FLEXIBLE RESOURCE MANAGEMENT
A Framework for Self-Optimizing Real-Time Systems

Carsten Boeke and Simon Oberthuer
Heinz Nixdorf Institut, Paderborn University
Fiirstenallee 11, 33102 Paderborn, Germany
{boekeloberthuer} @uni-paderborn.de

Abstract: The demand for highly flexible and reconfigurable applications for embedded
systems under real-time constraints led to various demands for operating system
capabilities. The resource manager of the operating system has to handle dif-
ferent service functions of the applications with different resource requirements
and different qualities. Thereby, the grant of new resources has to be assured by
an acceptance test. Whilst this issue is widely handled for the processor utiliza-
tion and its schedulability analysis, it will be extended in the presented resource
manager to a more general model. The profile model supports for an optimal
resource utilization and also leads to a better system quality by enabling appli-
cations to use resources that are normally reserved for other applications. The
resource manager also supports for a smooth integration of timing constraints
and their acceptance tests for the resource allocation in a hard real-time environ-
ment.

1. INTRODUCTION

In the recent years real-time systems take over more versatile tasks and
are more and more often used in dynamic scenarios. Systems of the future
should be self-organizing, self-repairing, self-optimizing, self-adaptive, and
self-reflective. To achieve this goal the system must be reconfigurable dur-
ing runtime. Other challenging requirements for systems under this conditions
are characterized by Schmidt, 2002: To adapt to the environment the systems
must satisfy multiple QoS properties. Therefore, different levels of services
are appropriate under different configurations and environmental conditions.
The need for autonomous and time critical application behavior necessitates a
flexible system substrate that adapts robustly to dynamic changes in mission
requirements and environmental conditions.

Our basic approach to support reconfigurable applications follows the idea
of service profiles. An application profile describes the configuration of the

178 Carsten Boeke, Simon Oberthuer

application, which in fact means what service function should be active. Addi-
tionally, the minimum and maximum resource usage boundaries are specified,
which can be used to find an optimal profile for activation according to a fea-
sible resource distribution. Besides the feasibility of the resource usage, the
resource utility should be maximized. In order to support the process of find-
ing an optimal set of all active application profiles, each profile is assigned a
quality parameter. The quality parameter describes the benefit that the profile
achieves when it would be active. This parameter is highly dynamic and can
be changed from the application during runtime.

Important for these systems is that the flexibility does not harm the real-
time constraints of the system. To describe the dynamic of applications for the
operating system or other system components a model is required in which this
dynamic can be represented.

The remainder of the article is organized as follows: Section 2 describes
some previous experiences made with the configuration of real-time operating
systems. Section 3 gives a short overview about reconfiguration approaches for
embedded applications. Section 4 is the main part and describes our operating
system driven resource manager that supports real-time reconfiguration and
high resource utilization for embedded applications. Section 5 concludes this
article with some general results.

2. PREVIOUS WORK

Operating systems and run-time platforms for even heterogeneous proces-
sor architectures can be constructed from customizable components (skele-
tons) from the DREAMS’s (Distributed Real-time Extensible Application
Management System) library [Ditze, 1995; Ditze, 1999; Ditze and Boke,
1998]. This process is done a priori during the design phase of a system. By
creating a configuration description all desired objects of the system have to
be interconnected and afterwards fine-grained customized. The primary goal
of that process is to add only those components and properties that are really
required by the application.

The creation of a final configuration description for DREAMS had been au-
tomated during the DFG project TEReCS (Tools for Embedded Real-Time
Communication Systems) [Boke, 1999; Boke, 2000; Boke, 2003]. During that
project a methodology was developed in order to synthesize and configure the
operating system for distributed embedded applications.

Another main issue of TEReCS is the integration of an off-line timing anal-
ysis into the design process for a configured distributed runtime platform. The
design cycle of TEReCS specifies a loop. Within this loop a configuration is
generated and its timeliness execution is checked as long as the check fails.

Flexible Resource Management 179

This implies that the configuration has impact on the analysis and the analysis
has impact on the configuration.

During the exploration of this approach it had been revealed that config-
uration of software components increases dramatically their reuse. Contra-
dictory goals, respectively trade-offs, for example, between performance and
flexibility become highly adjustable. The operating system can be individu-
ally adapted to the concrete demands of the application. Hereby, the overall
performance of the operating and communication system can be optimized.

