following part of the data packet (data
word) is directed to the operator. The Bypass is set to the active state when
the data packet is outside the operator, again signaled by the leading flag of the
header information. Details concerning the implementation of the Bypass can
be found in [5].

It is necessary to synchronize the dataflow within the operator network at
non-unary operators. We do this by Stall signals that are directed in opposite
direction of the dataflow. These Stall signals can stop the dataflow. So-called
Synchronizers in front of each non-unary operator implement this functional-
ity. Yet, it is only necessary to delay a minimal amount of operators and not

Figure 1. Data packet

A Self-Controlled and Dynamically Reconfigurable Architecture 211

Figure 3. Synchronizer: A packet activates the Block_Stallsignal at that is transmitted to
Synchronizier 2. This one generates a Free_Previous _Sectionsignal and transmitted it to Syn-
chronizier 1. Consequently section is released.

the complete network. Only the block of operators actually processing the
data packet is delayed. We implement the Block_Stall therefore. The signal is
gripped from the shift register and directed to the corresponding Synchronizers.

Synchronizers having received a Block_Stall accept new data packets, but
will not dispatch them. If necessary a Stall is produced. The reactivation of
the block that is blocked by a Block_Stall is done by a Free_Previous_Section
signal generated from a Block_Stall of the following operator block, see Fig. 3.

The interaction of the signals leads to local consistency of data and forces
minimal distances to consecutive data packets. Therefore, the data processing
is conflict free and operates in waves. The entire control is based only on local
signals and not on long control wires from a central controller. This concept
of locally based control elements realizes a deadlock free pipeline processing.
The MACT architecture is the second approach implementing a deadlock free
pipeline architecture (the interlocking problem) after that one from [6].

3.2 Router

We integrated routing nodes called Routers in order to be able to process
similar to concepts of the Internet. The Routers evaluate the routing informa-
tion in data packets and decide which paths are selected. We use such path
decisions to assemble or to reload suitable operator networks. Further require-
ments for routers are compactness by high flexibility and minimal latency (de-
cision delay). A first variant of router implementations are multiplexers. In
this case, the routing information of data packets is used to set the parameters
of operators. This leads to operators with integrated routing structures. If data
packets achieve e. g. a constant multiplication with different hard implemented
constants, it is possible to select the constant from the routing information
grabbed by Scanners. This implementation style is useful for low numbers of
constants in opposite to include constants within the data packets.

212 Florian Dittmann and Achim Rettberg

Figure 4. Router example

We achieve more freedom concerning the path selection by implementing
the routers as independent elements. Fig. 4 shows a router with two paths.
A Scanner detects after the arrival of the flag (leading ‘1’, see grey shaded
register) the head information of the data packet. Thus, the logic of the routers
interprets the head information. Depending on the result, the corresponding
paths are triggered.

The router concept tends to result in two levels of reconfiguration. The first
level selects between available paths of the operator network with the existing
head information. A higher-level reconfiguration is based on this path selection
mechanism. At this level e. g. the realization on an FPGA leads to reloading
specific parts of a dataflow graph. At this point, the router has to be equipped
with an intelligent replacement strategy similar to caching methods to mini-
mize the reconfiguration of the FPGA. Both concepts have enough potential
to operate locally and individually for each data packet. In this case, a cen-
tral control element to generate signals and to track the data is not necessary.
Therefore, it is practicable to process sequentially different applications with
different requirements in the same operator network.

We integrate Scanners on the shift register before routers. These Scanners
track the head information independently from the following elements (opera-
tors, synchronizers, or delay elements). The leading flag of each data packet is
used to control the grabbing time. Routers represent an additional element in
the shift register. This further delay is used for the decision of the router logic.
Thus, we achieve a short latency of one clock cycle and a small area usage.

4. RECONFIGURATION

In the previous section we described the routers and showed how a simple
reconfiguration of the MACT architecture is achieved. In this section, we dis-
cuss the procedure in detail and examine the problem when using a surrounding
system. Thereby, the MACT architecture offers a variety of possibilities for the
implementation. Furthermore, we examine the possibilities towards practica-
bility.

The goal to be reached for reconfigurable architectures is the realization of
intelligent systems. Such systems have the capability to independently adjust
the behavior and structure due to exogenous (environmental influences, user

A Self-Controlled and Dynamically Reconfigurable Architecture 213

Figure 5. Network with two routers and four paths

interaction) and endogenous effects (ageing, component failure, altered target
parameters, etc.). Systems have to be adapted permanently and efficiently to
changing requirements without additional control overhead. Comparing this
adaptation with a GPP, it is a context switch, which should be as short as possi-
ble, because most reconfigurable systems are used under real-time constraints.
Reconfigurable architectures allow a context switch on hardware respectively
wiring level. The dataflow is manipulated from outside by a control system.
Therefore, an external and complex control element is necessary to track the
data and to provide appropriate networks and follow-on operations.

MACT offers the possibility to reduce the overhead of a context switch by
local presence of the control and routing information. Not a control element,
but the data itself controls the way to the operators. Therefore, data is assem-
bled with explicit identification to distinguish between each other. Thus, it is
possible to have data from different applications in the same operator network.
This offers the freedom to use paths and operators without a central control
element. Furthermore, we realize a dynamical extension of algorithms simply
according to given facts. This is achieved by assembling data and suitable head
information before entering the network. The peripheral preprocessed logic is
only responsible for the attachment and generation of the data packet. Further
control tasks are decentralized and operate independently in the local control
elements (synchronizers, routers).

5. IMPLEMENTATION OF THE SYSTEM

The implementation of the system should make profitable use of the charac-
teristics of the MACT architecture. Thus, we distinguish between two tasks.

Firstly, we assume a hard implemented operator network with routers at suit-
able locations. These routers offer the possibility of multiple usages of areas
of the graph (see Fig. 5). This kind of reconfiguration may be used for dif-
ferent coding standards like TDMA and GSM or refinements of compression
algorithms. We code the path into the header of the data package. Concerning
the example, we need 2 bits for the four possibilities. In general, the amount
of path possibilities can be realized with digits referring to The
logarithmic dependency realizes many different paths to be coded by few bits.

Further, if data from different applications is intended to use the same path,
the header must be extended with additional identification. The same formula

214 Florian Dittmann and Achim Rettberg

Figure 6. Reconfiguration: In situation (a) a packet reaches a router on an existing path stored
in a slice. The router sends a Request-signal so that the slice is configured with a new operator
network (b). Then the packet is routed to the network (c).

E. g. if there are less than but more tan paths, one of those bits
may be used for the additional identification of the different packets.

If path decisions are located early in the data flow network, we realize a
further way of optimization. Parts of the header can be removed after the path
decision is done, leading to shorter data packets for the ongoing processing.

We modify the above explained system in order to be able to adapt to new
requirements. These new requirements are new versions of processing standard
or complete new algorithms for data processing. In most cases, we will have
to modify and add paths or exchange operator nodes. We can think of 3G and
4G mobile communication problems.

In order to be able to reconfigure hardware, there has to be the technical con-
dition. We assume an FPGA, which contains the whole MACT architecture.
We have multiple possibilities to reconfigure the network. Firstly, the FPGA
may be programmed completely. All calculations have to be stopped for this
task. The duration may take up to several milliseconds and the package gener-
ation part must be reconfigured. Now, we try to avoid these disadvantages.

FPGAs are dynamically partial programmable. It is possible to exchange
parts of the circuit during operation. Still, this takes some time. We try to
reduce the requirements for the reconfiguration, in order to speed up the recon-
figuration phase. Therefore, we adapt the MACT architecture to these require-
ments. Basically, possible branches i. e. new paths can be found directly after
routers. Thus, we extend routers with the possbility to request new paths. The
header of the data packet is extended by one additional bit, which signals the
need to establish a new path or not.

In order to be able to omit a central controller, the router itself will gen-
erate a data package that requests the new path. This data package consists

leads to an amount of possibilities for identification with bits. Here,
we can combine both the path and identification information, as the first is
needed inside the network, the latter after exiting the network. Each individual
case demands for special care taken concerning possible double usage of bits.

A Self-Controlled and Dynamically Reconfigurable Architecture 215

Figure 7. JPEG coding

of a location address (a number of slices of the FPGA) for the new operators.
Thus, the reconfiguration data can be retrieved. The data packet generation
unit buffered this reconfiguration information. To sum up, the process of re-
configuration is not controlled by a central controller, but organized locally and
demand-oriented. Refer to Fig. 6 for a graphical example.

Using this order for the reconfiguration, we are able to reduce the control
flow to a minimum. There is no need for a central controller, which would
have to track the state of every data within the network. Again, different data
packets of different applications can be calculated within one implementation
of the MACT architecture. In order to reduce the busy waiting for new opera-
tors during the reconfiguration, we have planned to re-locate the scanners for
the routers. Placing them earlier will mean additional time until the data will
actually need the new path, thus hiding reconfiguration.