3. RELATED WORK

The experiences about configuration of operating systems that have been
gathered during the TEReCS project will be adapted to the application level.
Therefore, applications must support for reconfiguration of their services. The
approaches in the literature often introduce service level constructs. The ap-
plication’s state is divided into different service levels. In each of these ser-
vice level states the application provides different functions with a different
resource usage, system benefit, and utility.

Dertouzos and Mok, 1989 showed that for multi-processor systems no
scheduling algorithm is optimal without a priori knowledge of the deadlines,
computation times, and arrival times of the tasks. Popular algorithms like ear-
liest deadline first and least laxity scheduling can be outperformed by other
promising approaches that take resource requirements into account.

Lee et al., 1999 introduced QoS dimensions for a group of applications. In
Q-RAM a utility function is used in order to dynamically optimize the resource
requests of dynamic application service levels. The model requires a priori
application profiles for each application.

Burns et al., 2000 presented a model that includes a set of different service
alternatives for tasks. But their resource usage still is based on worst-case
assumptions.

DQM [Brandt and Nutt, 2002] uses QoS levels to adapt multimedia appli-
cations to overload conditions. DQM uses worst-case execution time analysis
to determine the resource usage. DQM does not reallocate tasks due to special
situations.

In QuO [Loyall et al., 2002] applications adjust their own service level to
improve performance. Applications react to the environment on their own ac-
cord.

ARM [Ecker et al., 2003] was especially developed to cope with unantici-
pated events, anomalies, or overload conditions. A system is seen as a dynam-
ically allocated pool of resources. It is the job of a global scheduling policy to
dispatch application tasks to all processors of the system. The software model
incorporates knowledge of application profiles, network hardware, utility, and

180 Carsten Boeke, Simon Oberthuer

service level constructs for the applications. A service level s, is represented
by a value of R. An application can have assigned a set of service levels. Ad-
ditionally, each application is assigned a workload wg. For each application
a and each host i with its defined workload and service level the response
time 14 4(Wq,S4) and the memory consumption Man(Wa,Sq) are determined. An
overall utility function U(s,w,r) can be defined, which must be monotonically
non-decreasing in a combination of s, w, and r. An allocation of applications
to hosts has to be found where the utility function is maximized.

The previously presented approaches define often a set of service alterna-
tives per application that have different resource usages. This is named service
level of the application. The benefit that the application achieves increases
with higher service levels. Also the resource usage of an application is differ-
ent according to its service level. It is the task of the resource manager to find
a feasible resource distribution and to maximize the system’s utility.

4. FLEXIBLE RESOURCE MANAGER

In the scope of the Collaborative Research Center 614 is the challenge to
make embedded applications self-optimizing. In this article an operating sys-
tem driven approach is presented. For this approach applications must support
several service alternatives, which claim for different resource usages. This
means that applications are able to change their resource requirements. The
maximal resource requirement of one service alternative is called profile. Due
to the different resource usages per profile of an application task, the quality of
the application can vary. It is the task of the resource manager of the operating
system to support the tasks in finding their actual profile and to maximize the
system’s quality.

The following part defines the main features of our Flexible Resource Man-
ager (FRM).

4.1 Profile definition

In our FRM per tasks T; the programmer can define a set of profiles F;. In the
following the actual number of tasks is assumed to be n, thus | < i < n. The
set must contain at least one profile. Profiles can be compared to different run
or service levels of a task. At each time only one profile P; of task 1T; is active.
Each profile of a task implements another service level of the task. Inside of a
profile the following information are stored:

Resource requirements. Each profile describes a different level of re-
course requirements of the task. A task can only allocate resources in the range
that its active profile defines. The following data must be provided: The type
of the resource (e.g. memory, CPU time, area on a FPGA, bandwidth on a

Flexible Resource Management 181

communication medium, etc.), the quantity of the resource in ranges (e.g. 128-
256kb, 20%-30%, 10-20 kbits/s, etc.), and the delay of the requests (e.g. Sus),
which describes the maximum delay between the request and the assignment
of the resource. When a task wants to allocate more resources than described
in its active profile, it has to switch to a profile with appropriate resource re-
quirements.

Switching conditions. The FRM is responsible for activating a profile.
To support the FRM a task has to describe switching conditions in each profile.
This conditions describe when and under which constraints a task can switch
to another profile. Additionally, it is defined how long the switch will take, and
which methods to execute. These methods are so-called enter and exit methods
per profile, with their worst-case execution times (WCET) assigned.

Profile quality. = The programmer or a quality manager application can
order the profiles according their quality. The quality of a profile p is defined
through the quality value gp € [0,1]. The FRM uses this value to decide which
profile to activate as described later in detail.

Service function. Each profile is assigned a main function that has to
be executed when the profile is active. When switching between two profiles,
the appropriate leave function of the old profile will immediately be activated,
while the main function of the old profile is stopped. Hereafter, the enter func-
tion of the new profile will be executed. After this enter function terminates
the main function of the new profile becomes immediately active. Thus, the
active process of a profile is divided into an enter, main, and leave interval.

4.2 Profile configuration

We call a combination ofprofiles ¢ = (P1, P2, ..., Pn) With p1 € Py, p2 € P,
...y Pn € P, the configuration of the system. This means every configuration
maps each task to one of its profiles. The configuration of all actual profiles
¢ = (P1, P2, .--» Pn) is called active configuration.

4.3 Quality of the system

The FRM is responsible for switching between the profiles of the tasks under
the switching conditions. To provide the FRM with information, which profile
is the best for an application and which application to favor, the FRM considers
the quality of the profile and the importance (\; € [0, 1]) of each task Ti.

It represents the importance of this task inside of the whole system and the
RTOS can consider it for optimizing the system. The value is set from the
programmer, but can be changed dynamically online.

182 Carsten Boeke, Simon Oberthuer

A quality function Q(c) defines the quality of a configuration. The FRM
uses this function to decide which configuration has to be activated, by maxi-
mizing the quality function. The programmer of the system has to define the
quality function. For example, a simple quality function can be:

Q(c)= Y t-gp,, withp; €c
T€T

4.4 Configuration classification

In classical approaches for resource management, applications in real-time
systems define worst-case requirements. The classical resource management
has to assure that the upper limits from all applications do not exceed the sys-
tem limits. When these upper limits are only reserved for worst-case resource
requirements and do not represent the average case, then this leads often to an
internal waste of resources. This means that the applications can only allocate
resources in their a priori defined boundaries.

Guaranteed allocation. Per configuration, we define a resource to be
in a guaranteed allocation state, when the normalized sum of all upper bounds
of the resource requirements of the profiles of the configuration is lower than
100%. This means that the sum of all upper bounds of the resource require-
ments for the resource do not exceed the available amount of the resource.
We define the configuration to be in a guaranteed allocation state, when all
resources are in a guaranteed allocation state.

Over allocation. In a real-time environment applications want to have
guaranteed resources. This leads to unused resources in the average case by
reserving them for worst-case resource allocations.

We define per configuration a resource to be in an over allocation state,
when not all upper bounds of the resource requirements of the configuration
can be granted at the same time. This means that the sum of all upper bounds
of the resource requirements for the resource exceeds the available amount of
the resource in the system. We call a configuration to be in an over allocation
state, when one or more resources are in an over allocation state.

When a conflict appears (more resources are required than available) this
conflict must be solved, because in a real-time environment the applications
need planning reliability. Denying of a resource requirement is normally not
acceptable and can lead into catastrophic results. To deal with this fact our
FRM allows transitions from a guaranteed allocation configuration to an over
allocation configuration only under special circumstances. Transitions can
only be granted if a guaranteed allocation configuration can be reached in time,
when a conflict appears.

Flexible Resource Management 183

4.5 Profile reachability graph

We define a profile reachability configuration graph. This is a directed
graph. Each configuration represents a node. From one node to another node a
directed edge exists, if the system can switch from the first configuration to the
second configuration. A weight is assigned to the edges, which indicates how
long it takes to switch from the start configuration to the destination configu-
ration. This weight is taken from the WCET of the enter and leave methods
of the corresponding profiles. Each node is classified to be in a guaranteed
allocation state or an over allocation state. This classification can also be done
per resource.

4.6 Allowing over allocation

The basic idea is to allow the system to be in an over allocation state config-
uration, when the FRM can guarantee that a guaranteed allocation state con-
figuration can be reached in time. Here, ”in time” means that a new resource
requirement that leads to a conflict must have a greater assignment delay than
the switch time to a guaranteed allocation state configuration. In order to speed
up the search time for a guaranteed allocation state configuration in the graph,
the taken paths from the guaranteed to over allocation states will be recorded
and cached.