6. EXAMPLE

As an example we present a part of the JPEG algorithm [8]. JPEG com-
presses images according to individual quality requirements. Fig. 7 shows a
relevant part of the JPEG algorithm. Following a preprocessing, it is possible
to either choose a lossy DCT (Discrete Cosine Transformation) or a lossless
coding, before there is the entropy coding or compressing. We find different
paths within the JPEG algorithm, initialized by a router. According to the meta
information in the header, each data packet gets assigned the correct paths by
the routers. Thus, data of different images with different requirements can be
found in the same network.

The example JPEG consists of multiple possibilities to realize reconfigura-
tion with the MACT architecture. This is especially true for an easy realization
of dynamically adoptions of the data flow graph to new requirements.

216 Florian Dittmann and Achim Rettberg

7. CONCLUSION

In this paper we have shown how a new bit-serial self-controlled architecture
can be used to easily realize the reconfiguration of signal processing systems.
This architecture, the MACT architecture, operates with data packets which
carry all relevant information and thus offer the possibility of local controlling.
Especially path decisions changing the data flow of the signal processing can
be realized by referring to the meta information. In doing so, the functionality
of the circuit is adapted dynamically, or even reconfigured completely. Further
work will consider the effectiveness of the described system.

REFERENCES
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

B. Blodget, P. James-Roxby, E. Keller, S. McMillian, and P. Sundararajan. A Self-
reconfiguring Platform. In Proceedings of the International Conference on Field Pro-
grammable Logic, Lisbon, Portugal, Sept. 2003.

K. Compton and S. Hauck. Reconfigurable Computing: A Survey of Systems and Soft-
ware. ACM Computing Surveys, 34(2): 171–210, June 2002.

P. Denyer and D. Renshaw. VLSI Signal Processing: A Bit-Serial Approach. Addison-
Wesley Publishing Company, 1985.

F. Dittmann, B. Kleinjohann, and A. Rettberg. Efficient Bit-Serial Constant Multiplication
for FPGAs. In Proceedings of the 11th NASA Symposium VLSI Design, May 2003.

F. Dittmann, A. Rettberg, T. Lehmann, and M. C. Zanella. Invariants for Distributed Local
Control Elements of a New Synchronous Bit-Serial Architecture. In Proceedings of the
Delta, Perth, Australia, 28 - 30 Jan. 2004.

H. M. Jacobson, P. N. Kudva, P. Bose, P. W. Cook, S. E. Schuster, E. G. Mercer, and C. J.
Myers. Synchronous Interlocked Pipelines. In 8th International Symposium on Asyn-
chronous Circuits and Systems (ASYNC 02), Apr. 2002.

PACT. The XPP White Paper. PACT Informationstechnologie GmbH, 2002.

W. B. Pennebaker and J. L. Mitchell. JPEG: Still Image Data Compression Standard. van
Nostrand Reinhold, New York, 1993.

Quicksilver. Technology Backgrounder. Quicksilver Technology, 2000.

J. Resano, D. Mozos, D. Verkest, S. Vernalde, and F. Catthoor. Run-Time Minimization
of Reconfiguration Overhead in Dynamically Reconfigurable Systems. In Proceedings of
the International Conference on Field Programmable Logic, Lisbon, Portugal, Sept. 2003.

A. Rettberg, M. C. Zanella, C. Bobda, and T. Lehmann. A Fully Self-Timed Bit-Serial
Pipeline Architecture for Embedded Systems. In Proceedings of the Design Automation
and Test Conference (DATE), Munich, Germany, Mar. 2003.

A. Rettberg, M. C. Zanella, T. Lehmann, and C. Bobda. A New Approach of a Self-
Timed Bit-Serial Synchronous Pipeline Architecture. In Proceedings of the Rapid System
Prototyping Workshop, San Diego, CA, USA, June 2003.

A. Rettberg, M. C. Zanella, T. Lehmann, U. Dierkes, and C. Rustemeier. Control Devel-
opment for Mechatronic Systems with a Fully Reconfig. Pipeline Architecture. In Proc. of
the 16th Symposium on Integrated Circuits and System Design, Sao Paulo, Brazil, 2003.

T. Ungerer. Datenflußrechner. Teubner Verlag, Stuttgart, 1993.