Figure 1 shows a simple profile example with two tasks and the correspond-
ing profile reachability graph. The first task T; has two profiles ps,,1 and p«,,2,
the second task Tz has only one profile P1,,1. From this follows that the cor-
responding profile reachability graph consists of two nodes: one for configu-
ration ¢i = (Pr,,1,P1,,1) and one for ¢ = (Pr,,2,P1,,1). When we assume that
our system has 1024kb memory for the application tasks, the configuration ¢
belongs to the set of guaranteed allocation states and the configuration ¢z to
the set of over allocation states. We also assume that task Ty allows to activate
the profile pr, 2 when it is in profile py,,; and vice versa. So, the two nodes of
the profile reachability graph are connected with two directed edges, one from

Profile
T | v | Profile Memory WCET
name | 7 inkb | Delay | Enter | Leave

1.0 [pg, 1 | 0.6 128-256 [1us 1us 2us
1.0 pg2 [1.0]256-768 | 1lus 3us 4us
T2 | 0.6 | pg,1 | 1.0 | 256-512 | 6us Sus Tus

T

Figure 1. A simple example for profiles and their reachability graph

184 Carsten Boeke, Simon Oberthuer

¢ to ¢ with the weight (switch time) 5 (2us+3us) and one from ¢z to ¢; with
weight 5 (4us+1us).

Let us start with this scenario. We assume that our system is in the config-
uration ¢ and both tasks have each 256kb memory allocated. In this case, the
tasks use only up to 512kb memory of the system memory. Our FRM checks
whether task T; can switch to profile pr, 2, which would bring the system in
the over allocation state ¢3. This can be granted, because when task T would
allocate more memory, the assignments have to be fulfilled in 6us. Thus, the
FRM has enough time to reconfigure the system in the guaranteed allocation
state ¢y, by forcing task Tj to go back from profile pr, 2 in profile pr, i, which
takes only Sus. The FRM grants the transition into the over allocation state
¢z and caches a way back to the guaranteed allocation state. This can help to
optimize the system quality, while Ty uses less memory (in its average case
only 256kb), task T, is allowed to use up to 768kb memory by entering an over
allocation configuration. When T3 wants to enter its worst-case scenario, then
T1 has to switch back to its lower profile.

4.7 Resource allocation paradigm

This FRM assumes special requirements according the resource allocation
by the applications:

1 The application specifies a priori the minimum and maximum limits per
resource usage. The application cannot acquire less or more resources
than specified. If the application wants to do so, then it has to specify
a new profile with appropriate limits. The activation of the new profile
underlies an acceptance test of the operating system.

2 The active profile of an application also registers the actual resource con-
sumption (which must be in the specified limits).

3 All resource demands (also within the specified limits of the actual pro-
file) require an announcement to the operating system. Between the an-
nouncement and the assignment a delay is assumed. The profile specifies
a maximal delay per resource. Note, that this delay is a worst-case value.

Due to the fact that the maximal resource requirement per application is
fixed for the active profile and that the assignment delays are greater than the
activation delays for guaranteed allocation state profiles, the overall system
quality can be improved. This can be achieved by allowing applications to
have resource requirements that lead in the worst-case to an overload condi-
tion (refer to task T} of the example). Such overload conflicts can be solved,
because the FRM assures that a guaranteed allocation state profile can be ac-
tivated before the resources for the worst-case scenario have to be assigned.

Flexible Resource Management 185

The existence of activation paths to guaranteed allocation state configurations
implies that the applications assure to degrade their resource usages. For ex-
ample, this means that the task Ty can improve its system quality by activating
the over allocation state profile pq,,2, which means to be able to use more re-
sources. This might have been possible, because task T did not use all of its
maximal resources of its worst-case scenario. But when task T, wants to en-
ter the worst-case scenario by acquiring more resources, then task T; will be
forced to reactivate its lower profile pr, 1. The operating system supports the
maximal assignment delay per resource request by a resource demand and a
resource acquire programming interface. Thus, the application programmer
should split resource requirements into a demand and acquire function. They
have to recognize that between the call of both functions the operating system
will assure an appropriate delay. For this reason, the resource request is split
into these two functions in order to enable the application to make some other
work before the resources are granted. This implies that resource requirements
should be announced as early as possible in order to enable the operating sys-
tem to handle them.

S. CONCLUSION

Our Flexible Resource Manager (FRM) is appropriate for application tasks
that use moderate resource requirements in the average use case. Their re-
source requirements can increase during seldomly occurring worst-case condi-
tions. Additionally, a well-known maximum delay can be specified during the
recognition of the worst-case conditions (announcement for a higher resource
demand) and the start of their handling (respectively, using more resources).
Thus, the difference of the average resource usage and the worst-case resource
usage can be used by other applications. Those applications must assure to
degrade their resource usage in time, when the worst-case scenario will be
announced by the other task. This will lead to a better resource utilization
(wasting less resources due to worst-case reservations) and also to a better sys-
tem quality (by allowing other applications to increase their resource usage in
order to improve their service quality).

The shown FRM opens new potential of optimization in real-time applica-
tions. It helps to negotiate about resources between applications, even when
the applications do not know each other. The programmers have to split their
application into different service levels and have to use the FRM profile APL
Also the FRM is flexible and supports dynamics, which is important for self-
optimizing applications.

186 Carsten Boeke, Simon Oberthuer

6. ACKNOWLEDGEMENTS

This work was developed in the course of the Collaborative Research Cen-
ter 614 - Self-Optimizing Concepts and Structures in Mechanical Engineering
- Paderborn University, and was published on its behalf and funded by the
Deutsche Forschungsgemeinschaft.

REFERENCES

Boke, C. (1999). Software Synthesis of Real-Time Communication System Code for Distributed
Embedded Applications. In Proc. of the 6th Annual Australasian Conf. on Parallel and Real-
Time Systems (PART), Melbourne, Australia. IFIP, IEEE.

Boke, C. (2000). Combining Two Customization Approaches: Extending the Customization
Tool TEReCS for Software Synthesis of Real-Time Execution Platforms. In Proc. of the
Workshop on Architectures of Embedded Systems (AES), Karlsruhe, Germany.

Boke, C. (2003). Automatic Configuration of Real-Time Operating Systems and Real-Time Com-
munication Systems for Distributed Embedded Applications. Phd thesis, Faculty of Com-
puter Science, Electrical Engineering, and Mathematics, Paderborn University, Paderborn,
Germany.

Brandt, S. and Nutt, G. J. (2002). Flexible soft real-time processing in middleware. Real-Time
Systems, 22(1-2):77-118.

Burns, A., Prasad, D., Bondavalli, A., Giandomenico, F. D., Ramamritham, K., Stankovic, J.,
and Stringini, L. (2000). The meaning and role of value in scheduling flexible real-time
systems. Journal of Systems Architecture, 46:305-325.

Dertouzos, M. L. and Mok, A. K. (1989). Multiprocessor on-line scheduling of hard-real-time
tasks. In /IEEE Transactions on Software Engineering, volume 15, pages 1497-1506.

Ditze, C. (1995). DREaMS — Concepts of a Distributed Real-Time Management System. In
Proc. of the 1995 IFIP/IFAC Workshop on Real-Time Programming (WRTP). (Another copy
with quite identical contents appeared in journal Control Engineering Practice, Vol. 4 No.
10, 1996.).

Ditze, C. (1999). Towards Operating System Synthesis. Phd thesis, Department of Computer
Science, Paderborn University, Paderborn, Germany.

Ditze, C. and Boke, C. (1998). Supporting Software Synthesis of Communication Infrastruc-
tures for Embedded Real-Time Applications. In Proc. of the 15th IFAC Workshop on Dis-
tributed Computer Control Systems (DCCS), Como, Italy.

Ecker, K., Juedes, D., Welch, L., Chelberg, D., Bruggeman, C., Drews, F., Fleeman, D., and
Parrott, D. (2003). An optimization framework for dynamic, distributed real-time systems.
International Parallel and Distributed Processing Symposium (IPDPS03), page 111b.

Lee, C., Lehoczky, J. P., Siewiorek, D. P., Rajkumar, R., and Hansen, J. P. (1999). A scalable
solution to the multi-resource qos problem. In IEEE Real-Time Systems Symposium, pages
315-326.

Loyall, J. P., Rubel, P., Atighetchi, M., Schantz, R., and Zinky, J. (2002). Emerging patterns in
adaptive, distributed real-time, embedded middleware. In 9th Conference on Pattern Lan-
guage of Programs.

Schmidt, D. C. (2002). Middleware for real time and embedded systems. Communications of
the ACM, 45(6):43-48.

